Reactor Switching and Current Chopping

EMTP Training Nov. 16th, 2001 Prof. Leonard J Bohmann

Mielitgan**Tech**

The Short Story

• CB can break currents quickly

•
$$\bigvee = L \frac{di}{dt}$$

Circuit Breakers

- Most Often
 SF6 or Air-Blast
- Happens at low levels of inductive current

Michigan Tech

Simplistic Equivalent Circuit

- L: inductance of coil
- C: capacitance of coil +bushing capacitance
- Rc: core loss resistance

MidiganTech=

Overvoltage

- Assumptions:
 No losses, Linear inductance
- Stored energy in inductor:

Energy =
$$\frac{1}{2}L_M I_0^2$$

Capacitor – Inductor Oscillation

$$\frac{1}{2}CV^2 = \frac{1}{2}L_M I_0^2 \Rightarrow V = I_0 \left(\frac{L_M}{C}\right)^{\frac{1}{2}} = I_0 \mathcal{Z}_0$$
Medite Tech

Example

Transformer: : 1 MVA, 13.8 kV, $I_{\text{exciting}} = 1.5 \text{ A rms}, C = 5000 \text{ pF}, I_0 = 2.5 \text{ A}$

$$L_M = \frac{V}{\omega I_{exciting}} = \frac{13,800}{\sqrt{3} \times 377 \times 1.5} = 14H$$

$$Z_0 = \left(\frac{L_M}{C}\right)^{\frac{1}{2}} = \left(\frac{14}{5 \times 10^{-9}}\right)^{\frac{1}{2}} = 53,000\Omega$$

Middle Tech

Example p.2

$$f = (1/L_{M}C)^{1/2} = 602 \text{ Hz}$$

 2π

$$V = I_0 \left(\frac{L_M}{C}\right)^{\frac{1}{2}} = I_0 \times Z_0 = 2.5 \times 53,000 = 132kV$$

Middle an Tech

Only about 30% of stored energy is released

$$V \approx I_o \left(0.3 \frac{L_M}{C} \right)^{\frac{1}{2}} = 72.7kV$$

$$I_C + I_R + I_L = 0$$

$$I_C = C \frac{dV}{dt}$$
 $I_R = \frac{V}{R}$ $I_L = \frac{1}{L_M} \int V \cdot dt$

Michigan Tech

Formal Analysis 2

$$\frac{d^2V}{dt^2} + \frac{1}{RC}\frac{dV}{dt} + \frac{V}{L_MC} = 0$$

$$V(s) = \frac{sV_0}{s^2 + (s/_{RC}) + (1/_{L_MC})} + \frac{V_0}{RC} \frac{1}{s^2 + (s/_{RC}) + (1/_{L_MC})} - \frac{I_0}{C[s^2 + (s/_{RC}) + (1/_{L_MC})]}$$

Characteristics of Transients

- Frequency of oscillation is a few kHz for iron core reactors, hundreds of kHz for dry, air-core reactors
- Relatively little energy is trapped Surge arrestors can usually deal with it

Michigan**Tech**

Detailed Reactor Model

Rc: Core loss; ~1000 pu for iron core infinite for air core

Rw. Winding resistance; transformer winding,

same value as similar ~0.5%

L: Reactor inductance, nameplate value CL: ½ Winding capacitance; iron core - same as

similar transformer winding (See Ch 13, Greenwood); air core: 75 - 150 pF

Cb: Bushing capacitance; 150 - 600 pF

Restrikes

When breaking low level highly reactive currents:

- The arc is weak because the current is not large
- The contacts are not far apart when the arc extinguishes
- The system voltage is near its peak so the recovery voltage can be large

Dependent on how quickly the dielectric strength between the contacts recovers

Meliten Tech

Restrike Equivalent Circuit

Cp, Lp: Parasitic capacitance and inductance of the CB; value ?, use potential grading cap

Ls: Equivalent system inductance

Lo: bus work inductance

Cs: System capacitance; CB bushing and buswork

C: Reactor equivalent capacitance; CB bushing, reactor bushing, winding cap

Frequencies of Oscillation

Middigan**Tech**

High f Equivalent Circuit

With high frequency waves, series capacitance forces uneven voltage distribution. Terminal end sees highest voltage.

Example: Parkers Lake

2 dry type, air core reactors on 13.8 kV tertiary

Reactor 1: 7 Ω ->27.2 Mvar ->18.57 mH Very little capacitance; use 200 pF

Assume
$$R_{winding} = 0.1\%$$
, $R_{core} = \infty$

Middle Tech

Reactor 1 Predictions

Surge Impedance: $Z_0 = \sqrt{\frac{L}{C}} = 9.64k\Omega$

Frequency:
$$f_0 = \sqrt{1/LC}/2\pi = 82.6kHz$$

$$_{peak} \approx I_{chop} \times Z_{0}$$

MediganTech-

Reactor Opening: Simulation

• Switch dialog box:

Imar – current margin

switch opens if t >T-op AND || <Imar

Michigan Tech

Reactor 2

Reactor 2: 12.7 Ω ->15 Mvar ->33.69 mH Has parallel capacitor to lower surge impedance and frequency.

What's the value?

My guess:

 $0.2 \mu F$

Assume R_{winding} =0.1%, R_{core} = ∞

Middle milech

Reactor 2 Predictions

Surge Impedance:
$$Z_0 = \sqrt{\frac{L}{C}} = 410.4\Omega$$

Frequency:
$$f_0 = \sqrt{\frac{1/LC}{2\pi}} = 1.94kHz$$

$$_{peak} \approx I_{chop} \times Z_0$$

Michigan Tech

Reactor Opening: Simulation

Meliten Tech

Try using a saturable inductor

Use: L(i) Type 98 - Dialog Box

CURR: peak current in A

FLUX: flux in Volt-sec

Michigan Tech

Current/Flux Data

Need I_{peak} and magnitude ($\int V dt$)

13.8 kV -> 7967 VI-n

I = V/Z -> I = 1138 A rms -> 1610 A peak

Volt-sec = $\frac{7967 \times 2^{1/2}}{2 \pi 60}$ = 29.888 V-sec

Saturation Data

V (pu)	Peak Current (A)	Flux (Volt-sec)
1.0	1610	29.888
1.1	5506	32.877

"Characteristic" tab in "Component" dialog box

Medigan Tech-

Add excitation losses

Add a surge arrestor

Use "MOV Type 92"

Attributes: change default

Vref = 2 x system V

Melitem Tech

Surge Arrestor Data

Current (A)	Voltage (V)
5*	13800*
1500	43700
3000	46400
5000	48500
10000	52900
20000	58500
40000	65900

Need to know low current characteristic Difficult to find (I made it up)

