23 FEB 2009

子で子

FIGURE P3.3

CHAPTER 4

4.1 The per-unit currents for a phase-a-to-ground fault are shown in the diagram of Figure P4.1. Assume that the system is reactive with all resistances neglected and that the generator(s) are operating at j = 1.0 per-unit voltage.

Draw the positive, negative, and zero sequence diagrams and describe the system that must exist to produce the current flow as shown.

- **4.2** For the system shown in Figure P4.2
 - a. Determine the source and equivalent star reactances of the transformer on a 30 MVA base.
 - b. Set up the positive, negative, and zero sequence networks. There are no fault sources in the 13.8 and 6.9 kV systems. Reduce these

networks to single-sequence reactances for faults of the 13.8 kV side.

- c. Calculate a three-phase fault at the 13.8 kV terminals of the transformer.
- d. Calculate a single-phase-to-ground fault at the 13.8 kV transformer terminals.
- e. For the fault of part d, determine the phase-to-neutral voltages at the fault.
- f. For the fault of part d, determine the phase currents and the phase-to-neutral voltages on the 115 kV side.
- g. For the fault of part d, determine the current flowing in the delta winding of the transformer in per unit and amperes.
- h. Make an ampere-turn check for the fault currents flowing in the 115, 13.8, and 6.9 kV windings of the transformer.
- 4.3 For the system shown in Figure P4.3
 - a. Determine the current flowing to the load. Assume that the generators of the equivalent source behind the 13.8 kV bus are operating at 1 per-unit voltage at 0°.

Neg Ref Pes Ref