
4.16. A packed tower uses an organic amine to absorb carbon dioxide. The entering gas, which contains 1.26 mol\% carbon dioxide, is to leave with only $0.04 \mathrm{~mol} \%$ carbon dioxide. The amine enters pure, without CO_{2}. If the amine left in equilibrium with the entering gas (which it does not), it would contain $0.80 \mathrm{~mole} \% \mathrm{CO}_{2}$. The gas flow is $2.3 \mathrm{~mol} / \mathrm{s}$, the liquid flow is $4.8 \mathrm{~mol} / \mathrm{s}$, the tower's diameter is $4.0 \times 10^{1} \mathrm{~cm}$, and the overall mass transfer coefficient times the area per volume $K_{y} a$ is $5.0 \times 10^{-5} \frac{\mathrm{~mol}}{\mathrm{~cm}^{3} \mathrm{~s}}$. Determine the height of the tower, the NTU and the HTU.

$0.0126=1$

nend to cale $X_{A 2}$:
Macroscopic specirs mok Bal (onaan):

$$
\begin{aligned}
& \underbrace{x_{1} L+y_{2} G}_{\text {in }}=\underbrace{x_{2} L+y_{1} G}_{\text {ont }}, \\
& x_{2}=0.0058458
\end{aligned}
$$

Last items:

$$
\operatorname{olin}_{\text {Equi }}^{\sin }\left\{\begin{array}{l}
y_{2}^{\pi}=H x_{2} \quad \text { (on Ejoil (ine) } \\
y_{1}^{*}=A x_{1}=0
\end{array}\right.
$$

We heve evensthing me nud. (to get
$\ldots . B=320 \mathrm{~cm}$ B)
4.4. An irreversible, instantaneous chemical reaction $2 A \rightarrow B$) takes place at a catalyst surface in a reactor (see Example 3, lecture VI, module 3). How might mass transfer affect the observed rate of reaction? Use the solution to the example in your discussion.

Example 3: Heterogeneous catalysis

 means convulsion ceros the rector
An irreversible, instantaneous chemical reaction $(2 A \rightarrow B)$ takes place at a catalyst surface in a reactor as shown. How might mass transfer affect the observed rate of reaction?

Answe the question:

1. dictusin 1 AA Hrmastesnent limiting
2. B desorbing fum Surfu mas be limiting
rak
3) pore difusim

$$
\begin{aligned}
& \text { mas } a=\frac{\text { surfen area }}{\text { becteme }} \\
& \text { rate }
\end{aligned}
$$

limiting

$$
\begin{gathered}
\text { S.C= }=\frac{Y R R^{2}}{\frac{Y}{3} \pi R^{3}} \\
=\frac{3}{R}
\end{gathered}
$$

no mass
xfor limitations

