Power System Protection Ground faults in isolated neutral systems

r

Briefly about the speaker

- Professor at Norwegian Univ. Science and Technology – Dept. Electrical Engineering
 - Power system transients and protection
 - High voltage engineering, stress calculations
 - Recent focus on Power Transformers
- Developer of ATPDraw
- Sabbatical at MTU
 - Room 628, phone 487-2910
 - hhoidale@mtu.edu

Hans Kristian Høidalen, Ph. D.

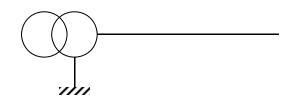
Professor

Department of Electric Power Engineering Faculty of Information Technology, Mathematics and Electrical Engineering

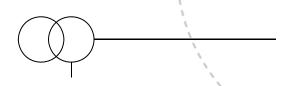
Postal address: Address: NO-7491 Trondheim, Norway O.S. Bragstadspl. 2F

ddress: 0.S. Br

+47 73 59 42 25 • Mobile: +47 911 11 536

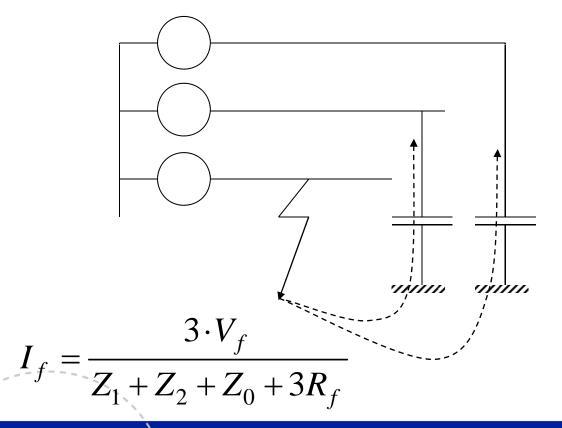

ax: +47 73 59 42 79

hans.hoidalen@elkraft.ntnu.no Norwegian University of Science and Technology



http://www.elkraft.ntnu.no/~hansh/

Solid vs. isolated neutral


- No over-voltages in fault situations
- High fault current
- + Easy fault detection
- + Ground faults persist
- Fast trip and reclosing
- Poor power quality
- Extra stress

- Undefined voltages to ground. Sqrt(3) rise during ground faults. MOV dimensioning.
- + Low fault current
- Difficult fault detection/location
- + Can continue to operate during ground fault.
 Increased power quality
- Safety issues: down/broken conductors

Why is the fault current low in isolated neutral systems?

 Fault current must return through line capacitances. High return impedance.

Ground faults:

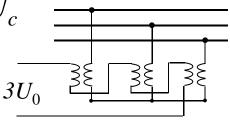
- The most common fault
- Often temporary
 - Trees/branches, snow/ice/wind,
 - Birds
 - Lightning
- Simultaneous faults....

Usage of isolated neutral

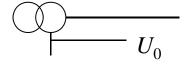
- In Norway
 - LV system 230 V IT
 - MV system 12-24 kV
 - Distribution level 66-132 kV
- The 230 V IT system is gradually replaced by 400 V TN (solidly grounded) due to risk of undetected ground faults, double ground faults, and lower loss in a 400 V TN system.
- In MV; requirements to detect a 3kΩ ground fault
- Power quality is very important to the industry
 - Fast trip & reclosing not acceptable

Zero sequence measurements

 $3I_0$

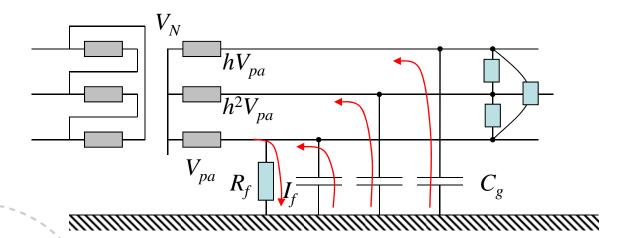

- Current I_0 : Sum I_a , I_b , I_c
 - Summing the current numerically

Residual connection


 Summation transformer (Toroidal/Rogowski coil) Σ I_0 $3I_0$

Lower accuracy due to CT differences

- Voltage U_0 : Sum U_a , U_b , U_c
 - Open delta

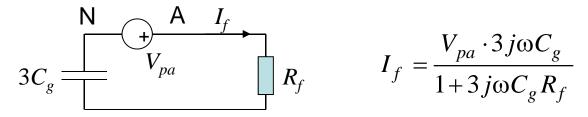


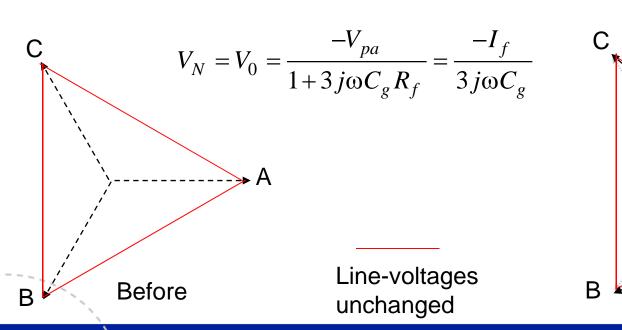
Neutral point (isolated or resonance earth)

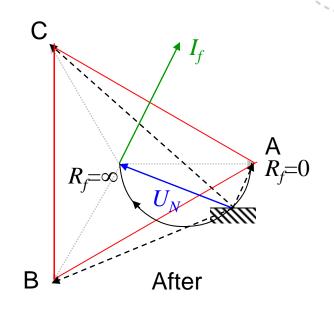
Isolated neutral network

- Normal to only consider ground capacitance
 - symmetrical system,
 - ignore conductive line charging
 - no voltage drop along line
 - imbalance in loads canceled by D-coupled transformers
- Fault current mainly returns in the two healthy phases
- Fault resistance important

$$h = e^{j120^{\circ}}$$

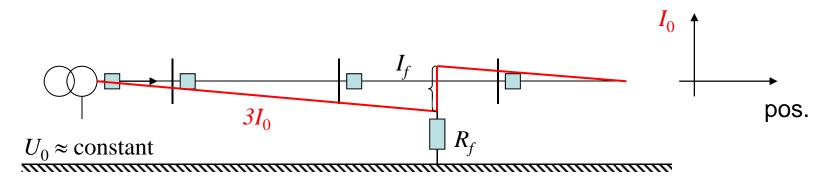

Consequences

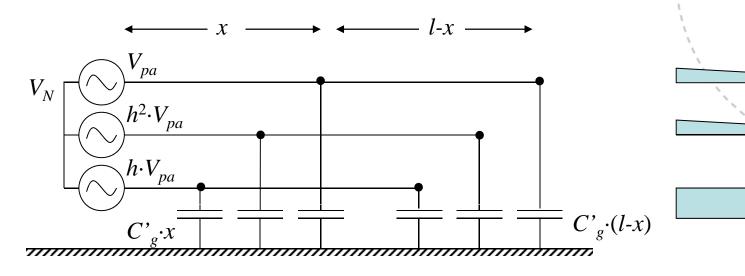

- Fault current is independent on where the fault occurs
- For calculation of feeder current and voltages capacitances can be concentrated
- The voltage to ground will rise for the healthy phases
- Easy to detect that there is a ground fault (by looking at V_0), difficult to detect where (by looking at I_0 in various feeders)


9

Phasors and equivalent

Equivalent circuit during fault (phase A):





Zero sequence in single radial

- Same zero-sequence voltage in the entire system; selectivity is challenging
- The fault is traditionally located by sectionalizing (often manual)
- Zero sequence current varies along the line:

From fault to zero sequence current

Currents:

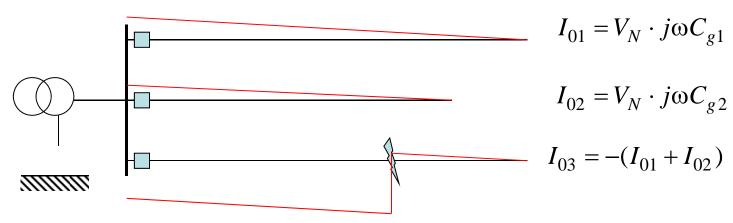
$$I_a(x) = (V_N + V_{pa}) \cdot j\omega C'_g \cdot (l - x)$$

$$I_b(x) = (V_N + h^2 \cdot V_{pa}) \cdot j\omega C'_g \cdot (l - x)$$

$$I_c(x) = (V_N + h \cdot V_{pa}) \cdot j\omega C'_g \cdot (l - x) + I_f \cdot H(d - x)$$

$$C'_{g} \cdot (l-x) \qquad \longleftarrow l \longrightarrow$$

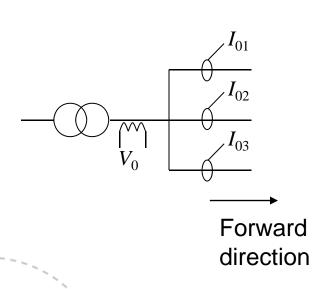
$$C'_{g} \cdot (l-x) + I_{f} \cdot H(d-x)$$

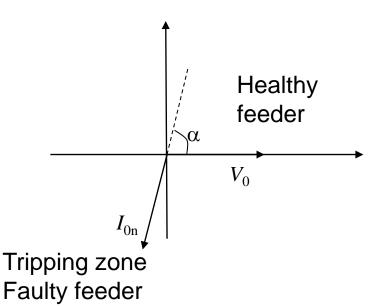

$$= \begin{cases} -V_{x} \cdot i\omega 3C' \cdot x, & x < d \end{cases}$$

Fault location x=d

$$3I_0(x) = (I_a + I_b + I_c) \approx V_N \cdot j\omega 3C_g \cdot (l-x) + I_f \cdot H(d-x) = \begin{cases} -V_N \cdot j\omega 3C_g \cdot x, & x < d \\ V_N \cdot j\omega 3C_g \cdot (l-x), & x > d \end{cases}$$
 ignore voltage drop, no load-effect

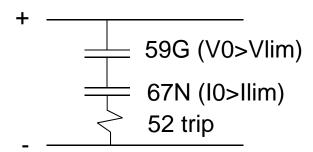
Multiple radials


- Three radials fed by the same transformer
 - Fault current in the faulty feeder is the negative sum of the current in the two healthy feeders



- With two radials the currents are equal in size so directional protection is required
- With an increasing number of feeders simple overcurrent protection becomes possible

Directional over-current relay

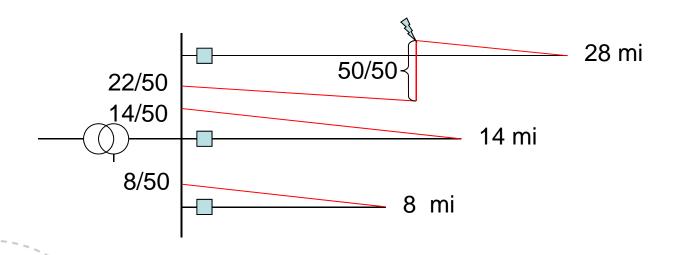

- Often the preferred solution
- Measure zero sequence voltage and zero sequence current in each radial
- Then for each radial:

Relaying logic

- Is zero sequence voltage above threshold?
 - V0>Vlim (type 59G over-voltage relay)
- Is zero sequence current above threshold and in correct quadrant (3rd)?
 - IIIm (type 67N directional over-current relay)

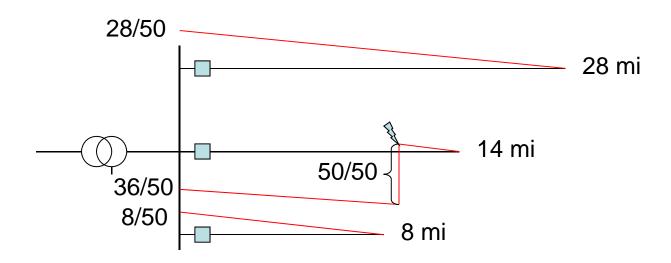
Example- earth fault protection

50 miles line in total Total capacitance is 50 mi $\cdot C'_g$ [F/mi]

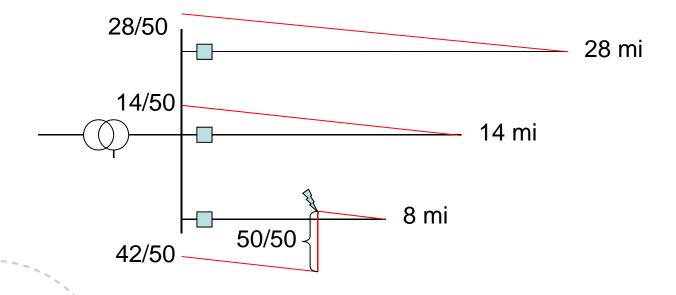

5 nF/mi assumed in this case. NB! Much higher in cable systems.

- Fault current (independent on location)
 - Depends on fault resistance

$$I_{f} \approx \frac{U_{pa}}{R_{f} + 1/(j\omega 3 \cdot 50mi \cdot C_{g}^{'})} = \frac{22 \text{ kV} / \sqrt{3}}{R_{f} - j4244\Omega} \Rightarrow \begin{cases} I_{f,\text{min}} = 2.44 \angle 54.7^{\circ} \text{ A @ 3 k}\Omega \\ I_{f,\text{max}} = 3.0 \angle 90^{\circ} \text{ A @ 0 }\Omega \end{cases}$$


Earth fault line 1 (28 mi)

- Partition of the earth fault current measured for each radial
- Healthy lines 2&3 feed 14 + 8 parts into line 1


Earth fault line 2 (14 mi)

- Partition of the earth fault current measured for each radial
- Healthy lines 1&3 feed 28 + 8 parts into line 2

Earth fault line 3 (8 mi)

- Partition of the earth fault current measured for each radial
- Healthy lines 1&2 feed 28 + 14 parts into line 3

