17&19 March 2021

1D Steady Diffusion

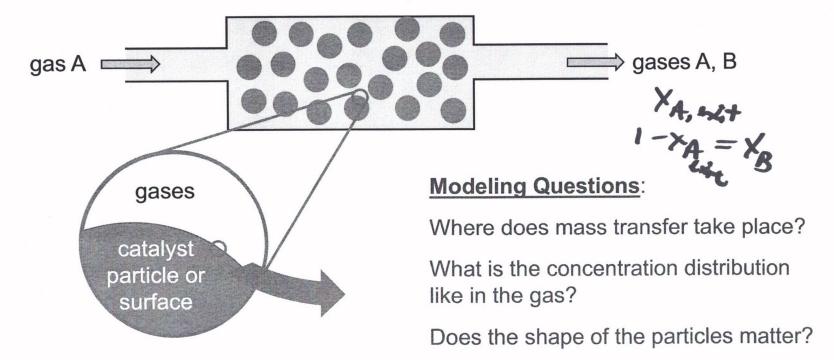
17 March 2021 (L F. Mornson CM3120 Lochre VI, MODULE 3

Classic 1D Steady Diffusion Summary

- a. 1D rectangular mass transfer (evaporating tank, Ex 1)
- b. 1D radial mass transfer (evaporating droplet, Ex 2)
- c. Heterogeneous chemical reaction (catalytic converter, Ex 3)

© Faith A. Morrison, Michigan Tech U.

Example 3: Heterogeneous catalysis



flow?

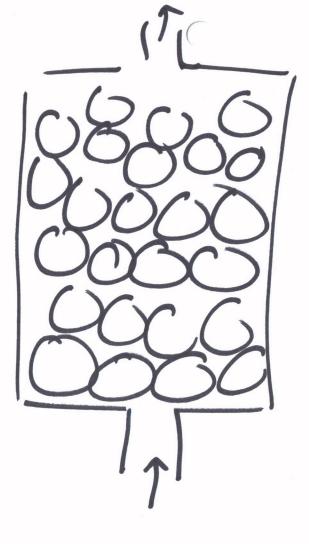
An irreversible, instantaneous chemical reaction $(2A \rightarrow B)$ takes place at a catalyst surface in a reactor as shown. How might mass transfer affect the observed rate of reaction?

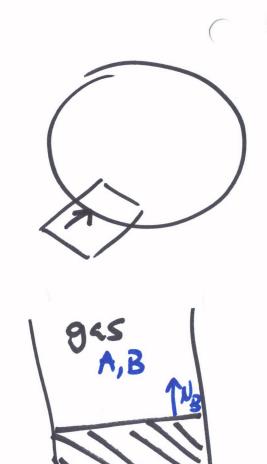
What should be our first modeling problem?

What is the impact of the overall (bulk)

© Faith A. Morrison, Michigan Tech U.

The nking ...





3

5cs ratio of Bar

What is XA (position) in the ges? what is NA? constant? Varieble? What is NB ?

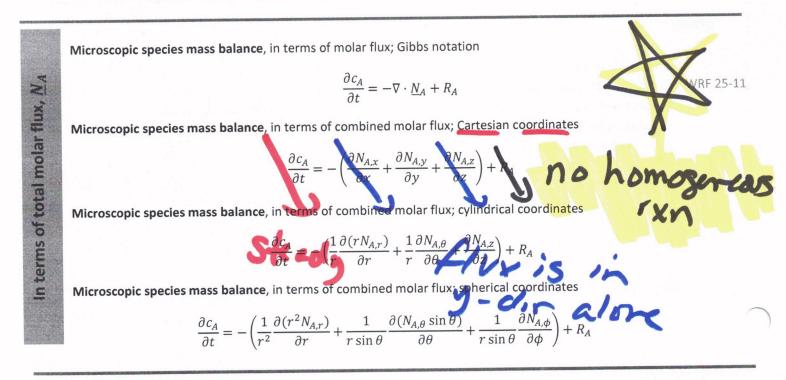
RXn: ZA -> B (4/2) ASDE $N_A = -2N_B$ $- z N_A = N_B$ This can be impusing. This is a quistion of Flux not stoichiometry 10 moles A -> 5 moles B NA = 10 molet are time NB= SmillsB Arca. time 10 moles A RXR - Smoles B

The Equation of Species Mass Balance in Terms of Combined

CA, NA, combined units

Molar quantities in Cartesian, cylindrical, and spherical coordinates for binary mixtures of A and B.

The general case, where the combined molar flux with respect to molar velocity (\underline{N}_A) , is given on page 1. Spring 2019 Faith A. Morrison, Michigan Technological University



Fick's law of diffusion, Gibbs notation: $\underline{N}_A = x_A(\underline{N}_A + \underline{N}_B) - cD_{AB}\nabla x_A$

$$= c_A \underline{v}^* - c D_{AB} \nabla x_A$$

Fick's law of diffusion, Cartesian coordinates:

$$\begin{pmatrix}
N_{A,X} \\
N_{A,y} \\
N_{A,z}
\end{pmatrix}_{xyz} = \begin{pmatrix}
x_A(N_{A,x} + N_{B,y}) - cD_{AB}\frac{\partial x_A}{\partial y} \\
x_A(N_{A,y} + N_{B,y}) - cD_{AB}\frac{\partial x_A}{\partial y} \\
x_A(N_{A,z} + N_{B,z}) - cD_{AB}\frac{\partial x_A}{\partial z}
\end{pmatrix}_{xyz}$$
Fick's law of diffusion, cylindrical coordinates:

$$\begin{pmatrix}
N_{A,r} \\
N_{A,z}
\end{pmatrix}_{r\theta z} = \begin{pmatrix}
x_A(N_{A,r} + N_{B,r}) - cD_{AB}\frac{\partial x_A}{\partial z} \\
x_A(N_{A,z} + N_{B,z}) - cD_{AB}\frac{\partial x_A}{\partial z}
\end{pmatrix}_{r\theta z}$$
Fick's law of diffusion, spherical coordinates:

$$\begin{pmatrix}
N_{A,r} \\
N_{A,\theta}
\end{pmatrix}_{r\theta \phi} = \begin{pmatrix}
x_A(N_{A,r} + N_{B,r}) - cD_{AB}\frac{\partial x_A}{\partial z} \\
x_A(N_{A,\theta} + N_{B,\theta}) - cD_{AB}\frac{\partial x_A}{\partial z}
\end{pmatrix}_{r\theta \phi}$$
Fick's law of diffusion, spherical coordinates:

$$\begin{pmatrix}
N_{A,r} \\
N_{A,\theta}
\end{pmatrix}_{r\theta \phi} = \begin{pmatrix}
x_A(N_{A,r} + N_{B,r}) - cD_{AB}\frac{\partial x_A}{\partial z} \\
x_A(N_{A,\theta} + N_{B,\theta}) - cD_{AB}\frac{\partial x_A}{\partial z}
\end{pmatrix}_{r\theta \phi}$$

WRF 24-22

microscopic spears A bal

 $\frac{\partial N_{A,y}}{\partial y} = 0$ $N_{A,g} = \varsigma$

Fick's Law: $N_{A,5} = X_A N_{A,5} - \frac{1}{2} N_{A,5} + C D_{A,6} \frac{\partial X_A}{\partial y}$ 1NA,y (Sec HW3 Prob 10) $N_A(1-\frac{1}{2}X_A) = -cD_{AB} \frac{dX_A}{dy}$: continue

XA is function of y integrate with respect to y (will add "C,", integration constant) (HW3) BC: $X_{A}(y)$ y - v XA = XA bulk y = 0 $X_A = 0$ (I sat it up diffuently in the 3)

What are the boundary conditions? (8) Dr Morrison set it up $A = X_{A_1}$ this way: 2=0 $X_A = X_{A,bolk}$ 2=5 $X_A = 0$