Topics for Today:

- Questions from last lectures?
- Questions/Comments on Assignment #8 ?
- Topics for Today:
 - Intro to Power System Operation
 - Frequency Control, droop characteristic
 - Intro to [Z_{BUS}] and short-circuit studies —
- Assn #9
 - Run Aspen tutorial (manuals in lab)
 - Perform small system study
 - Work in pairs
 - Write short but complete report

two parameters you will be able to directly control are the excitation (magnitude of E_t) and the voltage E_f, bus voltage V_T, real and reactive power, and PF. Just as at a power plant, the only governor (steam flow to the turbine ==> mechanical power input). will be investigated. Focus will be placed on interactions between torque angle ô, internal

PART

Set up a spreadsheet program to solve for the values needed to draw the voltage phasor diagrams and the phasor currents for both cases below. Neglect the armature resistance and give I_A a reference direction out of the machine terminals.

ھ Round rotor machine: given the synchronous reactance X_s, the magnitude of E_r in per unit, the mechanical input power in per unit, and the per unit bus voltage (assume an angle of 0°) TY Land VI the welfers drop iV *I

2

CHAPTER 11

POWER-SYSTEM CONTROLS

Figures from Glover & Sarma, 2nd Ed.

governors are also available [3]. accounts for the fact that turbines have minimum and maximum outputs. The Block diagrams for steam turbine-governors with reheat and hydro turbine-T is a time constant. Typical values are $T_g = 0.10$ and $T_t = 1.0$ seconds. $1/(\mathrm{T}s+1)$ blocks account for time delays, where s is the Laplace operator and

SECTION 11.3

LOAD-FREQUENCY CONTROL

System Operation -Automatic Gerrator Control (AGC) For equilibrium (const speed/freg) PGTOT = PLTOT + PLOSSTOT Your Util Including Ties, + 171ETST + PLOSS TOT

Example 11.3

Figure 11.6

Solution

a. Since the two areas are interconnected, the steady-st is the same for both areas. Adding (11.2.4) for each

$$(\Delta p_{m1} + \Delta p_{m2}) = (\Delta p_{\text{ref }1} + \Delta p_{\text{ref }2}) - (\beta_1 + \beta_2).$$

state increase in total mechanical power of both increase, 100 MW. Also, without LFC, $\Delta p_{ref 1}$ and Neglecting losses and the dependence of load on The above equation then becomes

-MAIN

ACE, Control Heirarchy 6

ACE - Area Control Error 7

Difference between scheduled and actual tie line flows.

ACE is "biased" to include frequency effects... i.e. actual system freq vs. desired freq (or fsynch).

Look at indiv. unit.

 Δf is in Hz and Δp_m is in MW. When Δf and Δp_m are given in per-unit, however, R is also in per-unit.

Turbine-governor response to frequency change at a generating unit

A 500-MVA, 60-Hz turbine-generator has a regulation constant R = 0.05 per unit based on its own rating. If the generator frequency increases by 0.01 Hz in steady-state, what is the decrease in turbine mechanical power output? Assume a fixed reference power setting.

lution The per-unit change in frequency is

$$\Delta f_{\text{p.u.}} = \frac{\Delta f}{f_{\text{base}}} = \frac{0.01}{60} = 1.6667 \times 10^{-4}$$
 per unit

Then, from (11.2.1), with $\Delta p_{ref} = 0$,

9

$$R = .05 p.u = 67.$$
 $\Delta f = + 0.01 HZ$
 $\Delta f pu = \frac{.01}{60} = 1.667 \times 10^{4} p.u.$
 $\Delta P \times (-R) = \Delta f$
 $\Delta P = \Delta f (-R)$
 $= (1.667 \times 10^{4}) (-.05)$
 $= -3.33 \times 10^{-9} p.u.$
 $C S D M V A B B S C$

@ SOO MVA Base, $\Delta P = - 16.7 \text{ MW}$

Basics on [Y] \$ [Z]

Note: [Yous] is nodal admit. matrix.

[YBus][VMODE] = [III]

[Zous] = [Yous]

 $\left(Z_{BNS}\right) = \begin{bmatrix} Z_{11} & Z_{12} & Z_{23} \\ \vdots & Z_{23} \\ \vdots & \vdots \\ Z_{N1} & Z_{NN} \end{bmatrix}$

ZKk=Thev on "Driving Point" Z's Zjk=Transfer impedances.

Possible to find a given Zjk

