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Solution of Large Sparse Systems by Ordered

Triangular Factorization
WILLIAM F TINNEY anp W. SCOTT ME»YER‘

' Abstract—Analysis and/or control problems arising in utility
systems are often of high dimensionality. As a result, the ysual
symbology of formal vector-matrix notation can obscure structural
properties of the system or model which might otherwise allow very
simple numerical solution. Simultaneous sparse systems arising
from a number of different areas are shown to be of this type, in-
cluding problems of electric power flow, water distribution, me-
chanical structure analysis, differential equation solutjon, ‘optimal
control, and linear programming. All are highly amenable to efficient
solixtion schemes employing the sparse-matrix method of ordered
triangular factorization. T

1. INTRODUCTION

PARSITY-oriented solution methods (defined in
-J Section IT) have successfully resolved a number of
large problems encountered in utility engineering. It is
the purpose of this paper to convey an appreciation of how
and why this has been possible, by means of numerous
illustrative examples.
" As the subject is far too involved to be comprehensively
covered by a‘single paper, only a selective presentation is
possible. Motivational principles have been purposely
emphasized, with references to the literature providing
avenues for further study. The paper is thus tutorial in
nature. - : '
The essence of ordered triangular factorization (OTF) is
“incredibly simple, merely involving the solution of linear
equations, as onc learned in high school, by Gaussian
elimination. The basic idea is in fact so simple that it was
completely overlooked by most mathematicians and
engineers for a decade or two (since computers became

available). Hopefully this paper will serve to spread the
message. '

I1. PREDOMINANCE OF SPARSITY IN LARGE ProsLEMS

The term “sparsity” is used to indicate the relative
absence of certain problem interconnections. For example,
Fig. 6(a) shows a schematic diagram representing the in-
terconnection of pipes in a small water distribution system.
While in theory cach junction or node could be dircctly
connected to every other one by a branch (pipe), such is
far from the case; this network has only 1.26 branches per
node, rather than the 3] possible. Here the physical system
itself is sparse, and it is crucial that the analysis and solu-
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tion method exploit this structure (as shall be seen
shortly). Ot|her- systems having such physical sparsity
are power networks and mechanical stru@:tures (see Figs.
4 and 7). - S '

On the other hand, perhaps the problem under study is
largely mathematical in nature, not directly associated
with a physical Strilcture. This is often the case with linear

programming, control, or differential’ equation pr_bblem's.,

Such problems will be called sparse if most functions or
equations in question only involve a few of the possible
problem varjables, asin Figs. 9 and 10. The key to cfficient
solution will be to take advantage of this structure.

III. Tee NEED T0 L.OOK BEYOND MATRIX INVERsION

As later examples will shéw, the crucial calculation of
many problems can be reduced to finding the solution x
to g system of linear equations ‘ o

[Alx =b (1)

Here b is a known vector and [A] is a known nonsingular
matrix, assumed ta be sparse (most a;; = 0). The symbolic
solution to (1)'is of course provided by matrix inversion, -

x = [A]. @)

Yet while [A] is sparse, [A]~! for many problems is
completely full (all elements nonzero), with its conven-
tional cxplicit calculation requiring on the order of N3
multiply adds (for an N X N matrix). Not only is this
computational effort required to produce the inverse
astronomical for large N (see the upper curve of Fig. 1),
but cven just the storage of the result in core may be
imposSibIe. Even if the inverse were handed to one for free,
calculation of x by means of (2) requires on the order of
N? multiply adds, which is prohibitive for large N.

IV. Gavssian ELIMINATION As THE CRUCIAL INGREDIENT

Even if [A] were not sparse, about % of the inversion
effort above could be saved by simply solving for x using
Gaussian climination. As a simple conercte illustration of
this procedure, consider the third-order problem

3 0 127 [« 15 ‘
3 10 16| \z; 24/

The step-by-step solution then proceeds as follows.
Step 1—Eliminale z, [ Jrom equations 2 and 3): Divide the
first equation by a;; = 3. Then subtrgct an = 3 times
22 4+ 1223 =15 wy
34 —FIOX»H'(?)(} =¥ 2y
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) Comparison of the numerical effort required by matrix in-
version

with that of OTF solutions to typical power network prob-
lems.

this now-modified first equation from the third equation,
producing

1 + 413 = 5
62; + 1213 = 15
10z + 423 = 9. (4a)

Step 2—Eliminate z, [from equation 3]: Divide the second
equation of (4a) by @,y = 6. Then subtract azx = 10 times
this equation from the third equation, giving the result

Xy + 41}3 = 5
T2 + 2:133 = 5/2 ,
—162; = —16. (5)

Step 3—N ormalize the Last Lquation (I'ind z3): Complete
the downward operations by dividing the last equation by
its diagonal element ag; = — 16, producing

1 + 42:3 =}
Zs + 223 = 5/2
2= 1, 6)

Step 4—Find xz, [from equation 2]: The back-substitution
operations begin with the next to the last, or second, equa-
tion. Using the now-known z; value, z is found from the
second equation of (6), giving

Ty

T = 1/2

+4$3=5

133=‘-1.

@

Step 6: Find z, [from equation 1]: With 23 and z» known,
Z1 can now be found from the first equation of (7), thus
completing the solution for x:

=1 Te = 1/2 z3 = 1.

(8)

Before leaving this example, it is convenient to review
the use of a network graph associated with the coefficient
matrix [ A] and show how it is modified during the elimina-

tion steps. Note that {4] of (3) has a symmetric nonzerg
pattern, with all diagonal el onzero. The non-

zero structure of [A] is thus uniquely described by Fig.
2(a), with the network graph constructed according to the
following rules: B '
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1) one node exists for each equation or variable; }
2) a branch (k,m) connects node k to node m if a,,, 3 0 ,
(or, equivalently, a,,; = 0). 1

The elimination of z; gave rise to (4a), having Fig. 2(b)
associated with it. Note that only variables remaining to be
eliminated appear, since the nonzero structure of the row
and column being dropped is fixed for all time (and hence
can no longer be controlled). The general rule for elimina- |
tion of node % on such a network graph is as follows:

1) erase node k, as well as all of its connected branches;
2) add new branches to the remaining graph as follows:

i
if node & had a branch to node # and one to node m %’
before being erased, then create a branch between 4
nodes n and m (if one does not already exist). o

¥

This latter rule 2) is referred to as “fill-in,” where an.‘fj,.
originally zero position of [4] is made nonzero by the
elimination process. Although such did not occur in (4a) or {
(5), it would have happened had node 3 been eliminated ;;'Z i
first as in Fig. 2(d). Algebraically, this node-3 elimination
corresponds to the following manipulations of (3): divide
the third equation by 16; subtract 12 times this result. o
from the second equation and also from the first, producing #

B/ + (—15/2)x, = —3
(=9/9)m + (=3/2)z = —3
B/10)z +  (5/8)2 + 7 = 3/2.  (4b)-

Gaussian elimination is the most efficient dircct (“‘exact”
noniterative) solution scheme when [4] is full, requiring -
on the order of }N? multiply adds to solve for x. This is
3 of the matrix-inversion effort and therefore represents -
progress. Yet such a 3-to-1 improvement just is not
significant enough; it is the N-cubed dependence that is
deadly for large N (such as N = 1000).

As will be cxplained later, the preceding climination
process can be genceralized for flexibility, thereupon bearing -
the name of “triangular factorization.” When performed in
a carefully chosen order (see next section), one then has

OTF.

V. ExPLOITATION OF SpPARSITY WITHIN
GAussiAN ELnnNaTION

When [A4] is sparse, experience has shown that rows 34
and columns can usually be interchanged (permuted) so ;
that the number of nonzero terms is kept small throughout .7
the climination process. "T'he original problem sparsity can
be largely preserved during the solution, reducing not
only the storage requirements, but even more dramatically
the computational effort that is required. k

As a small cxample, consider a matrix [A] having the
nonzero pattern of ¥ig. 3(a). Of the 100 possible matrix &
elements, only 30 are nonzero (10 diagonals and 20 off-
diagonals). If elimination now proceeds in the natural B
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(d)

Representation of the nonzero structure of [4] upon elimination, for the thx“ee_-var.iable example of (3). (a)
Original nonzero matrix structure, and associated network graph. (b) Result after elimination of 7. (¢) Result after
elimination of z, and then z.. (d) Result if, in the first step, node 3 of (a) had been eliminated; there is fill-in between

nodes 1 and 2.
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Fig. 3. IHustrative example of order 10, which shows the impor-
tance of ordering upon the preservation of the original sparsity during
elimination. (a) Nonzero pattern of the original [4] (before any row
and column permutations). (b) Nouzero pattern after elimination
of the original equations. (¢) Nelwork graph associated with the
original equation set, with the nonzero pattern of (a). (d) Same net-~
work graph as in (c¢) only renumbered consistent with sparsity
considerations. (e¢) Nonzero pattern of the reordered [A], defined by
the graph of (d). (f) Nonzero pattern after elimination of the reordered
’ - equations.

order, most of the 70 originally zero locations will fill in
during the process; only 20 clements remain zero through-
out this climination [Fig. 3(b)]. OF course this is better
than matrix inversion (where all cells are filled in), but
far from optimal. "To show a better order, it is convenient
to use the associated graph of Fig. 3(c). If this graph were
renumbered as in Fig. 3(d), the associated permutation of
rows and columns places [4] in the form of Tig. 3(c).
Elimination of this matrix in natural order then produces
only two fill-ins [Fig. 3(f)]. The original sparsity has been
largely preserved, redueing not only the corc storage re-
quirement, but also (even more dramatically) the com-
putational effort.

VI Saneee Erriciency or OTF For LARGE
SparsE MATRICES

Typical results for electric power network equations
have been placed in Fig. 1 for comparison with conven-
tional explicit matrix inversion. Experience with electric
networks has shown that computational effort to produce a
solution varies about linearly with the number of equa-~
tions N, requiring typically only 1300 multiply adds for
100 equations, as shown on the graph. This is about 0.13
pereent of the matrix inversion effort shown, for such a
bundredth-order systen. Typically only 560 of the 100 X

100 = 10 000 possible elements are ever nonzero during
the elimination process, or 5.6 percent of the value for
matrix inversion (which yields a full matrix [A4]~1). Since
the ratio of superiority increases about as the square of
system size (3 — 1 = 2), such numerical comparisons be-
come astounding for large N. When N = 1000, for ex-
ample, the preceding percentages for computational effort
and storage requirements become 0.0013 and 0.056
percent, respectively. ;

Although patterns such as Fig. 3 simply are not possible
for systems as large as N = 1000, Fig. 6 does present the
counterpart of Fig. 3(d) and (f) for a 62-node water net-
work taken from [7]. This is a network approaching realis-
tic size and one can begin to visualize the extreme sparsity
exploitation that is possible in the much larger problems.

VII. ExampLEs oF UtiLiTy PROBLEMS SOLVABLE BY OTF

Before detailing the algorithms and procedures used to
obtain solutions by OTT, several sample applications from
various disciplines of engineering will be presented.

A. Slatic Optimization of Electric Power Networks .

Electric power networks have provided a very fertile
ficld for the application of sparsity programming solution
techniques. The so-called optimal power flow, an optimiza-
tion problem of static (steady-state) control of the net-
work, provides an excellent example of this.

Given an clectric network of N nodes, the assumed
starting point of the steady-state analysis is Kirchhoff’s
voltage and current laws in the form of nodal admittance
equations [Y]V = I, or

Ykak + E ijVj = Ik; k= ]‘J' : ';N- (9)
J*k

Here I is the injected current and V, the voltage at node
k—both complex numbers (phasors). Diagona! elements
Yy are always nonzero and usually are strong (dominant).
Off-diagonal Y}; are nonzero only when node k is con-
nected to node j of the network by a branch (a transmis-
sion line or transformer); typically about three such non-
zero entries exist per row, independent of system size (see
small sample graph of Fig. 4). Hence [Y] is extremely
sparsc for large N and efficient solution schemes should
exploit this fact.

The power-flow problem [5] involves a solution of 9)
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Fig. 4. Network graph of 76-node 102-branch high-voltage electric
transmission network for the Pacific Northwest.

subject to certain power and voltage constraints. Injected
real and reactive power are given by

Pk - ij = Vk*Ik = leIZYkk + Vi* Zk ijVj (10)
7

80 a system of such equations must be solved. At some
nodes m, voltage magnitude lel may be fixed with only
the angle a variable—in which case only the real part of
(10) at node m would be written. But, in general, two
real equations in two real unknowns (voltage magnitude
and angle) may exist for each node. Such equations are
unfortunately nonlinear, but at least the original sparsity
of [¥] remains. We shall denote the equation set by

9(X) = 0 or gi(zy, -, zy) = 0, k=1,---N (11)
the solution of which (for state vector x) is found by power-
(or load) flow programs [5].

Optimization enters the picture when certain problem
parameters u,, which are otherwise constants, are to be
adjusted during the solution. Thus the power-flow equa-
tions can be written functionally as

g Xu) =0 (12)
where now we want to adjust u so as to minimize some cost

funetional

min F(X,u). (13)

This “cost” may have physical or economic significance,
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as In the case of cconomic dispatch (where total system
operating cost in dollars/hour is to be minimized by J
adjusting generator real power outputs); or F may involve %
penalty terms needed to represent device or operational
constraints so as to produce a better adjusted solution, in
some sense. Though the problem has many variations and j
practical complications, it is still basically of the form

min F(X,u)
g(X,u) = 0. (14)

Successful solution of (14) has been provided by gradient
(steepest descent) methods—the movement from one
feasible solution point to another in the dircction of most
rapid cost decrease (in the space of control variables uy).
A feasible solution is found by solving (12) for X by
Newton’s method, holding u fixed:

i

Xrew = Xold 4 AX (15)
where AX satisfies
[J)-AX = —g(Xoldu). (16a) i
Here [J] is the Jacobian matrix with.elements \
U] = ) Jum = 39,/ (16b) 9
From (16), this matrix has the same extreme sparsity as %

does [¥]. Thus Newton’s method just requires a series of ‘w_‘f'
sparse-matrix lincar cquation solutions. This proceedsffi
very rapidly (as attested to by Fig. 1), with typically 3or4 -
iterations sufficient for a solution starting from a poor ¢
initial guess such 'as with all z, equal. The generalized
reduced gradient (GRG) showing in which direction to e
adjust u is then defined from calculus by '

Vu = (g) + [Z_Z:It Ut}-l.(j—f), (17)

This is a trivial calculation if one views the inverse as 4
meaning just the solution of a sparse system of equations: ;g

Vu = (%g) + [gﬂa, (18)

mq = (g) (19) :

where 2 satisfies

As [J] was already triangularized on the last Newton
iteration of the preceding power-flow solution, finding &
of (19) requires negligible cffort (see Secction IX). The™
matrix [dg/du) is an extremely sparse matrix generally, so
the multiplication of (18) is trivial. e
- The incremental change in X produced by a small change -
in the control variable u, is provided by differentiation of - A

(12):
2 (XN _ _ (%
Se £ <auk) - 7] <auk>.




¢, TINNEY AND MEYFR! ORDERED TRIANGULAR FACTORIZATION

8 sensitivity vector S, is trivial once [J] has been tri-
: ‘angularized. Such sensitivities are useful not only for
§ planning, but also for on-line control applications (such as
. ‘capacitor adjustment for local voltage control).

& Reference [6]developed the optimal power flow primarily
i to adjust gencrator voltage magnitudes so as to minimize
&' the network real power loss (thermal heating in the lines).:
. Fig. 5 shows that four iterations were sufficient to solve a
- 828-node 493-branch problem having 80 control variables
" Sueh convergenee is excellent, though unfortunately
§ not always typical of problems having more complex
* (i.e, badly deformed) objeetive funetions.

B. Solution of Water Distribution Systems

Given an interconnected network of pipes, pumps, and
rescrvoirs with consumptions specified at nodes (inter-
conneetion points of the pipes) of unknown pressure, the
problent is to find all unknown node pressures and all pipe
flows. This task shall be ealled the water-flow problem,
with a small sample network of 62 nodes shown in Tig. 6.

Nodal equations that exploit the extreme sparsity of
the physical network are readily developed. Considering a
pipe conneeting node & to node J» the pressure differential
across the pipe s approximately proportional to the
squarc! of the pipe flow:

IPk - le = Qkf/ckﬂ, 21)

~where 1/¢; is a friction coefficient depending on pipe
dimensions. Inverting this relation,

Qo = e VIPy — P sign(P, — P). (22)

Note that @, is the flow from node k to node J, that flow
occurs in the direction of decreasing pressure. Node
equations then follow from conservation of mass at node k,

I, = Zk e VP = P sign(P, — P), (23
J=k

where I is the net injection into the node. At a supply
node, this is the water flow into the network; at a point of
consumption, it is the negative of the flow out of the net-
work ( the demand). At a node of known pressurce (such as
a reservoir), no equation is written, with the unknown
mjection I, evaluated after all other pressures have been
found. Pumps ean be shown to not change the problem
form, though such details cannot be covered here,

Just as with the power flow equations (10), these con-
straints are of the form (11); if one wanted to show the
dependence on system parameters, then they are of the
form (12). Solution for unknown pressures hence can
proceed analogously by Newton's method as defined by
(I5) and (16). Iixactly the same sparsity techniques
applicable o clectric networks are applicable here,
though the following points are worthy of note.

1) The Jacobian matrix [J] is not defined when two

}I_“ormulgm using other than the square of the flow, like Hazen-
Williams with 1.85, could equally well be developed here, of course.

¥
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Fig. 5. Decrease in network loss with iteration number, for gradient
optimization of 328-node electric power network.

adjacent nodes k and j are assumed to have the same
pressure, since

61,; —Cxy .
= = e k) (24)
¥ 9P, 2 VI[P, — P) d

Thus a uniform or “flat” start having all variables P, equal
is not possible, unlike the situation with electric power flow.
Likewise, potential trouble develops during the itcrative
solution if a branch having zero or near-zero pressure
difference exists. While sophisticated formulation-change
techniques for such a'branch are possible, physieal intui-
tion suggests practical remedies that seem to work well.
For example, P, =~ P, means that the branch flow Qy, is
nearly zero; thus one can ignore such a pipe, dropping it
from the network while the near equality cxists.

2) From (24), it follows that [J] is symmetric ([J] =
[7]9). This allows for more efficient solution (see Section
1X).

3) Pressure-reducing valves introduce nonbilateral char-
acteristics that require a certain amount of judgment or
trial and error. This is comparable to the problem of
solving electronic networks having diodes, '

4) The use of Newton’s method with nodal formulation
sparsity is doubly-important in view of the square oot
appearing in (24). In the more gencral case, an evaluation
of (P — P,)" is required, with = 0.46 for the Hazen—
Williams formula of fluid flow. Such exponentiation is very
time eonsuming, with the standard library subroutine of
the Univac 1108 requiring numerical effort comparable to
about 80 multiply adds. The secret to fast water network
solutions, then, is to reduce the number of such required
evaluations. The quadratic convergenee of Newton’s
method serves to minimize the number of iterations, while
the use of a sparsc formulation (nodal) reduces the number
of evaluations per iteration.

Although the sparsity exploitation just outlined has
come late to the water-flow problem, extensive progress
in the next few years appears likely.

C. Analysis of Pin-Jointed Mechanical Structures

Pin-jointed mechanical structures provide another
natural application of sparse-matrix solution techniques.
For example, three typical high-voltage electric trans-
mission-line towers are shown in Fig. 7, where the ladder-
like physical sparsity of interconnection is obvious.
Subject to given assumed maximum loading and design

L € A = BIN S eem -
T3 Yook Lot st 4 s i
R A ;

R Ty
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(a)

(b)

Fig. 6. Samrle small 62-node water distribution network of [7]. (a) Network graph, drawn approximately o
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Fig. 7. Sketch showing the ladder-like sparsity of 500-kV electric
power transmission towers. '

1

safety margins, it is desired to choose the configuration
and member dimensions that will be the most economical
(in some sense). The crucial step in such an éxtremely
complicated optimization problem is, of course, just the
analysis of a given assumed configuration, which is no

- simple task.

The procedure of [8] is sophisticated and realistic in
that an indeterminate analysis is performed—indeter-
minate because not only member interconnections are
considered, but also the elastic properties thereof (as

proportions. (b) Nonzero pattern of resulting matrix [4], showing fill-in (F) upon triangularization.

defined by a 6 X 6 stiffness matrix for cach member),
Such mechanical structure analysis is thus more sophisti-
cated than the power or water-flow problem, where the
complication of geometric dircetions does not exist.
The fundamental calculation can be shown [8] to
reduce to the following lincar cquation solution for d:

(Kld = §, (25)
where
I vector of known applied forces;
[K] stiffness matrix for the tower;
d unknown vector of joint deflections.

Having solved for d, the internal member stresses (which
are what are actually needed) can be found by a straight-
forward transformation, thus completing the basic solution
calculation.

The coefficient matrix [K] has sparsity determined by
the physical connectivity of the members and henece is ;
amenable to efficient solution by OTF. Elimination order
is determined by matrix banding (see Section VIII), which
allows for the solution of very large problems with mini-
mum core storage requirements. Jensen reports that a
tower of the type shown in Fig. 7(a) involves a matrix of -
order 390; it requires only scveral thousand cells of core
storage for the banded-matrix solution, and gives rise to
24 000 nonzero terms (of the 152 000 possible) in the -
triangularization process. An even larger example is given
in [7].
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D. Solution of Linear Ordinary Differential Equations by
Implicit Integration

A purely mathematical use of OTF is illustrated by the

numerical solution of a system of linear ordinary differ-

“ential equations. In standard state-variable form, the
. initial value problem can be written as

M 4= (Al + [Blu (26)
y=I[ClX + [Dl, X(0) given; u(¢) given for¢ > 0,
@7)

where X is the system state, u the control, and y the out-

‘ a}ij_’ put. One wants to find y(¢) for £ > 0, an operation that is
=k easy using (27) once X (8) has been found. The real diffi-
"4 eulty, then, consists of finding the solution X(¢) to

of X =[4X + f(), X©) given; f(t) given for ¢ > 0.

(28)

For constant [ 4] and low-dimensional systems, “exact’
elosed-form solutions may be obtained. For example, the
- use of an exponential power serics, cigenvalues and eigen-
-vectors, or Laplace transformation is well documented
elsewhere [10]. But such is not the ease here, where we
*:’ihstead postulate that [ 4] is a large sparse possibly time-
{ ""imrying matrix. Hence one must resort to numerical

B solution methods—procedures that only yield X(¢) approxi-
s 144 mately and only at diserete time points. The most common
#2s.such algorithms are the well-known Runge-Kutta or pre-
dictor—corrector procedures [3], which merely require
“evaluation of the right-hand side of (28) for given X and ¢.
These are “explicit” integration methods and do not
;&feqﬁire the simultancous lincar-equation solution of the
¥ 7 method to follow. Yet while simple to apply, excessive
&‘ arithmetic effort (very small step sizc) may be required to
keep the numerical process from “blowing up,” thus giving
totally crroneous answers.

: "g:‘ An alternative allowing much larger time steps for
- certain problems is provided by “implicit integration.”

. Bince one can functionally write the solution
i} 4 ’

sl

e
l,‘

t
X)) = X(b) + f ) (OX (29)
t
. the only question consists of how the integral on the right
i8 to be approximated. Referring to Tig. 8, we need the
. shaded area in order to advanee the solution one time step.
" Now rather than just use polynomial interpolation
through known points (at times lod 1,- - -l _pye) as with
predictor methods, implieit integration adds the unknown
point at time 4 to the interpolation formula. The inter-
Y polating polynomial is integrated and, upon isolation of
i} the vector of unknowns X(z) 2 X', it is found that this
. - vector must satisfy the following system of linear equa-
= tions:

0
r.X° + Z

j=-n+2

[GlX' = d;X’,

(30) .
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where
[G] = [A] + s,[I] @31

with [I] being the identity matrix and Sn,nyto,d g,y - -,
d_,+2 being scalar constants depending upon the number of
points n used in the interpolation and upon their spacing.
For example, if parabolic interpolation with uniform
spacing Atis used, one hasn = 3, and

Sp =T, = ;—it dy, = —8/5 d- = 1/5. (32)
In any case, a sparse-matrix solution of lincar equations is
indicated. Note that the nonzero pattern of [G]is identical
with that of [ 4], assuming that all diagonal terms a,, are
nonzero. ’

Only integration by the trapezoidal rule (n = 2) was
considered by [9], showing that considerable potentiality
may exist for application to the transient-stability problem
of electric power systems. Since such problems may be of
order 1000 or more, the economic consequences are great.
As a small example, Fig. 9(a) shows the block diagram of a
sample ninth-order system with onc very small time con-
stant (0.0001 s). Dommel and Sato [9] show that to suc-
cessfully integrate such equations subjeet to a step input
u(t), the time step Af of implicit integration can be taken

about 500 times that of Runge-Kutta:

implicit integration (n = 2): A, ~ 0.01 s ;

fourth-order Runge-Kutta: Afm.x =~ 0.000 02 s.

The prediction has been made that average overall
running times of large transient stability studies may be
cut by a factor of about five due to usc of such implicit

integration. Use of higher order (n > 2) methods is now
under investigation.

E. Discrete-Time Optimal Control Problem

The classic discrete-time optimal control problem to be
considered here may be stated as follows:
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Fig. 9. Sample ninth-order linear differential equation problem of

[9]. (a) Block diagram of dynamic system. (b) Nonzero patiern of

coefficient matrix [4], showing fill-in upon triangularization by the
symbol F.

1Mn¢=Fﬂﬂ—FS§L&HW) (33)
subjeet to given state transition equations
X+ = ¢f(X4uY), i=20,--- N -1 (34)
and variable constraints
a < X' < b i=1,--- N (35)
o~ <yttt L gi-l i=1,-.-N. (36)

Here the state vector x is of order n and the control vector
U of order m,

5] U .
X=1] . u=1| . | (37)

T, Upy

Further, F,Ly,- - - Ly_, arc given scalar cost functions and
a', b’ o, and B! arc given vectors of variable bounds.

If one does not worry about dependent-variable con-
straints (35), then this problem is seen to be identical in
form to that of the optimal power flow (14); x1,... XV
when all joined together form one giant state vector of
n X N components, while uly- - u¥-1 form a control
vector with m X N entries. The original dimensionality
has been multiplied by the number of time steps N and
can thus become very large even though n and m are
themselves small. Yet as is typical of mathematieal pro-
gramming problems involving successive time steps, the
crucial matrix, the Jacobian [J] of (16a), has a block-
diagonal structure as shown in Iig. 10(a). Note that [J]
of (19) is pretriangularized, leading to a simple recursive
back substitution for - |

J.i — [Ji]tlt-H + (%) | (38)
7

Here the notation [J']is used to indicate the Jacobian
matrix of (34) for time step 4,

V=) Tt = agit/ouy. (39)

The same sort of trivial solution procedure can be used to
find the feasible solution X Y-+, X" about which the
gradient is being caleulated.

But such a simple calculation is not possible if one or
more components of X, - . - X reach the limits (35) during
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the computation. To avoid use of penalty functions that
would approximately maintain feasibility, [11] used the |
technique of switching the roles of 2 and u. The idea was to
treat an 2;% as a control (independent) variable when it
has reached its limit, replacing it for solution purposes by
some u,’. Thus with XY XN U0, uV -t treated as
one single composite veetor of problem variables, N X n
of these are to be chosen as dependent, and N X m as
independent. The structure of the resulting matrix
[J]* of (19) then is found by only considering the appro-
priate N X n associated rows of the derivative matrix of
Fig. 10(b). Here all equations of (34) have been differenti-
ated with respect to all possible variables, and then
transposed, with definitions

[C'] = (e

A simple low-order recursive caleulation like (38) is no
longer possible in general, with the simultancous solution
of larger numbers of coupled equations required. As seen, .
the resulting [J] will always be “banded” (sece Fig. 12 and !
its accompanying discussion) if rows and columns are f
taken in their natura) order. Yot a nonzero diagonal may;;L
be a problem, and if » is of moderate size, numerical@
effort may be excessive. Individual problem structures ;. §
(i.e., sparsity properties of [J*] and [C*]) will generally =%
determine what the best elimination order may be [11].

exit = O/, (40

F. Linear Programming Problems

When placed in standard form, the general lincar pro-
gramming problem becomes Cyl

maxz = ¢c'X : 41)

subject to
[4]X = b, X>0 (42)

where [A] is an m X 7 matrix with 2 > m. It can be ¢
shown that only m components of X need be nonzero,
forming an m-veetor Xp called a basic solution. The 3
associated columns of [A4] are assumed to span m-space, % ¢
forming a nonsingular basis matrix [B]. By definition, i

Xy = [B]~. 43)

The simplex algorithm solves the problem by moving "§
from one such feasible Xg to another until the optimumis * ¥
reached, by successively replacing one column of [B] by a E
column of [ 4] not then in the basis. ¥

The crucial factor in this solution is the ability to com-~ §
pute and store [B]='—not explicitly, but in factored form, g
While details are beyond the secope of this paper [1], [2],
[12], two general procedures are in use: the elimination = 4
forr\n of the inverse (EF1), and the product form of the
inverse (PFI). . The former is identical to OTF as used in
this paper. In fact, it appears that the carliest known *
large-scale application of such ideas oceurred in the “H#
operations-research arca {13]. ;

Linecar programming problems are often very large,
withm = 10 000 not an uncommon capability (sec [2, pp. i |
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107-112]). Obviously [4] for such problems must be ex-
tremely sparse. Details as to exactly how the EFT and PFI
exploit such structure can- be found elsewhere [1], [2],
[12], [13].

VIII. OrDERING SCHEMES TO PRESERVE SpARsITY
Durine ELnanNation

Nothing has so far been said as to how a near-optimal
ordering for OTT is accomplished in practice. Yet thisis a
key point, worthy of considerable attention.

To simplify the presentation, the assumption of a
strong diagonal shall be made, so that pivoting to avoid
division by zcro or near-zero clements is never required.
This was implied in the Fig. 3 considerations and shall be
continued here. Note that for simplicity [A4] is assumed
to have a symmetric nonzero pattern, and that rows and
columns of [A4] are switched simultaneously, so that
“once a diagonal clement, always a diagonal clement.”
While exceptions to this case are of practical concern, they
excessively complicate the presentation and mask an
appreciation of the basic ides,

Practical schemes for ordering electric and water net-
works include the following, in order of increasing sophis-
tication and difficulty.

Scheme 1 ."_l\ly_mber nodes of the original graph in order of

nondeercasing number of adjacent branches (i.e., those
with one connectold branel ara taken Tirst; Then those with
two, cte.).

In the remaining two schemes, one successively chooses
a next node (or variable) to be eliminated based on the
current reduced graph. He then alters that graph to
correspond to elimination of this node and repeats the
process. The criteria involved are as follows,

Scheme 2: Scarch the reduced graph for.a node having

minimum number of adjacent branches and take this one

1s the next node.

Scheme 3: Simulate the climination of all possible nodes
on the reduced graph, keeping track of the number of
1ew branches that cach climination would produce. The
1ext node to be chosen is that which produces the mini-
num number of new branches.

As an example of these three procedures, consider the
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network of Fig. 3 with the Fig. 3(c) numbering taken as
the old or original numbering, which is to be improved.
Scheme 1 merely requires looking at Fig. 3(c), and

"noting the number of branches adjacent to each node.

Old nodes 4, 8, 9, and 10 have one branch each; nodes 3,

. 9, 6, and 7 have two ; node 2 has three ; and finally node 1

has five. Since within a group of k objects there are k!
permutations, it follows that there are 41411111 = 9256
different Scheme 1 orderings for this very small problem.
That shown in Fig. 3(d) does not conform, since although
selection of the first five nodes is consistent, the sixth
(old node 2) is not. , A

~ Scheme 2 starts with the full graph of Fig. 3(c). Since
old nodes 4, 8, 9, and 10 all have minimum number of
adjacent branches, any one can be chosen as the new node -
1. Choosing old node 8 as in Fig. 3(d), the corresponding
elimination is then performed, producing the reduced
graph of Fig. 11(a). Since here old nodes 4, 9, and 10 all
have one connected branch, one can take his pick of these
as new node 2. Arbitrarily choosing old node 9, its elim-
ination yields the reduced graph of Fig. 11(b). The process
is continued until all nodes of the original graph have been
so climinated, until the reduced graph is annihilated.

Scheme 3 begins by trial elimination of all ten possible
nodes of Fig. 3(c). One finds that no new branches are
created by eliminating old nodes 4, 8, 9, or 10, one branch
is created upon eliminating 3, 5, 6, or 7, three upon
eliminating node 2, and ten upon eliminating node 1.
Hence one can take his pick among the first listed sct, with
the choice of old nodec 9 acceptable just as it was for Scheme
2. Hence after its elimination, Fig. 11(a) applies. Simu-
lating all 9 possible eliminations here, one finds that only
old nodes 4, 9, or 10 produce a minimum of no new created
branches. Just as with Scheme 2, old node 9 ean be taken
as new node 2, and the subsequent elimination yields Fig.
11(b). The eight possible climinations here are then simu-
lated, etc., thus ending the example.

Of the three schemes mentioned, Scheme 2, or deriva-
tives thereof, has reccived the widest usce for clectric net-
work solutions. Figures on effectiveness are provided in
[5], [6], [14], [15]). Scheme 1 is poor cnough for large
problems so as to be unacceptable, while Scheme 3 is only
slightly better (at much greater computational expense).

Networks having ladder-like structure (IMig. 12(a), for
example) are well known to behave poorly under the
previous three reordering schemes. The ideal climination
order progresses sequentially in the direction of the
structure. Using one such numbering as shown in Fig.
12(a), the nonzero elements of [4] are scen to be elustered
or_banded about the diagonal [FFig. T2(6)]. This is ro-
ferred to as banded-matrix ordering, with the following
important property: only cells within the band nced be
considered, since those outside arc initially zero and are
known beforchand to remain that way. This is scen in Fig.
12(c). Another advantage of matrix banding is that the
whole problem is not needed in core storage at once. The
elimination operations involve movement down the band
from upper left to lower right, only affecting elements in
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(a) (b}

Fig. 11.  Reduced graphs produced by two elimination steps applied
to the graph of Fig. 3(c). (a) After elimination of old node 8. (b)
fter elimination of old node 8, then 9.

the immediate vicinity under consideration. As new lower
rows must be read into core from auxiliary storage, upper
rows are finished and can be released once and for all to
auxiliary storage. The tower design problem of Fig. 7
provides an excellent applicatipn of this technique.

Another special case is that of weakly interconnected
subnetworks, wherein separate disconnected parts would
exist, were it not for a few branches. Fig. 13 shows a
small 40-node example of this, where node numbering was
done as follows:

1) each interconnection branch has one of its two
terminal nodes eliminated at the end (nodes 38-40);

2) the remaining nodes of subsystem 1 are all taken
first, then all those of subsystem 2, and finally those
of subsystem 3.

This produces a nearly block-diagonal structure for [A]
as shown. Just as with matrix banding, the whole problem
is not required simultancously in core storage for solution.
Rather, it can be worked on subsystem by subsystem,
i using .only a diagonal block and its associated intercon-
‘ nection terms (columns and rows 38-40).

Consideration has been given to the problem of finding
an absolutely optimal ordering, one that creates an abso-
lute minimum number of nonzero terms upon elimination
[16]. Yet computational difficilties arc such as to make
this impractical for realistic problems, at least at:the
present time,

No attempt at gencrality orf completeness has been
made in this discussion. Rather, the goal has been motiva-
tion and undertanding. It is hoped that the reader is in a

~ position to seek added details elsewhere [11,12]),[14].

i IX. THE TRIANGULAR FACTORIZATION PROCESS ITSELF

To systematize the Gaussian elimination process, one
number is saved corresponding to each matrix location
which ever becomes nonzero during the elimination. This

? fined as follows:
|

ifj >7 fiy; = ay the value existing after the entire
climination process has been complcted;
ifj =4 fu =.1/ay, where ay is the diagonal value

value for position (7,7) shall be denoted by Sy and is de-

E existing in row 7 just before it was divided to
| unity by the elifmination process;
L ifj <4 Ju = ay, the value of cell (,7) just before it i is
i zeroed by the elimination process.

= These factors f,, shall be collecti%zely referred to as IF],

| thus constituting the triangular factorization (or LU
| decomposition) of [ A). When the elimination is performed
i g
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in a carefully chosen order, this then is an OTF of [ 4].

Once [F] has been calculated {14] shows that many
problems are immediately solvable, including the follow-
ing.

Original: Given bin (1), find X.

Reverse: Given X in (1), find b.

Transpose: Given b in (44), find X.

Hybrid Original: Given by and X, of (45), find b, and X,.

Hybrid Transpose: Given by and X, of (46), find b, and X,

[A]'X = b (44)
(z) -G
ar(3) - G)

Thus [F] possesses not only the power of both [4] ana
also [ A]~1, but also of their transposes and partitions at ar
arbitrary point. Each of these solutions requires N + M
multiplics and M adds,

effort = (N 4+ M) mult4- (M) add, (47,

where
N the number of equations;
M the number of nonzero f;; for j 5 1.

For example, Seheme 3 ordering of the water network o
Fig. 6 yields N = 62, M = 244, making a total of 30t
multiplies and 244 adds. Figures for much larger network:
are given in [14]. For an application that uses all but the
second property simultaneously, sce [15]. A three-variable
example is included in the Appendix.

An important computational variation of the conven
tional elimination procedum [ climination by
rows (rather than columns). Instead of eliminating z; from
equation 2 through N, then eliminating «, from equation &
through N, etec., row elimination proceeds as follows (se:
Fig. 14):

1) divide equation 1 by ay;

2) eliminate x; from equation 2 and then divide it by as,

3) eliminate z; and z, from equation 3 and then divid:
it by A3z,

- ete.

eliminate x;,%s,- - -,y _1 from the last (Nth) equa
tion and then divide it by ay,x.

m

It can be shown that the factors [F] so generated ar

. identical to those produced by ecolumn elimination. Whil
\ of no special merit if square-array Fortran storage wer

'being used, this alteration is of great importance whe
working with sparse matrices [14], [15]. A row can b
formed and eliminated in dummy storage and then packe
away into permanent storage in its natural order (ir
creasing column numbers within any given row), never t
be altered as the elimination procecds.
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Fig. 14 Comparison belween column and row elimination as to
order of processing of matrix elements, for 6 X 6 matrix. (a) Order
for column elimination. (b) Order for row elimination.

When [4] is symmetric (a;; = ay), then considerable
saving is possible, both in triangularization effort and also
in storage requirements. As shown in [14], only fy for
J 2 i are needed. The technique is illustrated for a three-
variable problem in the Appendix, and [15] documents
the programming procedures that completely ignore all
lower triangle arithmetic operations during the tri-

. angularization. The water-flow and tower-design problems
can exploit symmetry in this way.

A few words also should be said about updating the
factors [F], when [A] is changed. Of course if the change
is general, then one simply recomputes [F] from the be-

ginning; if changes can be confined to only lower rows,
then only the end of the tirangularization need be redone.
But if special, more selective changes occur, then the
original [F] can be retained, along with an appropriate

correction vector. Two cases are of great, practical im-
portance: '

1) suppose that one wants to replace one column of
[A] with an arbitrary new vector.

2) supposc onc wants to alter only four elements of
[4] in positions (k,k), (k,m), (m,k), and (m,m).

The first casc is fundamental to linear programming
(Section VII-F), while the latter corresponds to removal
of a branch in the nodal admittance matrix of an electric
network, among other things (Section VII-A ; [17] details
an application). Both updating operations require just one
linear equation solution using the old [F] to find an appro-
priate correction vector, thus saving considerable effort.
Needless to say, the essence of sparsity programming
requires only the handling of nonzero elements. Hence
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squarc-array Fortran storage is never used. Dctails of
various cfficient storage and caleulation schemes are given
elsewhere in the literature [1],[2], [5],[14],[15].

X. CONCLUSIONS

- The ability to rapidly and accurately solve systems of
sparse linear equations has had an enormous impact upon
a number of engineering and mathematical problems, of
which several hdve been presented. Probably the newest
and most comprehensive statement ds to what has been
done to date is in [1]. Interested readers arc encouraged
to use this as a starting point for a morc detailed investi-
gation of the subject.

‘APPENDIX

Principles and terminology of the OTF solution tech-
nique shall be reviewed and summarized by means of small
real examples. Consider the following system of equations
[A]X = b, which is to be solved by Gaussian elimination:

@)X+ DX+ @)X =6

@X: + @)X + @OXs = 9
@)X, + WX, + (DX, 14. (48)
For a computer solution; maximum efficiency dictates
elimination by rows, rather than the more familiar column

order. The successive reduced sets of equations are as
follows:

L& WX+ (/)X + 3/2)Xs = 3
@X:+ @)X+ @X =
GX:1+ DX+ (MX;=14 (49)
WX + (1/2)Xz + (3/2)Xs = 3
2. X+ (DX =3
@X + @X+ '(OXy=14 (50)
WX: +H(1/2)X, + (3/2)X: = 3
3 YA X, +(1/2)X, = 3/2
@)X+ @X+ OX =14 (51)
(DX + (1/2)X: + 3/2)X: = 3
WX, + (1/2)X; = 3/2
4 (5/2)%: + (5/2Xs = 5 (52)
@X: K /DX +%3/2%§, ~3
WX, 3 = 3/2
5 G/4) X5 = 5/4. (53)

These steps are referred to as the “downward” or
“climination” operations. The solutioh . x may be immedi-

ately determined by the so-calied ‘‘hack-substitution’
operations using (53) : X; is known and may be substituted

into the second equation to find Xz, then the first equatlon

" yields X;.

This solution process may be generahzed by the “table

of factors” or LU-decomposition idea. If one carefully
/'(/

f
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reviews (48)-(53), he sees that [F] in (H4) completely
summarizes the solution procedure, and permits finding X
for any constant vector b (if [ A] remains unchanged).

¥ : '

v S S 1/2 1/2 3/2
[:l-fn f23]=|:2 Gﬁ)l/? .
Lfa

Ju fu 3 5/2 4/5
The array of f,; in (54) has been called the table of factors;
it guides the rapid solution for X in any of the problems:

o

(F] (54

[A]X = ¢ [(regular) network] (55)
[A]'X = ¢ (transposed network) (56)
(4] < LA (bhybrid network)
X, ¢/ X, c, unknown 67
[A]" (X., _ (¢z\ (transposed hybrid network)
Xy ¢/ X, ¢, unknown. (58)

Here ¢, ¢,, and X, arc known vectors. [ 4] is the coeflicient
matrix of (48), (57), and (58) involve comformable parti-
tions of X and ¢ and the problems will go by the names in
parcntheses. Derivation of the solution formulas for (55)-
(58) is given in [14] and ilustrated by the following exam-
ples. Note the first example is a mechanized version of (48)-
(53) and should familiarize the reader with the notation.
In these cxamples, we denote the solution yeetor at any

stage of its development by (y; o 12)! = y. \\

3 1 s
Example 1 [(Regular) Network] [;3 5} 55
Whien solving (55) by use of the table of factors [F]in

(54), successive steps appear as columns (left to right) in

c 1,1 2,1 22 31 32 33 23 1,3 |,
6 (&3 3 -3 3 3 3 b2 -l
1 1

9 3 3/2 3/2 3/2 3/2
14 14 14 14 5 5/4 1

et e s | D

The heading row indicates which element of the table of
factors produces the vector below it. ¢ is on the far left,
X is on the far right, and the operation 1,5 is defined by

v = W), =i (59)

yo =y — ()lyy), ifj=1 (60)

Example 2 (Transposed Network)

To solve (56) with ¢ = (9 11 18)f the Example 1

operations are reversed:

c 1,2 1,3 2,3 3,3 3,23,12,22,11,1

X
9 9 9 9 9 9 6 6 2 1 1

1 13/2 13/2 13/2 13/2 4 4 2 2 2 2
T 18 18 9/2 5/4 1 1 1 1 1 1 1

ye = (y) (fu); ifj =
ys =¥y — (J)ly), ifj =<
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Example 3 (Hybrid Network)
We shall solve (57) with the partition
2} 3
(%) (%)
=1 =85H)
T2 X, °
Cy ‘ p » \o

This constraint X; = 0 represents grounding the reference
generator in the B-coefficient algorlthm of [15]. Xis found
by the operations

(63)

SetXa=0 1

c 1,1 2,1 2,2 ,2 X
3 3/2 3/2 3/2 3/2 1 1
5 5 2 1 1 1 1
c=1? ? ? ? 0 0 0

This is like Example 1, with certain simplifications. Down-
ward operations for row 3 were ignored, since we knew the
result had to give X; = 0. Then X; = 0 allowed ignoring
(60) for the last column (j = 3).

Ezample 4 (Transposed Hybrid Network)

Assuming the partition of (63), Xin (58) is found by the
operations

c 1,2 setX;=0 2,2 2,1 1,1 X
3 3 3 3 —-1/2 —1/4 —1/a
5 7/2 7/2 7/4 7/4 7/4 7/4
? ? 0 0 0 0 0

This resembles Example 2, except one ignores operations
(62) having j = 3, since X is known and is manually set to
zero; operations (62) for 1 = 3 could likewise be omitted
(pass operations).

If [ A] is symmetric, then as well known [14}, only f,, for
J 2 1 are needed for solutions. Of course [4]}* = [ A] means
there arc only two distinet problems—(55) and (57). For
[A]in (64), one finds [F] to be given by (65):

21 3
1 3 4
3 4 8

1/2 1/2 3/2
[Fl=11 2/5 1 | (65)
3 52 1

Note that elements of"[F] satisfy (66), and solutions ob-
tained using only f,, for j > ¢ will be illustrated next.

G (1) = fi
Ezample 5 (Symmetric Network)

(4] = (64)

forj < 1. (66)

Forec = (8,9, 18)f and the [ 4] of (64), X in (55) isfound
by the opcrations '

diagonal
c1,2 1,3 23|1,1 22 33|23 1,3 1,2 X
8 8 8 8 | 4 4 4] 4 52 2 2
9 5 5 515 2 2|1 1 1 1
818 6 1 {1 1 1|1 1 1 1

Note all f,; arc applied in the middle and f,, (j > %) are
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each applied twice—once to the left of the diagonal opera-
tions and once to the right. The order of application on the

right is the reverse of that on the left, and operatlon rules
are :

Yy =Yy — (fy)(yt) (when on left) (67)
Yo = @) | | (68)
¥ =y — (fu) (yy) (when on right). (69)

In general,‘ the order of application on the left is by rows:
/1’2/1:3/' ) /I)N/2)3/ . /2)N/ - -ete
Ezample 6 (H ybrid Symmetric Network)

With [4] of (64) and the partition of (63), one solves
(57) as

diagonal
¢ 1,2 set X; = 0 1,1 2,2 1,2
3 3 3 3/2 3/2 4/5 4/5
5 7/2 7/2 7/2 7/5 7/5. 1/5
? ? 0 0 0 0 0

Here the f,; were ap,plig!ad just as in Example 5, except all
last-column (j .= 3) operations were omitted on the left,
X: was set to zero just before applying fy;, and fz and all
last column f,; on the right were omitted (pass operations).
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Structure and Design of Linear Model

Following Systems
' A. STEPHEN MORSE

Abstract—This paper investigates the problem of designing a
compensating control for a linear multivariable system so that the
impulse response matrix of the resulting closed-loop system coin-
cides with the impulse response matrix of a prespecified linear
model; this is the model following problem. A new- formulation of
the problem is developed, and necessary and sufficient conditions for
a solution to exist are given. An upper bound is determined for the
number of integrators needed to constngcé the compensating control
and, if the open-loop plant in' question possesses a left-invertible
transfer matrix, this bound is shown to be as small as possible.

The relationship between the internal structure of a “model
following system and the model being followed is explained, and a
description is given of the possible distributions of system eigen-
values which can be achieved while maintaining a model following
configuration. This leads to a statement of necessary and sufficient
conditions for the existence of a solution to the problem which

results in a stable compensated system.
InTRODUCTION “
’ I THIS PAPER investigates the problem of designing a
compensating control for a linear multivariable system
so that the impulse response matrix of the resulting closed-
loop system coincides with the impulse response matrix of
a prespecified linear model. We call this the model following
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problem (MFP). Model following synthesis arises in con-
nection with handling qualities design [1], [2] and model-
reference adaptive control [3], and it is applicable to a
number of standard design problems in linear multi-
variable control.

The model following problem has been studied in one
form or another for at least 15 years. In early investiga-

* tions, Kavanagh [4] developed preliminary results in

transfer matrix terms, and Tyler [1] studied a closely
related problem using optimal regulator theory. Recent
investigations by Erzberger [5], Wolovich [6], Wang and
Desoer {7], and Moore and Silverman [8] have been
primarily concerned with problem solvability under vari-
ous hypotheses. In this paper we present new results
regarding both solvability and system structure which
clarify and extend the previously cited work.

In Section I we develop a new formulation of MFP in
simple algebraic terms. The formulation is completely
general and avoids restrictive hypotheses concerning plant
and model. In Section II we state a necessary and suffi-
cient condition for MFP to be solvable; the condition is
explicit, easy to check, and leads to a constructive pro-
cedure for finding a solution, should one exist.

The design of model following systems often requires
the use of integrators to construct the compensating con-
trol. In Section II we determine an upper bound for the .
number of integrators needed. If the open-loop plant in




