CHAPTER X

ALPHA, BETA, AND ZERO COMPONENTS OF
THREE-PHASE SYSTEMS

It is pointed out in Chapter II that a set of three voltage or current
vectors pertaining to the phases of a three-phase system can be
replaced by any one of a number of different systems of component
vectors. The symmetrical component system is one of such systems.

" The positive-plus-negative, positive-minus-negative, and zero-sequence
system of components discussed in Chapter V is another. The pres-
ent chapter deals with a third system of components, here called
«, B, and 0 components. _

With phase ¢ as reference phase in a three-phase system, the a, 8,
and 0 components of current and voltage are defined as follows:

a components in phases b and ¢ are equal; they are opposite in sign
and of half the magnitude of the « component of phase a.

B components in phases b and ¢ are equal in magnitude and opposite
in sign; in phase a they are zero.

0 components are equal in the three phases.

a components of current flow into a three-phase circuit in phase a
and return one-half in phase b and one-half in phasec. 8 components of
current are circulating currents in phases b and ¢. 0 components are
zero-sequence components taken over from symmetrical components
without change except in notation; they are here written 0 compo-
nents for brevity and also to indicate that they are to be used with «
and 8 components.

‘Relations between Phase Currents and Voltages and Their a, B, and
0 Components. Referring to Chapter I1, equations [1]-[3], let V; = V.,
V2 = Vg, V3 = Vo. The constant coefficients required to express a
set of three vectors Vs, Vs, V, of a three-phase system in terms of their
a, 8, 0 components are:

1, —%, -3 for a components

Vi V3

7 T for B components

1, 1, 1 for 0 components
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A set of three voltage vectors V,, V3, and V. are expressed in terms
of their a, 8, and 0 components by the equations

Vo= Va+ Vo (1]
./\'

Vo= —Vat S Vet Vo 2]
V3

V, = —V. - % Vs + Vo (3]

Equations [1}-[3] satisfy the required condition that the determinant!
made up of the coefficients is not zero. .

" The three voltage vectors V,, Vg, and V are expressed in terms of
the vectors V,, Vs, and V. by solving the simultaneous equations

[1}-[3]:

Subtracting one-half the sum of [2] and [3] from [1] and solving

for Va, oy
Va = WAS - FV (4]
2
Subtracting (3] from [2] and solving for Vg,
H r
Vg = —=(Vp — V, i5]
[ /\MA b hv
Adding the three equations and solving for V,,
Vo=3Vat+ Vo + Vo) [6]
The corresponding current equations are
L=I+1I {71
V3
I = -3, +|~|~u+~o (8]
V3
I = |.WNn - q. Nm + No —3
Iy + 1
L = w? - ,lw.lv [10]
I = —= (I — 1) [11]
V3
In=3(a+ I + L) [12]

Equations [1]}-{3] and [7]-[9] express any set of three voltage or cur-
rent vectors, respectively, pertaining to the three phases of a three-
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phase system in terms of their «, 8, and 0 components. Equations
[4]-{6] and [10]-{12] express «, 8, and 0 components in terms of phase
voltages and currents, respectively. Equations [1]-[12] are analogous
to the fundamental symmetrical component equations developed in
Chapter II. -

Line-to-Line Voltages. If V,, V, and V, in [1}-[3] represent the ‘
phase voltages to ground at a system point, the line-to-line voltages at
the same point in terms of the a, 8, 0 components of phase voltages to i
ground are “

I

«\saﬂﬁ\alﬁ\vum.a\nl.ll\mma\u
!

|

Vae = Ve — Vo= -3V, — % Vs (13]
i

Vo = Ve — Ve = l\mﬁ\m _

If V. and Vg are expressed in per unit of base line-to-neutral voltage, “
the line-to-line voltages will also be in per unit of base line-to-neutral w
voltage. _

History of a, B, 0 Components. a«, 8, 0 components of current are
not new. Components of current answering to the description of «,
B, and 0, although not so named, were used in a method? developed by
Dr. W. W. Lewis, and published in 1917, to determine system currents
and voltages during line-to-ground faults. In Fig. 2 of the paper,
which is similar to Fig. 1 of this chapter, phase currents are repre-
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F1G. 1. Phase currents represented by arrows in direcfion and magnitude, number
of arrows showing relative magnitudes of currents in any circuit.

sented by arrows both in direction and magnitude, the number of
arrows indicating relative magnitudes of currents in each circuit.
Applying the definitions given above for «, 8, and 0 currents to F ig. 1,
it may be seen that all three components of current are present.
Currents in the Y-A transformer bank and in the line to the right of
the fault are O currents; currents in the transmission line to the left
of the fault are a currents; currents in the second Y-A transformer
bank and in the line at the generator terminals are B currents; currents
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in the generator are « currents. In the method as used before sym-
metrical components were applied to unsymmetrical short circuits,
each component of phase current met its respective impedance, but
calculations were made with phase voltages and currents, not with
component networks, and therefore were time consuming if many
circuits operated at different voltages had to be considered.

In problems involving unsymmetrical three-phase circuits, and in
particular circuits with two of the phases symmetrical with respect to
the third phase, the use of components of current which flow in one
phase and divide equally between the other two phases, and com-
ponents of current which circulate in two phases, is a logical develop-
ment. Such components, as yet unnamed, were used® in 1931; in
1938 they appeared under the names of a and 8 components in two
papers,*® both of which deal with transient conditions in rotating
machines where the development is materially simplified by their use.
Two papers have been devoted exclusively to these components. In
one paper,® they are-called «, 8, and 0 components and the system
Modified Symmetrical Components. In the other paper,’ entitled
* Two-Phase Co-ordinates of a Three-Phase System,” by Dr. E. W.
Kimbark, the components are called x, ¥, and z. Comparing these two
sets: x and « components are identical; y and B components differ
only in sign; 2 components of voltage are 0 (zero-sequence) compo-
nents of voltage, zcomponents of currents are twice 0 (zero-sequence)
components of currents, and 2z impedances are one-half 0 (zero-se-
quence) impedances. At present, definitions and notation for the
components (here called a, B8, 0) are not definitely established® by
usage. The choice of the sign for 8 or y components is arbitrary.
The use of z components as defined in reference 7 has advantages
which will be pointed out later. On the other hand, the familiar zero-
sequence network, modified as required before interconnecting the
component networks to satisfy unsymmetrical system conditions, is of
advantage in analytic calculations. This is illustrated in Chapter V,
Figs. 1 and 3, where two different modifications of the zero-sequence
network are made. Dr. Kimbark’s paper” and the discussions® by
Messrs. Boyajian, Helwith, and Sligant in terms of matrix and tensor
concepts should be read for a comprehensive view of these important
components.

a, B, AND 0 ONE-LINE DIAGRAMS

When components of phase currents and voltages instead of phase
quantities are used in calculations, each set of components is con-
veniently represented by a separate one-line diagram or component
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network from which the components of current and voltage in the three
phases can be obtained. To draw component networks it is neces-
sary to determine: (1) references for the components of voltage,
(2) components of generated voltage, and (3) the impedances offered
to the components of current, or the admittances associated with the
components of voltage. Of interest also are the components of current
present in a symmetrical system during normal operating conditions.

Reference for a, B, and 0 Voltages. The neutral of a Y-connected
circuit is common to the three phases: therefore, in the limit as the
neutral is approached, Vo = Vp = V.. From [1]-{3], this condition is
satisfied if V, = Oand Vg = 0. All neutral points are therefore points
of zero potential in the a and B networks, and « and 8 voltages are
referred to neutral. As all neutrals are at zero potential in the « and 8
networks, the expressions ‘‘ voltage to neutral” and ‘ voltage to
ground " can be used interchangeably for « and 8 voltages just as
they are used interchangeably for positive- and negative-sequence
voltages. 0 voltages at any point in a grounded system will be referred
to ground at that point. In an ungrounded system with a neutral
conductor, they will be referred to the neutral conductor.

Generated a, B, and 0 Voltages. In a synchronous machine with
generated voltages E,, Es, and E., the generated «, 8, and 0 voltages
E,, Eg, and E, obtained by substituting E,, Es, and E, for Vg, V3, and

V., respectively, in [4]-{6] are
E, + E,
WA E, — Llllv

2

]

E.

Eg = E, — E.) [14]

1
V3
Eo = }(Eq + Ey + E.)

If the generated voltages are balanced, Ey = a®E,, E. = aE,, and [14]
becomes

E, = E,
Es = —jEa [15]
Ey=0

With balanced generated voltages in a synchronous machine, the
generated voltage in the « network is E,, the generated voltage of
phase a. In the gnetwork itis —jE,, the generated voltage of phasea
turned backward 90°. There is no generated voltage in the 0 network.

a and B Currents in a Balanced System. Ina symmetrical system
operating under balanced conditions, the currents in phases b and ¢ at
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any point of the system are Iy = a’I,, I. = al,. Substituting these
values for I and I, in [10]-{12]},

Iy = I,
Ip = —jls [16]
Ip=0

Equations [15] and [16] show that generated voltages and load
currents are present in both the « and B networks of a symmetrical
system during normal operation. Because two networks must be
considered instead of one, a, 8, and 0 components are not as con-
venient as symmetrical components for the study of symmetrical sys-
tems during normal operation or during three-phase faults.

a, B, and 0 Networks. Figure 2(a) shows a symmetrical three-phase
system with balanced applied voltages and equal self-impedances Z
in the three phases. I, flowing in phase a and returning one-half in
each of phases b and ¢, flows in a loop circuit. The voltage applied to
this loop, as shown in Fig. 2(a), is E, — (—E,./2) = $E,. The aloop
impedance for a symmetrical three-phase circuit of equal self-imped-
ance Z in the three phasesis $Z. The current I, in phase a is

_3E _E

T 3z zZ

The impedance met by I, is Z. The equivalent circuit for phase g in
the « system is shown in Fig. 2(b), with the applied voltage E, and the
self-impedance Z. In this equivalent circuit, voltages are referred to
neutral, base voltage is line-to-neutral voltage, and base current is line
current. Since the a currents and voltages in phases b and ¢ at any
point in the system are —3 those of phase a at the same point, it is
unnecessary to have additional equivalent circuits for these phases.
The equivalent circuit for phase ¢ in the a system will be called the
a network.

B currents, flowing in phase 4 and returning in phase ¢, flow in a loop
circuit. The voltage applied to this loop, as shown in Fig. 2(a), is
- .u./\wme. The B loop impedance for the symmetrical three-phase.
circuit of equal self-impedances Z in the three phases is 2Z. The
B current flowing in phase b in the direction indicated by arrow is
(V'3/2)I;. Therefore

(V3/2)I5 = —j(V3El/2Z), and I = —j(E./Z)

The impedance met by Ig is Z. The equivalent circuit for the 8 sys-
tem is shown in Fig. 2(c), with the applied voltage —jE, and the self-

I
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impedance Z. In this equivalent circuit, which will be called the
B network, voltages are referred to neutral, base voltage is line-to-
neutral voltage, and base current is line current. The 8 voltages and
currents in phases & and ¢ are the voltages and currents in the 8 net-
work multiplied by /\M\ 2 and Iz\w\P respectively. The 8 network
does not give directly the B voltages and currents in either phase b or phase c.

Eq z
z
-3Ta+ SWCQ
— mn * —.ﬁ
(o)
Eo oL network 7 ~iEq A network 2
— T —1s
(o) O network 2 (¢}
—Ip *

(LY

F16. 2(a). Flow of « and 8 currents in balanced system with equal self-impedances

in the three phases and balanced applied voltages. (b) a network for system

shown in (a). (¢) B network for system shown in (). (d) O network for system
shown in (a).

This slight disadvantage is more than offset by the convenience of
having the same line-to-neutral voltage and line current as base
quantities in the 8 as in the « and 0 networks.

With a path for 0 currents through the circuit of equal self-imped-
ances Z in the three phases, the impedance met by Iy is Z. The 0
network for the system of Fig. 2(a) is shown in Fig. 2(d).

a, B, and 0 equivalent circuits to replace the various equipment,
machines, and transmission circuits of a three-phase power system in
the a, 8, and 0 networks can be determined when the «, 8, and 0 self-

T
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and mutual impedances of the circuits are known. «, 8, and 0 imped-
ances, just as positive-, negative-, and zero-sequence impedances, can
be obtained by calculation or test. Before developing equivalent
circuits for use in the @, 8, and 0 networks, relations between sym-
metrical components and «, 8, and 0 components will be established.

a, B, and 0 Components of Voltage and Current in Terms of Sym-
metrical Components of Voltage and Current. From [1]-[3] and [7]-[9]
of this chapter and [1]-[6] of Chapter V,

Ve = Vai + Vag

Ve = —j(Var — Vaz)

Vo = Vao (17]
I, = I + Ios

Is = —j(Ia1 — Iag)

Iy = I

From EJ. a components are positive-plus-negative components,
B components are positive-minus-negative components turned back-
ward 90°.

Symmetrical Components of Voltage and Current in Terms of a, B
and 0 Components of Voltage and Current. Solving the simultaneous
voltage and current equations of [17],

.w\nu = W.Aﬂ\n +.N.—\uv
.w\nu = WA«\Q - .u.w\uv
Vao = Vo

Iy = 3(Ia + jIp)
Iz = 5(Ia — jIp)
Nao = I

(18]

a, B, and 0 Self- and Mutual Impedances

In [4]{6] of Chapter VIII, the symmetrical components of voltage
drop in an unsymmetrical three-phase series circuit without internal
voltages are expressed in terms of the symmetrical components of
current flowing in the circuit and the self- and mutual impedances of
the sequence networks. Equations for the a, 8, and 0 voltage drops
in terms of the a, 8, and 0 currents flowing in the circuit and the «, 8,
and O self- and mutual impedances of the circuit likewise will be
written. In these equations, as in the corresponding symmetrical
component equations, the effects of saturation are neglected and linear
relations between currents and voltages assumed.
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Finite 0 Self-Impedance. Let V,, Vs, Vo and V., V3, Vi be the a,
B, 0 components of voltage to ground at P and Q, respectively, and I,,
Ig, and I, the components of line current flowing from P to Q. Then

Vg = .‘n - ,—\M = NQNRR + NmNQu + NoNno
v = .—\m - .H\h = Nmen + NuNuu + IyZso [19}
vo = Vo — Vo = InZoa + IZog + IoZoo

where Zaa, Zgg, and Zyy are the a, 8, and 0 self-impedances, respec-
tively, of the circuit. The Z’s with two unlike subscripts represent
mutual impedances, the first subscript referring to the voltage and the
second to the current associated with the impedance. Z,, is the ratio
of the voltage drop in the a network produced by I, to I,; Z,g is the
ratio of the voltage drop in the « network produced by I to Ig; Zs, is
the ratio of the voltage drop in the 8 network produced by I, to I,,
etc. If Zog = Zgas Zao = Zoa» and Zgy = Zgg, the mutual imped-
ances between the component networks are reciprocal. If the mutual
impedances between any two networks are zero, there 1s no mutual
coupling between these networks.

Infinite 0 Self-Impedance. If there is no path for zero-sequence
currents through the circuit, Iy = 0, and no voltages are induced in the
a and 8 networks by Iy. IoZa0 and IgZgg are zero, Zgo = ®, and [19]
becomes

Vo= Vo= Vo= I,20a + IgZag
vg = a\m - ﬁ\m = NnNmn + NmNmu Hno_
Vo — Vo = InZoa + IgZos + 0 - » (indeterminate)

Yo

The voltage drop v between P and Q is indeterminate from [20] but
can be evaluated when the 0 impedance diagram and operating con-
ditions are known. (See [36]-{39] for an evaluation of v.)

Equations [19] and [20], written for a series circuit between P and Q,
can be applied to a circuit connected at one point of the system. If
currents flow out of the circuit, the components of series voltage drop
in the circuit between ground (or neutral) and terminals in the direc-
tion of current flow are given by [19] or {20]. If currents flow info
circuit without internal voltages, the components of voltage to ground
or to neutral af the circuit terminals are given by the right-hand sides of
equations [19] or [20].

The a, 8, and 0 self- and mutual impedances in {19] and [20] will be
expressed in terms of the self- and mutual impedances of the sequence
networks, and also in terms of the self- and mutual impedances of the

phases.
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a, B, and 0 Self- and Mutual Impedances in Terms of the Sequence
Impedances. Replacing I4;, Iz, and I in [4]-[6] of Chapter VIII
by their values in terms of I,, Iy, and I, given by [18], %41, a3, and vag
are expressed in terms of I,, Ig, and Ip. Substituting these equations
for va1, vag, and vag in [17], 94, g, and v, are expressed in terms of I,,
Ig, Io. Equating the coefficients of I,, I, and I in the resultant
equations for v,, v, and v, to the corresponding coefficients in [19], the
a, £, and 0 self- and mutual impedances are

Zaa = 5211 + Zog + 23y + Zy3)
Zgg = 3(Zn1 + Zaz — Zy3 — Zg1)

Zoo = Zgo
Zga = —j5(Z11 — Zoz + Z13 — Za1)
Zop = j5(Z11 — Zag + Zgy — Z12) {21]

Zoa = 3(Zoy + Zo2)
Zao = (Z10 + Z30)
Zog = j5(Zor — Zo2)
Zgo = —j(Zro — Za0)
Self- and Mutual Impedances of the Sequence Networks in Terms
of a, B, 0 Self- and Mutual Impedances. Proceeding in a manner
analogous to that used to determine [21] or by solving [21] for Z;;,

Zga, €tc.:
Zyy = $Zaa + Zpp — j(Zap — Z5a))

Zas = $[Zoa + Zgg + §(Zap — Zga))

Zoo = Zoo
Zyg = .WMNDQ — Zpp + j(Zap + Zpa)]
qu = .W%Nnn - Nmu I.N.ANQE + .Nunv.._ _“NN_

Z1o = 3(Zao + jZgo)
Zor = (Zoa — jZop)
Zso = 3(Zao — jZgo)
Zoz = (Zoa + jZog)
Equations (17] and [21] can be used to pass from symmetrical com-
ponents to a, 8, 0 components. Equations [18] and [22] give symmetri-
cal components in terms of «, 8, 0 components. If a problem is to be

solved by a, 8, 0 components and the sequence self- and mutual imped-
ances are known, the e, 8, 0 self- and mutual impedances are obtained
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by substituting the sequence impedances in [21]. If the problem is to
be solved by symmetrical components, but the a, 8, 0 self- and mutual
impedances of an unsymmetrical circuit are more readily obtained than
the sequence self- and mutual impedances, [22] will be found useful.
Symmetrical Circuit with Equal Positive- and Negative-Sequence

Impedances. 1In a circuit with equal positive- and negative-sequence
self-impedances and no mutual impedances between the sequence net-
works, the «, 8, and 0 self- and mutual impedances obtained from [21}
are

Zaa = Nmu =Zn=2

Zoo = Zoo = Zo (23]

Zop = Zga = Zao = Zoa = Zgo = Zog = 0

When there are no mutual impedances between the sequence networks,
the positive-, negative-, and zero-sequence self-impedances are custo-
marily indicated by Z;, Z;, and Z,, respectively, instead of Zy1, Zaa,
and Zy,.

Unsymmetrical Static Circuits. 1f Zy, = Zse, Zio = Zog, and
Zag = Zy1, [21] becomes

Zaa = Z11 + 3 (Za1 + Z13)

Zeg = Zu — 3(Zar + Z1p)

Zoo = Zgo [24]
Zap = Zpa = j3(Za1 — Z13)

Zao = 2Zpa = (Z10 + Z20)

Zgo = 2205 = —j(Z10 — Z20)

If N: = NNM‘ N_N = NNT and N_o = Now = Nwo = Nou. HN: becomes
Zoa = Zu + 212
Zgg =21 — 212 N
Zoo = Zyo [25]
Zop = Zga = Zgy =Zpg = 0
Zao = 220q = 271
If the sequence self- and mutual impedances of the unsymmetrical
static circuits developed in Chapter VIII are substituted in [21],
[24], or [25], their a, B, and O self- and mutual impedances will be
obtained.

Modified 0 Network. In circuits in which Zo, = %$Z.0 and
Zos = %Zgo, equations {19] are conveniently expressed in terms of a
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modified O network in which the voltage is 0 voltage, the current is 21,
and the impedance is one-half the 0 impedance. Rewriting [19] in
terms of 21,

Z,
Vo = Vo — ﬂ\n\x = IyZao + NmNnm + ANNQV .'N.m

N.

vg = Vg — Vi = LZpa + IpZgs + (210) |Nulo [26]

’ Zoo

vo = Vo — Vo = InZoa + InZog + (21) >

Za
Equations [26] can be used instead of [19] in cases where % = Zja
Z,

and % = Zog, thereby giving reciprocal mutual coupling between the

a (or ) network and a modified 0 network in which the current is 21,
the impedances are one-half 0 impedances, and the voltages are 0
voltages. This is the z network used in reference 7.

An alternate modification of the 0 network is obtained by rewriting
[19] in terms of 2yp. Retaining the equations for vy and vg in [19] and
multiplying the equation for y; by 2,

Vo = .—\n - ﬁ\h = NnNo.n + NmNnm + N.ano
vg = «\u - .-\m = .N.nNmn + NnNmu + Nono [27]
2(Vo — Vo) = Ia(2Z0a) + I5(2Z0s) + Io(2Z0o)

Equations [27] apply to a modified 0 network in which currents are 0
currents, voltages are twice 0 voltages, and impedances are twice 0
impedances.

2 Vo

In unsymmetrical circuits in which 2.Z,, = _“u<n — I wsm
Zao and 2Zgg = Zg,, either of the modified 0 i e
networks defined in [26] and [27] is mutually “F = 4.<u
coupled with the a and 8 networks. Where Vo —=1o I

either of the modified networks can be used | h
equally well, the one corresponding to the z
network” will be chosen in the work which T7777777777777777
follows. - s L4l 41

a, B, O Self- and Mutual Impedances in o e
Terms of the Phase Impedances. Let Fig. 3 FI6- 3. Unsymmetrical
represent a general three-phase static circuit > o o:.n_:.” Qv ctween P
composed of bilateral circuit elements with- e
out internal voltages between points P and Q, with a return path for
0 currents. With phase voltages at P and Q referred to ground or
to a neutral conductor at P and (, respectively, the voltage drops
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va, Us, and v, in phases a, b, and ¢ in the &mmomo: of current flow are
va = Vo= Vo= IZos + I1Zay + 124,
vy = Vo — Vi = LZu + LiZyy + 1.2, (28]
ve = Ve — Vi = IZo + LiZoo + 1.2

Equations {28] are general equations expressing phase voltage drops in
terms of phase currents after all other currents in the circuit have been
eliminated. For example, in a three-phase transmission circuit with a
neutral conductor or ground wires, Zag, Zop = Zpg, etc., may include
the effects of neutral conductor or ground wires.

Replacing I,;, I, and I, in [28] by their «, 8, 0 components given by
{7]-19], 94, v, and v, are expressed in terms of I,, Iy, and Io. Substitut-
ing these equations for v,, v, and v, in [4]-[6], v,, v5, and vy are expressed
in terms of I, Iy, I,. Equating the coefficients of I,, Is, and I in
these resultant equations for va, v, and v, to the corresponding coeffi-
cients in [19], the @, B, O self- and mutual impedances in terms of
phase impedances are

Z Z, Zse
WﬁNnn + E|Hl||n - AN&. + NE.. - %Vg

WANS + Nﬁn - Nanv
Noo = W_”Nnn + va + N.aa + NANﬁv + Nan + anz

DN
R
It

g
I

1 29
Nnm = Nun = ﬂ HNE“ it Ng + NANnv - Nnnv_ _” u

Nno = 274, = WﬁNNhn — 2oy — Zeo + AN% + Zac — NNvuvH_
1

= (Z |Ncn+NnnlNan
/\wAs b )

Zgo = 2Zgg =

T'wo Phases with Equal Self-Impedances and Equal Mutual Imped-.

ances with the Third Phase. Let Zyy, = Z.. and Zge = Zgy. Equa-
tions [29] then become

Z Z
NQD = .W. ﬁNﬂ& + IN@W - ANN:@ - Mmmv;

Zgg = 3(Zwp + Zee — 220e)

Zoo = 3[Zaa + 2Zys + 2(2Zap + Zse)] [30]
Zop = Zpa = Zgo =295 = 0

Zao = 2200 = 3 Zas — Zop + (Zap — Zsc)]
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Symmetrical Circuit. With all self-impedances equal to Z,, and
all mutual impedances equal to Z, [29] or [30] becomes

Zaa = 288 = Zaa ~ Zab
Zoo = Zas + 2Zap —m:
Zag = Zpa = Zpo = Zog = Zag = Zoa =0

Unsymmetrical Three-Phase Self-Impedance Circuit with Finite 0
Self-Impedance. 1In a three-phase series circuit between P and Q, let
the self-impedances of phases g, b, and ¢ be Z,, Z;, and Z,, respectively,
with no mutual impedance between phases. The «, 8, and O self-
and mutual impedances in terms of the phase impedances can be
obtained by replacing Zeq4, Zp, and Z. in [29] by Z,, Zs, and Z,, respec-
tively, and equating all mutual impedances between phases to zero.
Then,

Zaa =3 AN. + wm.m.v

Zoo uNa+N~.+Na
3 [32]
Ze — Zy

Zapg = Zpa = INzNwI
22, — 2y — Z.
3

Zy — 2,
Zgo = 20p = =

Nno = 2Zpe = = NANn e nnv,

Two Phases with Equal Self-Impedances. Let Zy = Z., then [32]

becomes
Z
Zaa=1} AN,_ + %v

Zpgg = Zp

Zoo = 3(Za + 224) [33]
Zop = Zga = Zpo = Zop =0

Zao = 2Z0a = 3(Za — Zb) = 2(Za — Zaa)

I
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Symmetrical Self-Impedance Circust. LetZ, = Zy = Z, = Z. From

[32] or [33],
Nnn = Nuu = Noo = N T\whu

and there are no mutual couplings between the «, 8, and 0 networks.
Figure 2(a), used to illustrate the flow of « and 8 currents and to deter-
mine a and 8 impedances from the « and B loop circuits, is a symmetri-
cal self-impedance circuit.

Zyo Infinite. If there is no path for 0 currents in the unsymmetrical
circuit, the « and g components of voltage drop in the circuit are given
by [20]. The « and B self-impedances and the mutual impedances
between the « and 8 networks are not affected by the presence or ab-
sence of O currents, nor are the mutual impedances Zy, and Zys. The
0 voltage drops I,Zo, and IgZgg caused by I, and I flowing through an
unsymmetrical circuit can be determined by calculation, if required,
after I, and Ig are known.

With Zyg = «, if two of the phases have equal self-impedances and
equal mutual impedances (including no mutual impedance) with the
other phase, substituting [30] or [33] in [20],

.n\n = Nn.Nan
Ve = IgZgg

This case is of special interest as there is no mutual coupling between
the a, 8, and 0 networks because of the unsymmetrical circuit.

Unsymmetrical Y-Connected Static Circuits. The a,8,and 0 self-and
mutual impedances given in terms of the phase impedances by [29]-{34]
apply to an unsymmetrical Y-connected circuit with grounded neutral,
if I, Ig, and Iy in [19] are the components of currents flowing into the
circuit and v,, vg, and vy the components of voltages to neutral at the
circuit terminals. Zg in these equations is the O self-impedance
between circuit terminals and neutral. If the neutral is grounded
through Z,, and Zy, is replaced by Zgo + 3Za, 9o will be referred to
ground.

If the neutral is ungrounded, equations [20] apply. The voltage at
the neutral of the ungrounded Y may be evaluated as follows: « and 8
currents flowing in the unsymmetrical circuit produce a voltage drop
vy between circuit terminals T and neutral NV, where

vo = IoZoa + IgZog [36]

(35]

If the O voltage at T is Vi), the voltage Vy at N is
Vi = Vo — v0 = Vo — TaZoa — IgZos (37]
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Vocry can be evaluated when the 0 impedance diagram and operating
conditions are given. If the 0 voltage at T is zero, the voltage at the
neutral is

ﬁ\z = .INaNoh —_ NmNou T\wwH

where Zy, and Zyg are defined in [29]-[33].
¥ Zy =2Z:; Zog = 0. Then, if Vo = 0,
Vy = —I.Z0a [39]

a and B Self-Impedances from a and 8 Loop Impedances. I, flows
in phase a and one-half I, flows in phase b and one-half in phase c.
The one-line « impedance diagram for determining a currents and
voltages in phase a of the system is also the impedance diagram for
phases b or ¢ because —3I, flows in phases b and ¢ and the applied «
voltage in these phases is —1E,. The a self-impedance Z,, is there-
fore two-thirds the a loop impedance, regardless of the type of circuit.
I, flowing in phases b and ¢ in series, meets an impedance which is
twice the 8 impedance. The g self-impedance is therefore one-half the
B loop impedance. In certain unsymmetrical circuits, Z,, and Zgg are
more readily determined from the a and 8 loop impedances than from
the phase impedances. In a circuit in which the self-impedances of
phases b and ¢ are equal and « currents induce no voltages in the 8 loop
and 8 currents induce no voltages in the « loop, the a loop impedance
may be determined by connecting the three phases at one terminal and
applying a voltage at the other terminal between phase a and phases b
and ¢ connected to a common point; and the 8 loop impedance by
applying a voltage between phases b and ¢ with phase a open. In
either case, the loop impedances are the ratios of the applied voltages
to the resultant « and B8 currents, respectively, flowing in the « and 8
loops. Then

Zaa = %(a loop impedance) [40]
Zgg = 1(8 loop impedance) [41]

In determining the a loop impedance for an unsymmetrical self-
impedance static circuit in which the self-impedances are unequal in
phases b and ¢, it should be noted (see [32]) that the a loop impedance
is the sum of Z, and (Zy + Z.)/4. Zjand Z, are not paralleled.

a and B Applied Voltages Determined from a and B Loop Voltages.
Equations [14] give a, 8, 0 voltages in terms of the applied phase volt-
ages. In unsymmetrical circuits involving transformers, the voltages
applied to the a and B loops may be more readily obtained than the
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phase voltages. In such cases, the applied « voltage is two-thirds the
voltage applied to the a loop; the applied 8 voltage is 1/ V'3 times the
voltage applied to the 8 loop.

EQUIVALENT CIRCUITS TO REPLACE AN ACTUAL
CIRCUIT IN THE a, B, AND 0 NETWORKS

Synchronous Machine with Equal Positive- and Negative-Sequence
Impedances. From {23], the a and 8 self-impedances are equal to Z,
and the O self-impedance to Z,. There are no mutual impedances
between the ¢, 8, and 0 networks. With balanced generated voltages
in the machine, the generated voltage in the a network from {15] is E,;
in the 8 network it is —jE,. The «, 8, and 0 equivalent circuits for a
synchronous machine with balanced generated voltages and equal
positive- and negative-sequence impedances are shown in Fig. 4.

Zero potentiat

Zero potent.ial
for O network

Zero potential
for B8 network

for a network

|.u.n.w
al)

Ea
Zy —=lIa 2o _l

T T

—lp

F16. 4. a, B, and O equivalent circuits for a synchronous machine with balanced
generated voltages and equal positive- and negative-sequence impedances.

Points T are the terminals of the machine to which the equivalent
a, B, and O circuits for the rest of the system are to be connected.

In a three-phase power system consisting of symmetrical circuits with
equal positive- and negative-sequence impedances, the one-line imped-
ance diagrams for the « and 3 systems are the same as the positive-
sequence impedance diagram. Generated « voltages are positive-sequence
generated voltages; the a network is the same as the positive-sequence
network. The B network differs from the positive-sequence network
only in its genmerated vollages, which are positive-sequence vollages
multiplied by —j.

Symmetrical Circuit with Unequal Positive- and Negative-Sequence
Impedances. From (21] with Z; % Z; and all sequence mutual

impedances zero,
Zaa = Zgg = WANu + Z,)

Zoo = 2,

oo [42]
Zag = —Zga ﬂuwANg. — Z3)
Nno = Non = Nuo = Nou =90
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When the positive- and negative-sequence self-impedances of a cir-
cuit are unequal and there are no sequence mutual impedances, the
a and  self-impedances are the average of the positive- and negative-
sequence impedances. There is no mutual coupling with the 0 net-
work; but the « and 8 networks are coupled through non-reciprocal
mutual impedances. Because of this non-reciprocal coupling between
the a and B networks in rotating machines in which Z; = Z,, the
a, B, 0 components are not convenient for determining fundamental-
frequency currents and voltages in systems in which the positive- and
negative-sequence impedances cannot be assumed equal. However,
if there is but one machine or group of machines in which Z, = Z,,
[19] can be rewritten to give a reciprocal mutual coupling between the
a network and a modified 8 network, from which an equivalent circuit
can be obtained.

Modified p Network. Substituting Zao= Zoa =Zg0 = Zos= 0 from
[42] in [19], the «, 8, and 0 components of voltage drop in the circuit in
the direction of current flow are

NRNQQ + N.WNQE = NRW.ANH. + NNV +.~.Nm.W.AN~ - Nnv

Vg =
v = IaZpa + IpZsp = —jla3(Z1 — Z3) + Is3(Z1 + Za) (43]
Vo = NoNo

Rewriting v, and vg in [43] in terms of (—Ig), with —Z,s replaced
U< Nun:
Vo = IaZaa + (—18)(—Zap) = IaZoa + (—1p)Zga

= I4(Zaa = Zga) + (Ia — 1) Zga [44]
vg = IoZga + (—Ip)(—Zpp)

= (—Ip)(—Zsg — Zga) + (Ia — Is)Zga

Retaining the equation for v, in {43] but rewriting that for vg,
Vg = NQNQQ + NuNﬁm = NQANQD - va + ANQ + Nnanu

—vp = Io(—Zga) + Ig(—Zpg) = IaZap + Ig(—Zgp) (45]
= Ig(—2Zpg — Zap) + (Ta + Ig)Zap

In [44] and [45] the mutual impedances between the a network and a
modified B8 network are reciprocal. In [44], vs has been retained, but
I3 has been replaced by (—1Ig) flowing in the direction assumed as
positive for Ig. In [45], Is has been retained butvg has been replaced
by —uvg measured in the direction of vg.

Equivalent Circuits for a Synchronous Machine with Z, = Z,.
Figures 5(a) and () give equivalent circuits to replace a synchronous




326 ALPHA, BETA, AND ZERO COMPONENTS [Cu. X]
machine with balanced generated voltages in the « and 8 networks
when Z; # Z;. The a and B components of balanced generated volt-
age are given by {15]. Figures 5(a) and (b) satisfy the equations for
the @ and 8 components of voltage drop in the direction of current flow
given by [44] and [45], respectively, where Za,, Zgg, Zag, and Zg, are
defined in [42]. In both equivalent circuits, currents and voltages in

Zero Potential for o Network Zero Potential for a Network

Eo. _
Vo

V)

Zero Potential for 3 Network Zero Potential for 8 Network
(o) (Y]

F16. 5. Equivalent circuits to replace a synchronous machine with Zy # Z; in the «

and modified 8 network. T, and Tp are the machine terminals to which the « and

B networks for the rest of the system are to be connected after all 8 impedances have

been multiplied by —1. (a) Currents in the 8 network are negative 8 currents;

voltages are 8 voltages. (b) Voltages in the 8 network are negative 8 voltages;
currents are S currents.

the « network are correctly represented. In Fig. 5(a) and equations
[44], current in the B network is — I, giving a modified 8 network in
which voltages are 8 voltages. In Fig. 5(b) and equations [45], volt-
ages in the B network are negative 8 voltages, giving a modified 8 net-
work in which currents are g currents. The generated voltage in the
modified 8 network of Fig. 5(b) becomes —(—jE;) = jE,, as indi-
cated. The points T, and T are the terminals of the synchronous
machine to which the « and B networks, respectively, for the system
exclusive of the synchronous machine are to be connected, after all
impedances in the 8 network have been multiplied by —1. If the
impedances in the 8 network include resistances, negative resistances
will be present in the network; capacitive reactances will become
inductive reactances, and vice versa. The modification of the B net-
work presents no difficulties in an analytic solution.

The equivalent circuit for the synchronous machine with Z; = Z,
in the 0 network is the same as that given in Fig. 4.

As a, 8, and 0 components will be used instead of symmetrical com-
ponents only if calculations are simplified by their use, the equivalent
synchronous machine circuits of Figs. 5(e¢) and (b), which are much less
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simple than the symmetrical component equivalent circuits, have but
limited application. They can sometimes be used to advantage in
solutions of special problems involving unsymmetrical circuits and
unsymmetrical faults, where the conditions of the problem do not
require that the 8 network be coupled with the 0 network, or have a
second coupling with the a network.

In approximate solutions, where the mutual impedance £j(Z; — Z2)
is omitted, 3 (Z; + Z;) should be used as the self-impedancc in both the

« and B networks.

Zero Potential for o Network

Zero Potential for 3 Network

Zero Potential for o Network

— 1,°0
(a) R 2500 Qo
{c)

Zero Potential for a Network

Zero Potential for a Network
T T
Vo Zao-Zoo o Zoo
s bkl QO
"HQ.

Zero Potential for s Network

Zpa
P T Qp

|'_?

Zero Potential for O Network

Zogg =02
I o . Q
—elg=0
Zero Potentiol for @ Network °
(b} (d)

F16. 6. Equivalent circuits for unsymmetrical series circuit in which (2) Zag = Zga,
Zao = 2Z0a, Zpo = 2Zog. (b) Zap = Zga = Zpo = Zog = 0, and Zup = 2Zpe. (¢)
Zo = 0, 2Zep = 28a. (@) Zoo = @0, Zapg = Zpa = 0.

Equivalent Circuits for Unsymmetrical Three-Phase Static Circuits.
In [29) and [32], Zog = ZBar Zao = 2Z0a, and Zgy = 2Z¢5. An equiva-
lent circuit which satisfies equations [26] for the general case of unequal
self- and mutual impedances (including no mutual impedances) is
shown in Fig. 6(a). P and Q with subscripts «, 8, and 0 indicate the
terminals of the equivalent circuit in the «, 8, and 0 networks, respec-
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tively, to which the equivalent a, 8, 0 networks for the rest of the
system are to be connected after all 0 impedances have been divided
by 2. Figure 6(a) is tested for correct self-impedances in each network
by opening both of the other networks at P or Q. It is tested for cor-
rect mutual impedance between any two networks by opening the third
networkat Por Q. When an a-c network analyzer is available, mutual
coupling between the networks can be obtained by either mutual cou-
pling transformers or direct connections as in Fig. 6(a).

For the special case of two phases symmetrical with respect to the
third phase, the a, 8, 0 self- and mutual impedances are given by [30]
and [33]. In these equations there is no mutual coupling between the
B network and either the a or 0 networks. The equivalent circuits for
this case are shown in Fig. 6(b).

With Zyg = =, the zero network is open between P and Q so that no
0 current flows into or out of the circuit at either P or Q. The equiva-
lent circuits for this case can be determined from Figs. 6(a) and (b) by
opening the 0 network at P or Q, giving the equivalent circuits shown
in Figs. 6(c) and (d), respectively.

Comparing equations [29], [30], [32], and [33], with equations [13],
[17], [18], and [19], respectively, of Chapter VIII, it may be seen that
non-reciprocal mutual impedances between the symmetrical compo-
nent networks because of unsymmetrical static circuits become recipro-
cal mutual impedances between the «, 8, 0 networks; while reciprocal
mutual impedances between symmetrical component networks become
zero between the g network and both the a and 0 networks. This may
also be seen from equations [24] and [25].

A-CONNECTED CIRCUITS

Line Currents and Line-to-Neutral Voltages on Opposite Sides of a
A-Y Transformer Bank. The difference in phase of positive-sequence
line-to-neutral voltages on opposite sides of the bank at no load can be
determined by inspection when the connection diagram is given.
(See Chapter III, Fig. 19.) If positive-sequence components of line
current and voltage to neutral are turned forward 90° and negative-

sequence components of current and voltage backward 90° in passing
through the bank,

Va
Ve = —j(Var —

(Va1 + Vaz) becomes j(Vay — Va2) = =V}
.2) becomes (Vo1 + Va2) = Vo

(46]

If the shift in phase of positive-sequence components is backward 90°
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and that of negative-sequence components forward 90°,
Va = (Var + Vaz) becomes —j(Var — Vaz) = Vg
Vs = —j(Var — Vaz) becomes —(Var + Va2) = — Ve

Replacing V by I in [46] and [47] the corresponding current equations
are obtained. When the connection diagram is not given, it is imma-
terial whether [46] or [47] is used when the relative phases of currents
and voltages on the two sides of the bank are not required. (See
Chapter III, Problem 6.) In system studies in which the posttive-
and negative-sequence impedances of rotating machines can be
assumed equal, the « and B impedance diagrams of the system, exclu-
sive of unsymmetrical circuits, are the same as the positive-sequence
impedance diagram. The shift of components from 8 to « and a to 8
presents no difficulty where the same impedances are met by a and 8
currents. Dissymmetries on opposite sides of a A-Y transformer bank
will be discussed later.

Voltages and Currents of A-Connected Circuits. As the fundamental-
frequency currents or voltages in the three phases of 2 A constitute a
set of three vectors, they can be replaced by their «, 8, 0 components.
There will be no 0 components of line-to-line voltage, but there may be
0 components of A current. The three phases of the A will be indicated
by 4, B, and C, with 4, B, and C opposite terminals g, b, and c, respec-
tively, as in Fig. 7. Base A voltage is V'3 times base line-to-neutra]

voltage, base A current is 1 \/\w times base line current, and base A
impedance is 3 times base line-to-neutral impedance. In per unit of
base line-to-line voltage, the A phase voltages in terms of their com-
ponents are

[47]

Vi=V.
V3

Ve = ~iVet+ 5 Vs (48]
V3

Ve = =4V, — 5 1A

where V. and V} indicate components of line-to-line voltage in per unit
of base line-to-line voltage. Using a similar notation for components of
A current, the current equations are of the form of [7]-[9].

Relations between per Unit ¢ and B Components of Current and
Voltage in the Line and in the A. Line-to-line voltages are given by
[13] in terms of a and B components of line-to-neutral voltage. Divid-

ing equations [13] by V3 and replacing Ve by Va4, Vi by Va, and
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Via by Ve, in per unit of base line-to-line voltage,
ﬁ\# = ﬁ\nu = «\u
V3 L
<wﬂ<=nnI|M| a— 3V (49]
V3
Ve = Snﬂlwl. «— 3Vs

Comparing « and 8 components of line-to-neutral and line-to-line volt-
ages, by eliminating V4, Vg, and V¢ in [48] and [49],

Vi = Vs
V= —V,

where V5, and Vj are in per unit of base line-to-line voltage, and V,
and Vj in per unit of base line-to-neutral voltage.

[50]

—lo*la o _ 10 o
Y
2 Y
B N B N,
A9 .
2 c 2% c %wt
< A b A b
=, [qaamad —~ LD
Ie*-3la las0 Ig = |%_b Iy= wﬁ,\m.fv
= =
{a} ()
a [+)
N %, 00T PN lo*-¥31g—=
A N 0 Nd
o 4S5 o/a*.mn o \ 3 o/ ;»%,\w/
%
A A
¢ ———TTOVT™ b ~— ¢ TYITY b —
Ia= 1 =3 = '
a® lg Ip: 31 la=0 =315
A\
3 — —
s~ 2la Ie = mm:..
(c) (a)

F1G. 7. (a) «components of line currents flowing into A circuit. (b) 8 components

of line currents flowing into A circuit. (¢) « components of A currents flowing into

the line. (d) B components of A currents flowing into the line. In (a) and (b), base
current is line current; in (c) and (d), base current is A current.

In Figs. 7(2) and (b), currents in per unit of base line current are
shown in the line and in the A. In Fig. 7(a) there are only a compo-
nents (I,), in Fig. 7(b) only 8 components (Ig). In Figs. 7(c) and (d),
currents in per unit of dase A current are shown in the A and in the line.

T
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In Fig. 7(c) there are only a components (I.); in Fig. 7(d) only 8 com-
ponents (Iz). Let line-to-line voltages in the A measured in the direc-
tions cb, ba, and ac represent voltage rises, the direction cba around the
A corresponding to increasing potentials. Following the convention
that positive direction for currents in a circuit is in the direction of
increasing potential when currents flow from the circuit, and in the direc-
tion of decreasing potential when currents flow towards e circuit, a
minus sign before a phase current in the A in Figs. 7(a) or (b) means
that the direction indicated by arrow is negative for the convention

used.
Multiplying A currents in per unit of base line-to-neutral current by

V3to express them in per unit of base A current, I in the A of Fig. 7(a)

is
N‘IFQ Nvlh_”)\w a\w”ﬁ
h.l./\w B c II\M 2 a 2 a
Similarly, in Fig. 7(b),

I = WAD - .;l.MINhV = m/\wAVle;V =1Ip

Muitiplying line currents given in per unit of base line-to-line current in
Figs. 7(c) and (d) by H\/\w to express them in per unit of base line
current,

Ip = m\m (- 1) =36I) = I

HN H
rm Ab | %v umx Ve Tm»\wgula

Expressed in per unit each on their respective base voltages and
currents, a and 8 components of A voltages and currents are equal to 8-
and —a components of line-to-neutral voltages and line currents,
respectively.

a and B Impedances of A-Connected Circuits. In a symmetrical
static A, let the impedance of each phase be Z in per unit, based on
system kva per phase and system line-to-line voltage; then, based on
line-to-neutral voltage and system kva per phase, the A impedances are
3Z. The o loop impedance in Fig. 7(a) is $(3Z) = $Z. The self-
impedance Z,. from [40] is 3(3Z) = Z. The B8 loop impedance in
Fig. 7(b) is 3Z(6Z)/9Z = 2Z. The self-impedance Zgg from [41]} is
3(2Z) = Z. This also follows directly from [23] in which Z,s =
Zgg = Z, for the symmetrical circuit in which Z; = Z,.
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An unsymmetrical A-connected self-impedance circuit can be replaced
by its equivalent Y with per unit impedances based on line-to-neutral
voltage for determining voltages and currents at its terminals. After
the a and B voltages at the terminals of the equivalent Y have been
calculated, the line-to-line voltages in per unit of base line-to-neutral
voltage can be obtained from [13]. These line-to-line voltages divided
by the corresponding A impedances, expressed in per unit based on line-
to-neutral voltage, give the A currents in per unit of base line current.

In considering unsymmetrical A-connected circuits in which two
phases have equal self-impedances and equal mutual impedances
(including no mutual impedance) with the other phase, the loop
impedances offered to a and B line currents viewed from the circuit
terminals are conveniently calculated in terms of base impedance in the
line-to-neutral circuit. From [40] and [41], the @ and B self-impedances
can then be determined from the loop impedances. This is illustrated
below.

Open-A Transformer Bank. Assume that exciting currents can be
neglected and that the open phase is opposite terminal a, as in
Fig. 12(a), Chapter VIII. Referring to Fig. 7(a), no a current flows in
phase 4 opposite terminal a. The « impedance therefore is not
changed because of the open phase. In Fig. 7(b) with phase 4 open,
the 8 impedance is increased; the 8 self-impedance is one-half the
impedance of phases C and B in series.

Bank of Two Identical Transformers. Let the per unit leakage
impedance of the transformers be Z;, based on system kva per phase
and base line-to-line voltage. The « and 8 self-impedance in per unit,
based on system kva per phase and base line-to-neutral voltage, are

MN«
(%) -2 (51]

332+ 32,) = 32,

Nnn

Zsp

There is no mutual impedance between the « and 8 networks.

To illustrate the usefulness of [22] in passing from a and 8 com-
ponents to symmetrical components, [51] will be substituted in [22],
to obtain the positive- and negative-sequence self- and mutual imped-
ances of the open-A transformer banks.

N: = Nmm = 2Z,
Zig =2y = —Z;

[52]

Equations [52] check equations [61] of Chapter VIII.
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Short Circuits on Systems Containing an Unsymmetrical Circuit

With phases a, b, and ¢ specified in defining the unsymmetrical cir-
cuit, the connections of the component networks for faults of a given
type will depend upon the phase or phases faulted. Table I gives rela-
tions between V,, V3, and V,, the «, 8, and 0 components of phase volt-
ages to ground (or to the neutral conductor) at the fault,and between I,,,
Ig, and I, the components of line currents flowing from the system into
the fault for faults involving any phases. The following solution illus-
trates the procedure followed in determining the equations of Table I.

Double Line-to-Ground Fault on Phases a and b. Conditions at the
Fault: V, = Vy = 0; I. = 0. Substituting Vo, = V, = 0 in [4)-{6]
and I, = 0in [9],

Vs

.“\9 = - ﬁ\o =
/\M [53]
I = —V3I5 + 21,
This is Case IV(b) of Table I.

TABLE I
SHORT CIRCUIT ON THREER-PHASE SySTEM
Relations between a, 8, and 0 Components of Voltages and Currents at the Fault

Equations for Equations for Com-

T Ph:
Case of MMM? H=<MMMMQ Components of ponents of Currents
Voltage at Fault Flowing into Fault
I(a) [Three-phase |a, b. ¢ Va=0; Vg=0 Ig =0
e, b, ¢ and — . - _
) ground Va=0;Vg=0,Vg=0
I1{a) |Line-to-ground{s and ground |V, = —Vp Ig = 0; Iy = 2,
- I,
(b) [Line-to-groundb and ground |[Ve = V3Vg + 2V |Io = — M\PI i fa= —1Io
3
- Is
{¢c) |Line-to-ground|c and ground |V, = I»\m—\u +2Vy |Ia= ﬂu In= =1y
3
I1I{a) |Line-to-line band ¢ Vg=0 Ia=0; Ip=0
\ 4
(®) [Line-to-line s and b Vo =—2 Io= —V3Is Io=0
V3
Va -
(¢) {Line-to-line |a and ¢ Va= — M\Iw. I, = /\:nv Ig=0

Two line-to- |b, ¢, and

V@ | ground ground Ve =0; Va=2Vq la = —1Io
Two line-to- |a, b, and Vs
®) ground ground Va = qm“ Va=—Vy [Io = I/\m; + 21
Two line-to- |[a, ¢, and Vs
© ground ground Va = — lz\lw.“ Vo= —Vola = Vil + 20




