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called the bus impedance matrix Z,,,. Performing the indicated matrix mul-

tiplication yields

1.4111 — j0.2668 Vi
13830 — j0.3508 | _ | V2

1.4059 — j0.2824 V;
1.4009 — j0.2971 Ve

and so the node voltages are

v, = 14111 — j0.2668 = 1.436 /—10.71° per unit
V, = 13830 — j0.3508 = 1427 /=14.24° per unit
V, = 1.4059 — j0.2824 = 1.434 /—11.36° per unit
V, = 14009 — j0.2971 = 1.432 /=11.97° per unit

73 MATRIX PARTITIONING

. L e oeniz-
A useful method of matrix manipulation, called mn«::e::ﬁ. consists MMHM_M :mmam
ing various parts of a matrix as submatrices which are .:oﬁoa as w_ME S
”mmvninm the usual rules of multiplication and addition. For ins X

a 3 x 3 matrix A, where

a;; 432913 Q.:v

i i tical
The matrix is partitioned into four submatrices by the horizontal and ver

dashed lines. The matrix may be written

D E G.E
A=lp L

where the submatrices are

a3
ayy G52 _
D= E

az; 422 azs

F = (a3 as2) G =as;

on in terms of submatrices let us

i i iplicati
To show the steps in matrix multip ther matrix B to form the product

assume that A is to be postmultiplied by ano
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C, where
®n~
B=|bu (7.13)
by,
With partitioning as indicated,
H
w =
¥ ~ (7.14)
where the submatrices are
H- |’ and  J=by,
by
Then the product is
D E|(H
C=AB=
F AL .L (7.15)
The submatrices are treated as single elements to obtain
DH + EJ
c= Tm +GJ| - (716)

The product is finally determined by performing the indicated multiplication and
addition of the submatrices.

If C is composed of the submatrices M and ﬂ so that

c= ﬁ (7.17)
comparison with Eq. (7.16) shows

M=DH+EJ (7.18)
N=FH + GJ (7.19)

If we wish to find only the submatrix N, partitioning shows that

N =[a;; aj] w: + apby
21

=ay byy + a3z by + a33by, (7.20)

The matrices to be multiplied must be compatible originally. Each vertical
partitioning line between columns r and r + 1 of the first factor requires a
horizontal partitioning line between rows r and r + 1 of the second factor in
order for the submatrices to be multiplied. Horizontal partitioning lines may be
drawn between any rows of the first factor, and vertical lines between any
columns of the second, or omitted in either or both. An example that applies
matrix partitioning appears at the end of the next section.
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7.4 NODE ELIMINATION BY MATRIX ALGEBRA

Nodes may be eliminated by matrix manipulation of the standard node equa-
tions. However, only those nodes at which current does not enter or leave the
network can be eliminated. .

The standard node equations in matrix notation are expressed as

=Y.V (7.21)

where I and V are column matrices and Yy, is a symmetrical square matrix. The
column matrices must be so arranged that elements associated with nodes to be
eliminated are in the lower rows of the matrices. Elements of the square admit-
tance matrix are located correspondingly. The column matrices are partitioned
so that the elements associated with nodes to be eliminated are separated from
the other elements. The admittance matrix is partitioned so that elements
identified only with nodes to be eliminated are separated from the other ele-
ments by horizontal and vertical lines. When partitioned according to these
rules, Eq. (7.21) becomes ; .

Li_ —mﬂ L|{V, ; (1.22)
Ik LT M]||Vx

L
F

where I is the submatrix no,.BWOmna of the currents entering the nodes to be
eliminated and Vy is the submatrix composed of the voltages of these nodes. Of
course, every element in I is zero, for the nodes could not be eliminated other-
wise. The self- and mutual admittances composing K are those identified only
with nodes to be retained. M is composed of the self- and mutual admittances
identified only with nodes to be eliminated. It is a square. matrix whose order is
equal to the number of nodes to be eliminated. L and its transpose LT are
composed of only those mutual admittances common to a node to be retained
and to one to be eliminated.
Performing the multiplication indicated in Eq. (7.22) gives
I,=KV,+LVy (1.23)
and
I,=LTV,+ MV (7.24)

Since all elements of I are zero, subtracting LTV, from both sides of Eq. (7.24)
and multiplying both sides by the inverse of M (denoted by M~ 1) yields

-M LV, =V, (7.25)
This expression for Vy substituted in Eq. (7.23) gives
I,=KV,— LM™LTV, (7.26)
which is a node equation having the admittance matrix

Y, =K-LM"'LT (7.27)
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This admittance matri
rix enables us to construct the circuit wi
. - circuit with th w.
nodes eliminated, as we shall see in the following example. ¢ unwanted

Mwwiﬁv_omq% If the generator and transformer at bus 3 are removed from th
b.cmﬁcm ) mo . mea 7.3, a__z.:ama.:oanm 3 and 4 by the Bm:.mx.m_mm_uﬂmbnoﬂnaﬁm
cribed, find the equivalent circuit with these nodes eliminated, and

find the complex power transf i
erred into
and 2. Also find the voltage at node 1. or out of the network at nodes 1

mo—lc TION H:O U—.—w N.ﬂ::unﬂﬁ.nﬂﬂ matrix OM 3—0 circuit mw”u titior —OQ O -
m. T Q—:H:nm

-j98 00

P40 j5O
Vo= [€, ]| .00 30 ps | o
M jA0 25 —jlas T 80

j50 Jj50 .  j8O0 —ji80

The inverse of the submatrix in the lower right position is

M-tio_L [-/180 —j80 j0.0914  j0.0406

-197| —j80 —j145) (A .
_ | j j0.0406  j0.0736
LM-1L7 = m.o j5.0][j0.0914 j0.0406](j40 j2.5
j2.5 j50][j0.0406 j0.0736(|j50 ;5.0
_[/49264 40736
j40736 j3.4264

o
Yo —K—LM-'[7 |8 00
‘ 00 —j83
Y, = [748736  j40136

jA0T36  —j4.8736

~LM™IL7

Examinati .

noBM“Mco% of mro ch,.:h m:.oém us that the admittance between the two

i Mm c_MMw and 2 is —j4.0736, the reciprocal of which is the per-t
een these buses. The admittance between each of these bt

and the reference bus is
—j4.8736 — (—j4.0736) = —j0.800 per unit

The resulting circuit is shown in Fig. 7.52. When the current sources

conver ﬂﬂa to zwﬁ: Oacm.mmﬂﬁ—ﬁ Owﬁ.—» sources ﬂrﬂ O:O—.:P :—ﬂr ::ﬁﬂ&m.ﬂﬂﬂm mn
—.:ﬂﬁ 18 2.—&._” Om w um. M.M@ H:QE HTQ current 1s

;o L1500~ 15/-3687° 15-12+/09

" j(125 + 1.25 + 0.2455) 7(2.7455)
= 0.3278 — j0.1093 = 0.3455 /- 18.44 per unit
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j1.25 j0.2455 j1.25

@ (b)

Figure 7.5 Circuit of Fig. 7.3 without the source at node 3 (a) with the equivalent current sources
and (b) with the original voltage sources at nodes 1 and 2.

Power out of source a is
1.5/0° x 0.3455 /18.44° = 0.492 + j0.164 per unit
And power into source b is
1.5 /—36.87° x 0.3455/18.44° = 0.492 ~ j0.164 per unit
Note that the reactive voltamperes in the circuit equal
(0.3455)* x 2.7455 = 0.328 = 0.164 + 0.164

The voltage at node 1 is
1.50 — j1.25(0.3278 - j0.1093) = 1.363 — j0.410 per unit

In the simple circuit of this example node elimination could have been
accomplished by Y-A transformations and by working with series and parallel
combinations of impedances. The matrix partitioning method is a general method
which is thereby more suitable for computer solutions. However, for the elimin-
ation of a large number of nodes, the matrix M whose inverse must be found
will be large.

Inverting a matrix is avoided by eliminating one node at a time, and the
process is very simple. The node to be eliminated must be the highest numbered
node, and renumbering may be required. The matrix M becomes a single element
and M~! is the reciprocal of the element. The original admittance matrix
partitioned into submatrices K, L L7, and Mis !

K
-"l'\(ol\".
M\C %.: :.“N:_
M.S.uu M\E &c .“.M\_s L G.va
S A
(l}\\l‘\ L
LT M
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the reduced (n — 1) x (n — 1) matrix will be, according to Eq. (7.27)

ﬁp STHED AP Y,

<m:._m" . . . T

and when the indicated mani i i
/ pulation of the matrices is accomplished
ment in row k and column j of the resulting (n — 1) x (n—1) Bmc.ioﬁzmr_wam_o-

M\w: M\.Q
Y,

nn

&Q. (new) = &Q {orig) —

(7.30)

ooBMMMWamMangm N%ww.wn original matrix K must be modified. When Eq (7.28) is
0 Eq. (7.30) we can see how to proceed. We m i emne
. ultiply the el i
Hmﬁwﬂmw MMEE; and the same row as the element being Bo&mﬂ% by ﬂMamMMMVMM”
2 e L rm.m row M:a the same column as the element being modified. We then
divide 1 H.;Eo cnﬁ._uw Yo mca. subtract the result from the element bein
ed. The following example illustrates the simple procedure s

mxﬂ-.—-ﬁ—ﬁ “.A HﬂanH -— n——O _U.Oﬂwm 0——:.—:.—WH~°= OA mxmudhvﬂﬁ “w ,—Uw mhmn HQHH.—O'\:HW

SoLuTioN As in Example 7.3, the original goatrix

S In X now partitioned for re-

~-j98 00  j40

To modify the element j2.5 in row 3, column 2 subtract from it the product

of the elements enclosed b ivi
. y rectangles and divided i
lower right corner. We find the modified o_anM” 0 by the clement in the

j8.0 x j5.0

Y3, =25~
—j180

= j4.7222
Similarly the new element in row 1, column 1 is

. .m.ox.m.o
Y, = —jog _30x50
. 80 84111




]

g;s
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Other elements are found in the same manner to yield

—jg4111  j13889  j6.2222
Y, =| jlL3889 —j69llL  j47222
™ol jem  jaT222 —jl09444

remove node 3 yields

—j48736  j40736
Yous =| 40736 —ja.8736

Reducing the above matrix to

i itioning method
which is identical to the matrix found by the matrix-partitioning

ime.
where two nodes were removed at the same tim

me

CES
75 THE BUS ADMITTANCE AND IMPEDANCE MATRI

admittance matrix Yy, and called the

. bi
In Example 7.2, we inverted the bus ey Fi,

resultant matrix the bus impedance matr

Zowe = You (7.31)
bus — us
and for a network of three independent nodes
NH 1 NwN N»u . MN
Zos= | Z21 Zy Za A 32)
Nu» NuN Nuu

i i metri-
mmetrical around the principal diagonal, Zy,,, must be symi

Since Yoy 1S SY
cal in the same manner. o
i f Z... on the princi
he impedance elements Of Lpys . 2l ar
van.xw.._.ivmuwwnm‘ of the nodes, and the off-diagonal elements a
. pe k mr? . . « ,
;§mm§=anm cﬁmﬁmﬂﬂmo matrix need not be determined in order :w MMW”:WMM&
a.ﬂhog%:nn section of this chapter we shall see how Z,, may
an

e e ix is important and very useful in making fault

impedance matri n maKIE ace
! wamoﬂmmmm gmw shall see later. In order to understand the wwwhwo“ :rmma ance

nw Mw various impedances in the matrix we shall compare

of the

g w ( ions at a @W O—H—N.n
man.cnﬂnm.zﬂﬂw (,( e can ﬂmm: ao SO G _Oo—ﬁmnm at QHO ﬂﬂcm.ﬁ s at rt1
:OQG HAJOH :.-m-..”:ﬂﬂ‘ MHN-—.QUW iuﬁs ﬁrﬂ Doaﬂ O@CN&—OH»M OX@HOWWOQ as

1= <U=m<

pal diagonal are called driving-
lled the transfer

(7.33)

we have at node 2 of the three independent nodes

734
-H<§S+%-<~+<~u§ (7.34)
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w g (Dr
Figure 7.6 Circuit for measuring Y.,,
Y;,and Y;,.

If V| and V; are reduced to zero by shorting nodes 1 and 3 to the reference node
and current I, is injected at node 2, the self-admittance at node 2 is

Valvi=vs=0
Thus, the self-admittance of a particular node could be measured by shorting all
other nodes to the reference node and then finding the ratio of the current
injected at the node to the voltage resulting at that node. Figure 7.6 illustrates
the method for a three-node reactive network. The result is obviously equivalent
to adding all the admittances directly connected to the node, as has been our
procedure up to now. '

Figure 7.6 also serves to illustrate mutual admittance. At node 1 the equa-
tion obtained by expanding Eq. (7.33) is .

Li=YuVi+ Y, Vs +al 3 Vs (7.36)
from which we see that

Y, = (737)
Valvi=vsy=0
Thus the mutual admittance is measured by shorting all nodes except node 2 to
the reference node and injecting a current I 2 at node 2, as shown in Fig. 7.6.
Then Y, is the ratio of the negative of the current leaving the network in the
short circuit at node 1 to the voltage V,. The negative of the current leaving
node 1 is used since I, is defined as the current entering the network. The
resultant admittance is the negative of the admittance directly connected beween
nodes 1 and 2, as we would expect.
We have made this detailed examination of the node admittances in order to
differentiate them clearly from the impedances of the bus impedance matrix.

We solve Eq.(7.33) by premultiplying both sides of the equation by
Yol = Z,,, to yield

V=12,,1 (7.38)

and we must remember when dealing with Z,, that V and I are column matrices
of the node voltages and the currents entering the nodes from current sources,



