Study Guide for CM3110 Module 1 Prereq Material for Fluids/Heat Morrison Spring 2021

The test will cover process variables, elementary mass and energy balances, fluid statics/manometer problems, heat calculations for liquids, gases, and saturated vapors, and math prerequisites through differential equations (including vectors, vector fields, double and triple integrals, and partial derivatives).

To do well on the test, you should be able to do the following:

Material and system properties for flow. Consider steady flow of an incompressible fluid of density ρ :

- 1. For flow through a pipe or noncircular conduit of constant cross section (pipe dimensions and shape known), calculate average velocity from a given volumetric flow rate.
- 2. For flow through a noncircular conduit of variable cross section (inlet cross section is A_1 , outlet cross section is A_2), calculate the inlet and outlet average velocities from a given volumetric flow rate
- 3. Calculate volumetric flow rate from a given average velocity for all the cases above

Elementary macroscopic mass and energy balances (including mechanical energy balances, MEB, as covered in Felder and Rouseau)

- 4. Perform and solve macroscopic mass balances on elementary systems such as mixers, heat exchangers, separators, and distillation columns
- 5. List all the assumptions inherent in the MEB
- 6. Convert psia to psig and vice versa for a fluid pressure measurement P
- 7. Identify the correct pressure units (psia, psig, psi) for the pressure drop in a flowing liquid $\Delta p = p_1 p_2$ for p_1 and p_2 given in psig or psia
- 8. Interconvert metric (SI) and American Engineering units (lb_m , psi, etc) present in MEB calculations, especially the units of the terms $\Delta p/\rho$ and $g\Delta z$
- 9. Calculate the flow frictional losses in terms of the pressure drop in a horizontal pipe (diameter D, length L) with water flowing
- 10. Calculate pressures, average velocities, elevations, frictional terms, or shaft work for systems for which the MEB applies (within the scope covered by Felder and Rouseau)

Fluid statics/manometer problems

- 11. List the two simple rules that lead us to be able to solve any fluid statics/manometer problem
- 12. Calculate the pressure at the bottom of a column of a stationary fluid
- 13. Identify points in a static-fluid-containing apparatus that have the same pressures
- 14. Calculate static fluid pressure differences from manometer reading heights

- 15. Calculate static fluid pressure differences in an apparatus of complex shape with variable cross section
- 16. Calculate static fluid pressure differences in an apparatus containing several immiscible fluids of different densities

Heat calculations (liquids, gases, and saturated vapors)

- 17. Explain the difference between sensible heat and latent heat
- 18. Define enthalpy and describe its significance for calculating heat \dot{Q} for flowing liquids and gasses
- 19. Calculate temperature difference $T_1 T_2$ in units of both Celsius and Kelvin from two given temperatures
- 20. Calculate the heat required to raise the temperature of a liquid or gas stream by a certain amount (mass/molar flow rate or volumetric flow rate given)
- 21. Calculate the heat released when a certain amount of saturated vapor (for example, saturated steam) condenses, mass/molar rate of condensation given

Mathematics through differential equations

- 22. Calculate trigonometric functions (sine, cosine, tangent) in terms of the lengths of the sides of right triangles (SOHCAHTOA)
- 23. Decompose a vector into its components in a specified coordinate system
- 24. Calculate one-dimensional integrals and take derivatives of functions of one variable
- 25. Calculate partial derivatives of functions of more than one variable
- 26. Calculate a unit vector in the same direction of a given vector
- 27. Calculate the magnitude of a vector
- 28. Sketch a vector in a coordinate system
- 29. Sketch a vector field in a coordinate system
- 30. Calculate the dot product of a 1×3 vector and a 3×3 matrix representing quantities written in the same specified coordinate system
- 31. Calculate the dot product of a 3×3 matrix and a 3×1 vector representing quantities written in the same specified coordinate system
- 32. (stretch) Calculate the cross product of two vectors representing quantities written in the same specified coordinate system
- 33. Identify limits of integration for quantities (for example, mass, volume, area) to be evaluated by 2D and 3D integrations in rectangular, cylindrical, and spherical coordinates
- 34. Calculate double (surface) and triple (volume) integrals with constant limits of integration in rectangular, cylindrical, and spherical coordinates

<u>References:</u>

- Richard Felder and Ronald Rouseau, *Elementary Principles of Chemical Processes*, 2nd Edition 1986. <u>FAM notes</u>
- Faith A. Morrison, An Introduction to Fluid Mechanics, 2013, Cambridge, NY.
- Christie J. Geankoplis, *Transport Processes and Unit Operations*, 4th Edition, Prentice Hall, New York (2003). The Michigan Tech Library has an electronic version available; used copies are often available online for a reasonable cost.