BASED ON MASS FRACTIONS

The Equation of Species Mass Balance in Cartesian, cylindrical, and spherical

coordinates for binary mixtures of A and B. Two cases are presented: the general case, where the mass flux with respect to mass-average velocity (\underline{J}_A) appears (p. 1), and the more usual case (p. 2), where the diffusion coefficient is constant and Fick's law has been incorporated.

Spring 2019 Faith A. Morrison, Michigan Technological University

Microscopic species mass balance, in terms of mass flux; Gibbs notation

$$\rho\left(\frac{\partial\omega_A}{\partial t} + \underline{v}\cdot\nabla\omega_A\right) = -\nabla\cdot\underline{j}_A + r_A \qquad \text{WRF 25-10}$$

Microscopic species mass balance, in terms of mass flux; Cartesian coordinates

$$\rho\left(\frac{\partial\omega_A}{\partial t} + v_x\frac{\partial\omega_A}{\partial x} + v_y\frac{\partial\omega_A}{\partial y} + v_z\frac{\partial\omega_A}{\partial z}\right) = -\left(\frac{\partial j_{A,x}}{\partial x} + \frac{\partial j_{A,y}}{\partial y} + \frac{\partial j_{A,z}}{\partial z}\right) + r_A$$

Microscopic species mass balance, in terms of mass flux; cylindrical coordinates

$$\rho\left(\frac{\partial\omega_{A}}{\partial t} + v_{r}\frac{\partial\omega_{A}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial\omega_{A}}{\partial\theta} + v_{z}\frac{\partial\omega_{A}}{\partial z}\right) = -\left(\frac{1}{r}\frac{\partial(rj_{A,r})}{\partial r} + \frac{1}{r}\frac{\partial j_{A,\theta}}{\partial\theta} + \frac{\partial j_{A,z}}{\partial z}\right) + r_{A}$$

Microscopic species mass balance, in terms of mass flux; spherical coordinates

$$\rho\left(\frac{\partial\omega_{A}}{\partial t} + v_{r}\frac{\partial\omega_{A}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial\omega_{A}}{\partial\theta} + \frac{v_{\phi}}{r\sin\theta}\frac{\partial\omega_{A}}{\partial\phi}\right) = -\left(\frac{1}{r^{2}}\frac{\partial(r^{2}j_{A,r})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial(j_{A,\theta}\sin\theta)}{\partial\theta} + \frac{1}{r\sin\theta}\frac{\partial j_{A,\phi}}{\partial\phi}\right) + r_{A}$$

 $=\rho\omega_A(\underline{v}_A-\underline{v})$

Fick's law of diffusion, Gibbs notation: $\underline{J}_A = -\rho D_{AB} \nabla \omega_A$

Fick's law of diffusion, Cartesian coordinates:
$$\begin{pmatrix} j_{A,x} \\ j_{A,y} \\ j_{A,z} \end{pmatrix}_{xyz} = \begin{pmatrix} -\rho D_{AB} \frac{\partial \omega_A}{\partial x} \\ -\rho D_{AB} \frac{\partial \omega_A}{\partial y} \\ -\rho D_{AB} \frac{\partial \omega_A}{\partial z} \end{pmatrix}_{xyz}$$
Fick's law of diffusion, cylindrical coordinates:
$$\begin{pmatrix} j_{A,r} \\ j_{A,\theta} \\ j_{A,z} \end{pmatrix}_{r\theta z} = \begin{pmatrix} -\rho D_{AB} \frac{\partial \omega_A}{\partial r} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial r}}{r \frac{\partial \theta}{\partial \theta}} \\ -\rho D_{AB} \frac{\partial \omega_A}{\partial z} \end{pmatrix}_{r\theta z}$$
Fick's law of diffusion, spherical coordinates:
$$\begin{pmatrix} j_{A,r} \\ j_{A,\theta} \\ j_{A,\phi} \end{pmatrix}_{r\theta\phi} = \begin{pmatrix} -\rho D_{AB} \frac{\partial \omega_A}{\partial r} \\ -\rho D_{AB} \frac{\partial \omega_A}{\partial r} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial r}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial \theta}} \\ -\frac{\rho D_{AB} \frac{\partial \omega_A}{\partial$$

1

In terms of mass flux, \underline{J}_A

WRF 24-17

The Equation of Species Mass Balance, constant ρD_{AB} . For binary

systems, and Fick's law has been incorporated. Good for dilute liquid solutions at constant temperature and pressure.

Microscopic species mass balance, constant thermal conductivity; Gibbs notation

$$\rho\left(\frac{\partial\omega_A}{\partial t} + \underline{v}\cdot\nabla\omega_A\right) = \rho D_{AB}\nabla^2\omega_A + r_A$$

Microscopic species mass balance, constant thermal conductivity; Cartesian coordinates

$$\rho\left(\frac{\partial\omega_{A}}{\partial t}+v_{x}\frac{\partial\omega_{A}}{\partial x}+v_{y}\frac{\partial\omega_{A}}{\partial y}+v_{z}\frac{\partial\omega_{A}}{\partial z}\right)=\rho D_{AB}\left(\frac{\partial^{2}\omega_{A}}{\partial x^{2}}+\frac{\partial^{2}\omega_{A}}{\partial y^{2}}+\frac{\partial^{2}\omega_{A}}{\partial z^{2}}\right)+r_{A}$$

Microscopic species mass balance, constant thermal conductivity; cylindrical coordinates

$$\rho\left(\frac{\partial\omega_{A}}{\partial t} + v_{r}\frac{\partial\omega_{A}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial\omega_{A}}{\partial\theta} + v_{z}\frac{\partial\omega_{A}}{\partial z}\right) = \rho D_{AB}\left(\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\omega_{A}}{\partial r}\right) + \frac{1}{r^{2}}\frac{\partial^{2}\omega_{A}}{\partial\theta^{2}} + \frac{\partial^{2}\omega_{A}}{\partial z^{2}}\right) + r_{A}$$

Microscopic species mass balance, constant thermal conductivity; spherical coordinates

$$\rho\left(\frac{\partial\omega_{A}}{\partial t} + v_{r}\frac{\partial\omega_{A}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial\omega_{A}}{\partial\theta} + \frac{v_{\phi}}{r\sin\theta}\frac{\partial\omega_{A}}{\partial\phi}\right)$$
$$= \rho D_{AB}\left(\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial\omega_{A}}{\partial r}\right) + \frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\omega_{A}}{\partial\theta}\right) + \frac{1}{r^{2}\sin^{2}\theta}\frac{\partial^{2}\omega_{A}}{\partial\phi^{2}}\right) + r_{A}$$

$$cx_A = c_A = \frac{1}{M_A}(\rho_A) = \frac{1}{M_A}(\rho\omega_A) \qquad \left(\text{units: } c[=]\frac{mol\ mix}{vol\ soln}; \rho[=]\frac{mass\ mix}{vol\ soln}; c_A[=]\frac{mol\ A}{vol\ soln}; \rho_A[=]\frac{mass\ A}{vol\ soln}\right)$$

 $\underline{J}_A \equiv \text{mass flux of species } A$ relative to a mixture's mass average velocity, \underline{v}

(units: $\underline{J}_{A}[=] \frac{mass A}{area \cdot time}$)

$$= \rho_A(\underline{v}_A - \underline{v})$$

 $J_A + J_B = 0$, i.e. these fluxes are measured relative to the mixture's center of mass

 $\underline{n}_A \equiv \rho_A \underline{v}_A = \underline{j}_A + \rho_A \underline{v} = \text{ combined mass flux relative to stationary coordinates}$

$$\underline{n}_A + \underline{n}_B = \rho \underline{v}$$

 $\underline{v}_A \equiv$ velocity of species A in a mixture, i.e. average velocity of all molecules of species A within a small volume

 $\underline{v} = \omega_A \underline{v}_A + \omega_B \underline{v}_B \equiv$ mass average velocity; same velocity as in the microscopic momentum and energy balances

Reference: R. B. Bird, W. E. Stewart, and E. N. Lightfoot, *Transport Phenomena*, 2nd edition, Wiley, 2002. (p. 515, 584)

BASED ON MOLE FRACTIONS

The Equation of Species Mass Balance in Terms of Molar

quantities in Cartesian, cylindrical, and spherical coordinates for binary mixtures of A and B. Two cases are presented: the general case, where the molar flux with respect to molar velocity (\underline{J}_A^*) appears (p. 1), and the more usual case (p. 2), where the diffusion coefficient is constant and Fick's law has been incorporated.

Spring 2019 Faith A. Morrison, Michigan Technological University

Microscopic species mass balance, in terms of molar flux; Gibbs notation

$$c\left(\frac{\partial x_A}{\partial t} + \underline{v}^* \cdot \nabla x_A\right) = -\nabla \cdot \underline{J}_A^* + (x_B R_A - x_A R_B)$$

Microscopic species mass balance, in terms of molar flux; Cartesian coordinates

$$c\left(\frac{\partial x_A}{\partial t} + v_x^*\frac{\partial x_A}{\partial x} + v_y^*\frac{\partial \omega_A}{\partial y} + v_z^*\frac{\partial x_A}{\partial z}\right) = -\left(\frac{\partial J_{A,x}^*}{\partial x} + \frac{\partial J_{A,y}^*}{\partial y} + \frac{\partial J_{A,z}^*}{\partial z}\right) + (x_B R_A - x_A R_B)$$

Microscopic species mass balance, in terms of molar flux; cylindrical coordinates

$$c\left(\frac{\partial x_A}{\partial t} + v_r^*\frac{\partial x_A}{\partial r} + \frac{v_\theta^*}{r}\frac{\partial x_A}{\partial \theta} + v_z^*\frac{\partial x_A}{\partial z}\right) = -\left(\frac{1}{r}\frac{\partial (rJ_{A,r}^*)}{\partial r} + \frac{1}{r}\frac{\partial J_{A,\theta}^*}{\partial \theta} + \frac{\partial J_{A,z}^*}{\partial z}\right) + (x_BR_A - x_AR_B)$$

Microscopic species mass balance, in terms of molar flux; spherical coordinates

$$c\left(\frac{\partial x_A}{\partial t} + v_r^*\frac{\partial x_A}{\partial r} + \frac{v_\theta^*}{r}\frac{\partial x_A}{\partial \theta} + \frac{v_\phi^*}{r\sin\theta}\frac{\partial x_A}{\partial \phi}\right) = -\left(\frac{1}{r^2}\frac{\partial (r^2 J_{A,r}^*)}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (J_{A,\theta}^*\sin\theta)}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial J_{A,\phi}^*}{\partial \phi}\right) + (x_B R_A - x_A R_B)$$

Fick's law of diffusion, Gibbs notation: $\underline{J}_A^* = -cD_{AB}\nabla x_A$

$$= c x_A (\underline{v}_A - \underline{v}^*)$$

Fick's law of diffusion, Cartesian coordinates:
$$\begin{pmatrix} J_{A,x}^* \\ J_{A,y}^* \\ J_{A,z}^* \end{pmatrix}_{xyz} = \begin{pmatrix} -cD_{AB} \frac{\partial x_A}{\partial x} \\ -cD_{AB} \frac{\partial x_A}{\partial y} \\ -cD_{AB} \frac{\partial x_A}{\partial z} \end{pmatrix}$$

Fick's law of diffusion, cylindrical coordinates:
$$\begin{pmatrix} J_{A,r}^{*} \\ J_{A,\theta}^{*} \\ J_{A,z}^{*} \end{pmatrix}_{r\theta z} = \begin{pmatrix} -cD_{AB} \frac{\partial x_{A}}{\partial r} \\ -\frac{cD_{AB} \frac{\partial x_{A}}{\partial \theta}}{r \partial \theta} \\ -cD_{AB} \frac{\partial x_{A}}{\partial z} \end{pmatrix}_{r\theta z}$$
Fick's law of diffusion, spherical coordinates:
$$\begin{pmatrix} J_{A,r}^{*} \\ J_{A,\theta}^{*} \\ J_{A,\phi}^{*} \end{pmatrix}_{r\theta\phi} = \begin{pmatrix} -cD_{AB} \frac{\partial x_{A}}{\partial r} \\ -\frac{cD_{AB} \frac{\partial x_{A}}{\partial r}}{r \partial \theta} \\ -\frac{cD_{AB} \frac{\partial x_{A}}{\partial \theta}}{r \partial \theta} \\ -\frac{cD_{AB} \frac{\partial x_{A}}{\partial \phi}}{r \partial \theta} \end{pmatrix}_{r\theta\phi}$$

The Equation of Species Mass Balance in Terms of Molar

Quantities, constant cD_{AB} . For binary systems, and Fick's law has been incorporated. Good for low density gases at constant temperature and pressure.

Microscopic species mass balance, constant thermal conductivity; Gibbs notation

$$c\left(\frac{\partial x_A}{\partial t} + \underline{v}^* \cdot \nabla x_A\right) = cD_{AB}\nabla^2 x_A + (x_BR_A - x_AR_B)$$

Microscopic species mass balance, constant thermal conductivity; Cartesian coordinates

$$c\left(\frac{\partial x_A}{\partial t} + v_x^*\frac{\partial x_A}{\partial x} + v_y^*\frac{\partial x_A}{\partial y} + v_z^*\frac{\partial x_A}{\partial z}\right) = cD_{AB}\left(\frac{\partial^2 x_A}{\partial x^2} + \frac{\partial^2 x_A}{\partial y^2} + \frac{\partial^2 x_A}{\partial z^2}\right) + (x_BR_A - x_AR_B)$$

Microscopic species mass balance, constant thermal conductivity; cylindrical coordinates

$$c\left(\frac{\partial x_A}{\partial t} + v_r^*\frac{\partial x_A}{\partial r} + \frac{v_\theta^*}{r}\frac{\partial x_A}{\partial \theta} + v_z^*\frac{\partial x_A}{\partial z}\right) = cD_{AB}\left(\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial x_A}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 x_A}{\partial \theta^2} + \frac{\partial^2 x_A}{\partial z^2}\right) + (x_BR_A - x_AR_B)$$

Microscopic species mass balance, constant thermal conductivity; spherical coordinates

$$c\left(\frac{\partial x_A}{\partial t} + v_r^* \frac{\partial x_A}{\partial r} + \frac{v_\theta^*}{r} \frac{\partial x_A}{\partial \theta} + \frac{v_\phi^*}{r \sin \theta} \frac{\partial x_A}{\partial \phi}\right)$$
$$= cD_{AB}\left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial x_A}{\partial r}\right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial x_A}{\partial \theta}\right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 x_A}{\partial \phi^2}\right) + (x_B R_A - x_A R_B)$$

$$cx_A = c_A = \frac{1}{M_A}(\rho_A) = \frac{1}{M_A}(\rho\omega_A) \qquad \left(\text{units: } c[=]\frac{mol\ mix}{vol\ soln}; \rho[=]\frac{mass\ mix}{vol\ soln}; c_A[=]\frac{mol\ A}{vol\ soln}; \rho_A[=]\frac{mass\ A}{vol\ soln}; \rho_A[=]\frac{mass\$$

 $J_A^* \equiv \text{molar flux relative to a mixture's molar average velocity, } \underline{v}^*$

*
$$\left(\text{units: } \underline{J}_{\underline{A}}^*[=] \frac{mole}{area \cdot time}\right)$$

$$= c_A(\underline{v}_A - \underline{v}^*)$$

$$J_A^* + J_B^* = 0$$

 $\underline{N}_A \equiv c_A \underline{\nu}_A = J_A^* + c_A \underline{\nu}^* = \text{ combined molar flux relative to stationary coordinates}$

$$\underline{N}_A + \underline{N}_B = c\underline{v}^*$$

 $\underline{v}_A \equiv$ velocity of species A in a mixture, i.e. average velocity of all molecules of species A within a small volume

 $\underline{v}^* = x_A \underline{v}_A + x_B \underline{v}_B \equiv \text{ molar average velocity}$