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Circuit Method for Electric Power Circuit Solutions

C. A. Thompson G. T. Heydt
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Abstract

Circuit transient analysis packages such as SPICE and EMTP are very widely used,

_ but detailed information on the internal structure and error characteristics for these
software packages is lacking. Both SPICE and EMTP rely on numerical integration to
approximate the transient response of circuit‘ elements. The numerical integration
methods used in the packages are not necessarily the most accurate approximations to
the actual response of a circuit. The study of these numerical integration methods and
their error characteristics is the focus of this paper. Comparisons are made between
several methods in terms of accuracy and stability as well as algorithm and time
complexity involved with implementing the integration methodologies.

1. Introduction

This paper concerns numerical integration techniques used in the resisdve
companion circuit method for the calculation of electrical transients. The motivation for
this work came originally from the Electromagnetic Transients Program (EMTP) [1,2]
which is widely used computer software designed for the analysis of electric power
networks. The essence of EMTP software is the use of resistive equivalent circuits
(“companion circuits™) which model general RLC networks. Once the network has
been reduced to a resistive companion, numerical integration is used to calculate bus
voltages and injection currents at discrete time intervals. The main objective of this
paper is to study alternative integration methods in this application.

The key to understanding the companion circuit methodology of transient analysis
is to understand the numerical integration scheme that is employed. Also, one must
comprehend how to formulate the companion circuits. This is the motivation for an
exposition of alternarive numerical integration methodologies and techniques for the
formulation of the nodal admittance matrix. There are many numerical integration
techniques which could be used in the application of companion circuits. This paper
will present six methods which fall into the two categories of: first order
approximatons and second order approximations. The following methods will be
presented: forward Euler, backward Euler, trapezoidal, parabolic, Simpson’s, and
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Gear’s second order methods [3,4]. The first three methods are first order
approximations. The integral of a first order method is solved by calculating the area
under a linear approximation of the function. The last three methods are second order
approximations. These methods approximate an integral by solving the area under a
parabolic (or second order) region. Numerical integration relies on the successive
summation of a number of discrete time slices of the function, each separated by a time
step (h). Formulas for these techniques appear in Table 1. |

Table 1 Comparative Properties of Alternative Numerical Integration Methods

Method T Basis of Integraton Formula ‘ Order of Self
Method ' Approximation Starting? |
1 P%r:vlerard Xn+l = Xp + hX_ 1 | yes
2 Bmard Xnel = Xg + hx;m 1 yes
3 Tm%c:lzidal Xn+1 = Xp + 12‘-[xn + x; ol 1 yes
4 Sin;{pusicem's Xl = Xg + g{x;.l +4x_ + x;_._l] 2 no
5 Parabolic Xnel = Xq + _lhz_{_x;_l +8x + 5";+1] 2 no
6 Gcgr’;;nd Xne] = g_xn - .:]”.x“_1 .,..23!1,"”1 2 no

2. Error analysis

Numerical methods generally result in errors associated with each integration step
(the exception occurring when the approximatior is of a simple rational number which
corresponds to a function of equal or lesser order). The main error components are due
to round-off and truncation of the mathematical approximation to the integral. Round-
off errors are the errors associated with using finite digital computer word lengths.
These types of errors are machine as well as language dependent. Round-off CITOTS are
present any time the exact number desired requires more digits to be represented than
the computer uses. The second type of error associated with numerical integration
methods is the truncarion, or theoretical, error. Truncation error is independent of the
machine and language used; it is the error associated with the algorithm employed.
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Table 2 Error Approximations of Methods 1-6

Method Error Approximation * Order of Approximarion

Forward Eujer | hzx(Z)(t) O(h?)
2
Backward Eyler h2x(2)(1;) Om?)
. T
Trapezoidal __h3x@xy) O(h?)
o 12
Simpson's Rule h5x(5)(-;) O®m5)
TS
Parabolic ) '3h4x(4)(t) O(h4)
160
Gear's 2nd Order 2h3xG)(r) O(?)
-
*h<t< thel

3. Stability anal ysis
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x'=-Ax x(0)=1

which is a first order system with time constant of 1/A. The analytic solution of this is,
x(t) = xge-M t20

where x, is the initial condition. The study of stability can be performed by placing the
Ax value into the integral formulas shown in Table 1. The forms of solution for the
first three methods are as follows,

Forward Euler:

Backward Euler:

_ X
= T )
Trapezoidal;
1-hA
Xn+i = 1+ hzlxn.

To maintain stability it is important that the values of the equations are such that,

Forward Euler:

1-bAs1 o0)s1-¢® 0<@ <2r.
Backward Euler:
1+hA<1 o(8)2-1+e® 050 <or.
Trapezoidal;
1+hA .
<1 o0)s=22+1 ocg<on

The value of o(0) corresponds to the polar notation of hA, which was achieved
through the method of z transforms [S]. The previous equations can be used as a basis
for determining the regions of relative stability for each algorithm. Applying similar
techniques, it is found that the regions of stability for the other algorithms are as
follows,




Simpson’s;

%{e2j9+4e’°+1) 0<8 < 2x.
Parabolic:
G(e) < Cz-’e - cie .
2j0
L+ Lo+ e 0<6 <2z

. Gear 2nd order:

3° 0<8 <2n.

A quick way for determining algorithm stability for a certain problem is to evaluate the
above expressions with the proper values of h and A

4. Companion circuit techniques

The method illustrated above can now be employed for transient circuit analysis.
The equations necessary for the circuit discretization are the terminal relations for
inductors and capacitors,

v=L‘£~=L1’
1=C%¥=Cv'

1)

If Equation (1) is rewritten as an integral, one may use any of the integration techniques
mentioned earlier to form the resistve companion circuit. For example, using the
trapezoidal method,

1A



ikm) = fl_- f (Vex) - V(m)) dt

now becomes, .
i(k.x'n) n+l = i(k.m) n+ ﬁ'{v(k.m) n * Vkm) n+t ) Q)

Applying Equation (2), the resistive companion can be solved. Figure 2 shows the
example resistive companion for the trapezoidal method.

k 'km in+1
. h .
Vim L 2L Vn+in
m o

Figure 1 (a) Inductor from node k to node m. (b) Trapezoidal method resistive
‘ companion for inductor in (a).
Through similar reasoning, resistive companions are found for each of the methods

presented in Section (1). Tables 2 and 4 contain summaries of the relations found

between the integration methods and the corresponding companion circuits.

S. Dlustration of the technique and error characteristics
By replacing each capacitive and inductive element in a circuit with the

trapezoidal method, one finds the solution shown in Figure 3. For this solution

Figure 3 as a dotted line, For the same circuit, Figures 4 and 5 show the solution and
error characteristics for the parabolic and Gear's 2nd order methods. Additional
applications are shown by Thompson in [5].
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Figure 2 Sample RLC network

6. Conclusions

This paper introduced a number of numerical integration methods which may be used in
the resistive companion circuit method of transient circuit analysis. Several of the
methods introduced were explored in greater detail, these were the trapezoidal,
parabolic, and Gear’s 2nd order methods. Of all the methods shown, trapezoidal is the
most widely used (it is used in EMTP as well as in SPICE). Reasons for using the
trapezoidal method are it’s ease of use, its wide range of stability, and it’s fairly
accurate [1]. However, this paper has shown that other methods (such as the parabolic
and Gear’s 2nd order methods) do obtain more accurate results than the trapezoidal
method (for the same time step). However, the second order methods presented here
do have one major drawback -- they all require starting points. The second order
methods (since they require the values at time n and n-1) cannot begin a solution at time
zero because the term at time n-1 would occur at negative time.

Of all the methods prcscmed, Simpson's rule showed promise as the most accurate.
However, this accuracy cannot be relied on. A quick view at Simpson’s region of
stability will show that the method is only stable when the value of the ume-constant,
A, is imaginary (and this will hardly be the case in electric circuits). The parabolic
method shows very good accuracy, but there is a wide region where the parabolic
method is unstable. This instability, however, can be countered with effective
programming. On the other hand, the Gear’s method showed good accuracy and
excellent stability. (It should be noted that the Gear’s method is also used in SPICE as
an alternate to the rapezoidal method).
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(s_o;x) jon3

2.83 1 t ' I ] il 5'08
272p : — - Trapezoidal ~4.57
i solution
2.61 | - 4.08
I — Absoliute error
2.50 - 3.56
2.39 -1 3.05
>
% 2.28 4254
= 216 +42.03
2.05 | -1.52
N o ™ o0 ™™ = o e oan e s e of
1.4 <4 1.02
1.83 -0.508 -
1.72 : A g 000
0.0 3.0 6.0 9.0 12.0 15.0
Time (seconds)

Figure 3 Trapezoidal soluti_on for RLC network (h = 0.01 second).

2.83 T T T T T T T T T 2.75
272 - ~ Paraboiic solution | | 248
2.61 — Absolute arrar -2.20
|
2.50 |' <41.93
239 f| 41.65
S \
-] 2-28 \ 1 1.38
3 .
2.16 It -11.10
\
2.05¢ N - - 0.826
\ / \ / NS o e e T e e e e e e - o
1.94t ! / N -4 0.551
\
1eaf | | 40.275
1.72 _LL/N/\/\/\N\C\MV_‘:&A—. 0.000
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Figure 4 Parabolic solution for RL.C network (h = 0.01 second).
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2.83 E T . T T T T T T 2.10

-41.89
2.72 ) = — Gear's soiution
2.61 “| m —— Absolute error - 1.68
2.50 U| | 41.47
2.39f / ] 4126 m
> '; 1 g
S 227, j 1105
i
> 218 4 0.841 3
205 0.631

1.94 0.421

1.83 0.210

1.72 : ' 0.000
0.0 3.0 6.0 9.0 12.0 150

Time (seconds)

Figure‘ 5 Gear’s 2nd order solution to RLC network (h = 0.01 second).

Of all the methods presented, Simpson’s rule showed promise as the most accurate.
However, this accuracy cannot be relied on. A quick view at Simpson’s region of
stability will show that the method is only stable when the value of the time-constant,

A, is imaginary (and this will hardly be the case in slecwic circuits). The parabolic

method shows very good accuracy, but there is a wide region where the parabolic
method is unstable. This instability, however, can be countered with effective
programming. On the other hand, the Gear’s method showed good accuracy and
excellent stability. (It should be noted that the Gear’s method is also used in SPICE as
an alternate to the trapezoidal method).
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