

Intro	duction to Diffusion and Mass Transfer in Mixtures	QUICK START
Recurring Modeling Assumptions in Diffusion		
	 Near a liquid-gas interface, the region in the gas near the liquid is a film where diffusion takes place 	
	• The vapor near the liquid-gas interface is often saturated (Raoult's law, $x_A = p_A^*/p$)	
	• If component <i>A</i> has no sink, $\underline{N}_A = 0$.	
	• If A diffuses through stagnant B, $\underline{N}_B = 0$.	
	• If a binary mixture of <i>A</i> and <i>B</i> are undergoing steady equimolar counter diffusion, $N_A = -N_B$.	
	• If, for example, two moles of <i>A</i> diffuse to a surface at which a rapid, irreversible reaction coverts it to one mole of <i>B</i> , then at steady state $-0.5\underline{N}_A = \underline{N}_B$.	
	 Because diffusion is slow, we can make a quasi-steady-state assumption 	
	 Homogeneous reactions appear in the mass balance; heterogeneous reactions appear in the boundary conditions 	
	•	
	• © Faith A. Morrison, Mi	chigan Tech U.