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pressure leads to governing equations at zero Reynolds number that correctly
include the pressure effects. The inertia-based P is more meaningful where
inertia dominates; choosing the inertia-based characteristic pressure leads to
governing equations at an infinite Reynolds number that correctly include the
pressure effects. It appears that if we want to simplify the governing equations, it
matters what we choose for characteristic values—if we make the wrong choice,
we are led to the wrong simplified equations.

In addition to the confusing issue of which characteristic pressure to choose,
the conundrum of potential flow remains. Dimensional analysis, even with the
correct characteristic pressure chosen, leads in the high-Reynolds-number limit
to results that simply do not match what is observed. It appears that dimensional
analysis has failed for the case of rapid flow around a sphere: It has not led to
simplified equations that predict the rich flow behavior observed (see Figure 8.22).

The failure of dimensional analysis in the case of rapid flow around a sphere
is due to the choice of the sphere diameter D for the lengthscale for nondimen-
sionalization [85]. In the boundary layer, the lengthscale over which the velocity
changes is not the large lengthscale D but rather the much smaller lengthscale
& (see Example 8.22). Thus, the flow around a sphere has the property that the
characteristic dimensions over which properties change are different for differ-
ent regions of the flow. The choice of D as the single dimension over which to
nondimensionalize leads to the difficulties experienced with the potential-flow
solution [85]. When we recognize that a problem has regimes with different char-
acteristic lengths, we can build our solution methods around the correct length-
scales. This is a technique of advanced fluid mechanics (i.e., matched asyptotic
expansion). For an indepth treatment of scaling issues in fluid mechanics, see
Leal [85]; see also Problem 57.

This concludes our discussion of the continuum model. The continuum model
is a successful model of fluid behavior. For simple flows, with the help of calculus,
we solve for the velocity and stress fields. For complex flows, with the help of
dimensional analysis and advanced methods (Chapters 7, 8, and [85]), we also
solve for the velocity and stress fields. In this text, we have seen how to calculate
flow quantities of interest from the velocity and stress fields. In the remaining
chapters of this book, we explore the origins of the macroscopic balance equations
and apply these balances to more complex situations (Chapter 9) and we revisit
our Chapter 2 tour of fluid behavior and see how much of that behavior is now
within our modeling means.

8.4 Problems

1. The classic internal flow is pipe flow; the classic external flow is uniform
flow past a sphere. Using these two examples, compare and contrast internal
and external flows.

2. Compare and contrast the Fanning friction factor and the drag coefficient.
What is the purpose of each?

3. Why does a skydiver reach terminal velocity? Why does the skydiver not
accelerate continuously as she falls?
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4.

Spherical coordinates are used to solve for the velocity profile in a flow.
The result is given here. Convert v from spherical coordinates to Cartesian
coordinates.
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. In Example 8.2, gravity is given byg= —gé.. Using Equations 1.271-1.273,

calculate this g in the spherical coordinate system (the answer is given in
Equation 8.13).

_ From intuition, sketch the velocity field for flow around a sphere at modest

flow rates. Make your arrows proportional to what you believe the velocity
magnitude should be at each point.

. In the creeping flow around a sphere problem (see Example 8.1), which terms

of the Navier-Stokes equation are neglected? How is this justified?

. In creeping flow around a sphere, we calculate the final velocity profile

beginning with the guess for the velocity components in Equations 8.20
and 8.21. Carry out the detailed calculation of the final velocity profile.

[Lengthy]

. In calculating forces on the sphere in creeping flow around a sphere, we use

the fact that 7,, ,—r at the surface of the sphere is equal to zero. Confirm this.

. Using plotting software, plot the pressure distribution in creeping flow around

a sphere. Comment on the results.

_ Fora 1.0-mm-diameter polystyrene bead falling in water, what is the expected

terminal speed? Assume creeping flow. What is the Reynolds number of this
flow? Would this flow represent creeping flow?

_ For a 1.0-mm-diameter ball made of stainless steel falling in glycerol, what

is the expected terminal speed? Assume Stokes-flow. Will the ball fall in the
> N
Stekes-regime? creefing

_ What is the largest Reynolds number that we can explore with sphere-

dropping experiments? What limits this experimental technique?

_ For stainless-steel spheres of reasonable sizes, in reasonable fluids, what is

the minimum fluid viscosity you may use in a terminal velocity experiment?
What sizes of steel ball would you use to obtain these measurements of
terminal velocity?

_ When we nondimensionalize the Navier-Stokes equation in pipe flow, two

dimensionless groups appear: the Reynolds number, Re, and the Froude num-
ber, Fr. When the Navier-Stokes equation was nondimensionalized for flow
around a sphere, the Froude number did not appear. Explain the difference.

. The force on a sphere in creeping flow was found to be unidirectional:

Flcreepivg = F,é,, whereas for noncreeping flow, the force is not unidirec- {
tional. Why?

_ What is lift? What are the dimensions of lift?
A cricket ball is thrown with an initial speed of 52 mph straight up in the air.

How long until the ball hits the ground? With what speed will the ball hit the
ground? Do not neglect air resistance.
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F A Rankine half-body (Problem 29). .
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A smooth ball the size of a soccer ball is dropped from a bridge to a river
140 m below. Calculate the speed of the bal;\both with and without drag.
How much error is there in the calculation if air resistance is neglected?

A smooth ball 4.0 cm in diameter weighing 0.25 kg is launched at an initial
velocity of 40.0 mph at an angle of 34 degrees from the horizontal. What is
the speed of the ball as a function of time and how far will the ball go? What
is the path traced out by the ball?

Calculate the true pressure drag on a cylinder by numerically integrating the
experimental pressure data in Figure 8.53.

The flow patterns behind a sphere at high Reynolds numbers are shown in
Figure 8.22. Compare these flow patterns to what is observed behind a long
cylinder. Discuss the comparison.

What is the definition and meaning of stream function?

What are the governing equations for potential flow around a sphere? Where
do these equations originate?

Using plotting software, plot the pressure distribution in potential flow around
a sphere. Comment on the results.

What is d’ Alembert’s paradox? Why is this observation important?

For potential flow around a sphere, calculate the pressure distribution. Start
from the velocity solution given in Equation 8.238.

Demonstrate the error involved when the Bernoulli equation is applied inap-
propriately by carrying out the following calculation and comparison: Begin-
ning with the correct velocity profile result for creeping flow around a sphere,
use the Bernoulli equation (incorrectly) to calculate the pressure profile.
Compare the incorrect profile obtained from the Bernoulli equation to the
correct pressure profile for creeping flow around a sphere. Comment on your
results.

The velocity field for uniform upstream flow v = Ué, flowing in potential
flow around an obstacle called a Rankine half-body is sketched in Figure 8.61.
The shape of the obstacle follows the equation 7soay(6) given here. What is
the pressure field for this flow? You may neglect gravity. The quantities b
and U are constants. Plot the results for a half-body with b = 1.0 m and
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upstream flow speed U = 1.0 m/s.
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. Calculate the extra-stress tensor £ for potential flow around a sphere of an
inviscid Newtonian fluid. Calculate the total-stress tensor I1. Comment on
what is obtained. ~¥%.24 o

. At first glance, the streamlines for creeping flow and potential flow around a
sphere (see Figures 8.9 and 8:9) seem similar. The arrow plots of the velocity
fields for these two flow solutions, however, show the striking differences
between the two scenarios (see Figures 8.8 and 8.25). Summarize the dif-
ferences in velocity fields. Why do the streamline plots look similar? When
looking at streamline plots, how can a viewer perceive the differences in
flows? :

. Are boundary layers important in both internal and external flows? Explain
your answer.

. What type of forces dominate in the boundary layer? What type of forces
dominate outside the boundary layer?

. To solve the microscopic mass and momentum balances in the boundary layer,
we make many assumptions. List the assumptions that go into developing the
simplified equations of change for the boundary layer. Comment on each.

. For a laminar boundary layer on a flat plate, how does the boundary-layer
thickness vary with viscosity? How does the thickness vary with distance
from the leading edge?

. The flow in a boundary layer near a flat plate has two components: one that
is large (v;), and one that is much smaller but nonzero (v;). For several
locations x1, plot vp(x;). Comment on your results.

. The solution for the boundary-layer flow near a flat plate is given by Equa-
tion 8.356. Plot the velocity v; as a function of the distance away from the
plate x, for various distances from the leading edge (i.e., various x; values).

. For water flow at 1.5 m/s over a flat plate, at what distance downstream will -
the boundary-layer thickness be lglnch? Assume laminar boundary layer.

. A boundary layer is considered thin if §/x < 0.1. For these conditions, cal-
culate whether the boundary layer is thin for the following system: water
flowing over a 1.0-m-long flat plate with a free-stream velocity of 0.010 m/s.

. What is the force (i.e., drag) on a thin plate given the following conditions?
The fluid is water, the plate is 0.52 m long and 6.3 m wide, and the free-stream
velocity is 1.3 x 1072 m/s.

. What is the thickness of the boundary layer on a golf ball driven from the
tee at 145 mph? Assume that the ball is completely smooth and therefore
has a laminar boundary layer. For a real golf ball, the dimples on the surface




:
A
g
.},
3
B
k-
o
£
vl
;
-
b
b,
il
v

m External Flows

42.

43.

45.

46.

47.

48.

49.

50.

Sl

52

33

54.

53:

56.

ensure that the boundary layer is everywhere turbulent. What is the thickness
of a turbulent boundary layer under these conditions?

For the flow in the boundary layer near a flat plate, derive the third-order, ordi-
nary differential equation that governs the spatial variation of the principal
velocity component. Begin with the continuity equation (see Equation 8.340)
and the Navier-Stokes equation (see Equation 8.341) and incorporate the
coordinate transformations defined in this chapter (see Equation 8.343). The
final result is Equation 8.347.

Example 8.19 addresses the solution for the velocity field in the problem of
boundary-layer flow past a flat plate. To obtain the velocity field, we need the
solution to the third-order, nonlinear ODE in Equation 8.347. Solve Equation
subject to the boundary conditions in Equations 8.348, 8.349, and 8.352. This
can be done using Mathematica [203] or equivalent software and by using a
shooting algorithm, whereby the initial value of the second derivative of the
function is guessed and adjusted until the boundary condition at infinity is
satisfied. The correct guess for £(0) is 0.332 [48].

. Derive the expression for wall shear stress on a flat plate as a function of loca-

tion (see Equation 8.366). Use the empirical curve fit (see Equation 8.356)
for the velocity profile.

What is streamlining? Why does it work?

Blunt objects experience drag from two sources: pressure drag and friction
drag. Explain these two types of drag. Which type is eliminated through
streamlining?

How much faster will a cyclist traveling at 40 mph go if he buys a recumbent
bicycle compared to an upright posture on a standard bicycle?

When riding downhill on a bicycle, a cyclist can slow down by sitting up
straight rather than crouching over. How much deceleration can be expected
from this posture change? Make reasonable assumptions in your calculations
and indicate those assumptions.

What would the drag coefficient have to be to obtain the correct value of
the terminal speed of a skydiver? Calculate for both the head-first and the
belly-to-Earth positions.

If a coin falls flat-side-down through water versus edge-side-down, what is
the speed difference at terminal speed?

What is vorticity? It is mentioned only in the advanced study of fluid mechan-
ics, yet it is a fundamental property of flow fields. Discuss the utility of
vorticity.

The isovorticity lines in Figure 8.60 appear to be pushed downstream by the
flow. Describe what is happening in the flow that results in this effect.

Show that uniform potential flow past an obstacle is an irrotational flow. Hint:
Far upstream of the obstacle, the flow is irrotational.

A vector identity useful in vorticity calculation is given in Equation 8.267.
Writing the vectors in Cartesian coordinates, verify this vector identity.

For two-dimensional flow, use matrix calculations to show that w - Vo =0,
where @ = V x v is the vorticity.

Show that V x V f = 0, where f is a scalar function.
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ze time with a characteristic time

57. In this chapter, we always nondimensionali
be appropriate, the scaled time-

T = D/ V. For this characteristic time to
derivative should be O(1). This is true if characteristic changes in the velocity

take place over an amount of time equal to T. A second characteristic time
we could construct from various quantities in the flow is based on the

what
viscosity:
. pD* D
T = &—— = —
7 v
where v is the kinematic viscosity, which takes the role of a momentum-
ristic

has its own imposed characte

Also, if the flow
n—this is another potential

diffusion coefficient.
sed frequency of oscillatio

time—such as an impo
characteristic time to adopt.

(a) Using the definition of characteristic t
nondimensional Navier-

ime T introduced in this problem,
Stokes equation

what are the two forms of the
that result from choosing characteristic pressure t0 be first P = P 7% and
then P = uV/D?

of time

(b) The Strouhal number Str is defined as the dimensionless ratio

scales in the flow:

Stri= ———T

~ D/V

T

Str—= 5
pD?*/ 1

e the Strouhal number into the two forms of the nondimen-

Stokes equation found in (2).
Stokes equation discussed in this chapter,

Incorporat
sional Navier-
(c) Forthe nondimensional Navier-
what value do we implicitly assume for the
and oscillating flows, the Strouhal number assumes

Strouhal number? In unsteady
a prominent role [85].
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