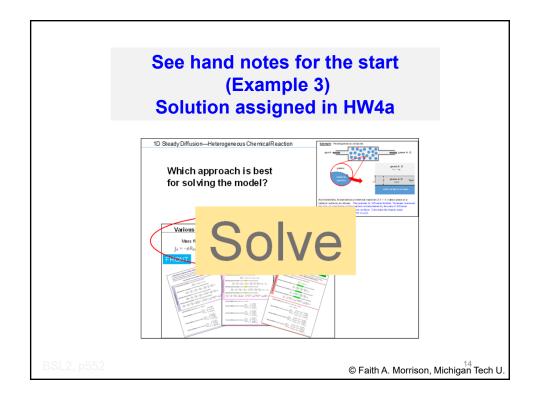
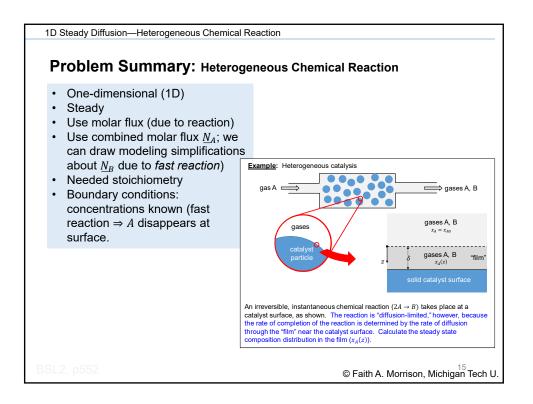
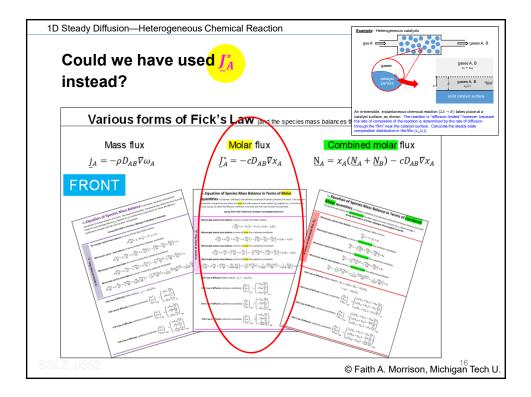
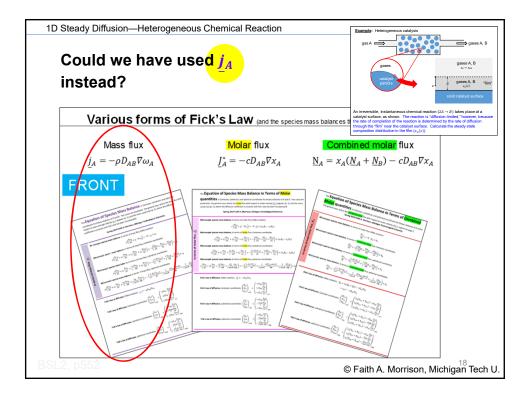
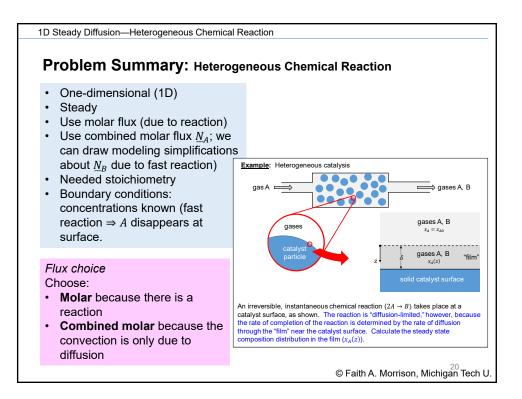

Diffusion Lectures 7 & 8 Modeling 1D Steady Diffusion

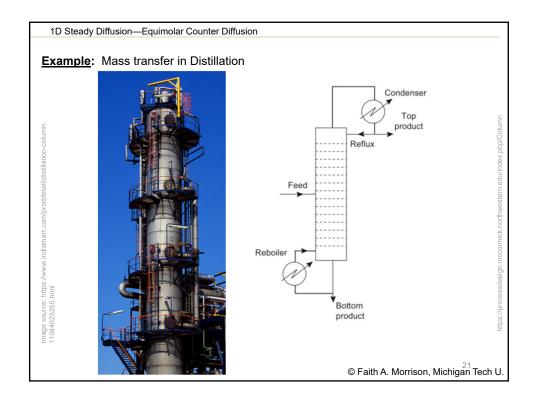


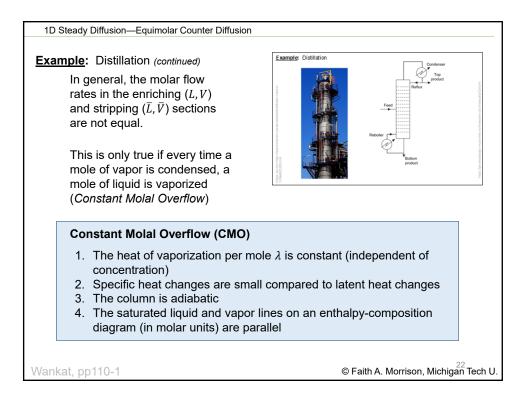


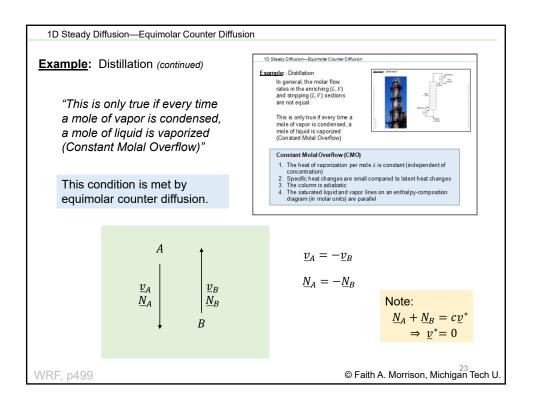


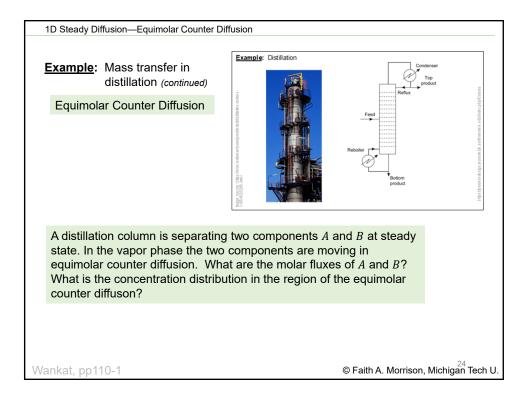


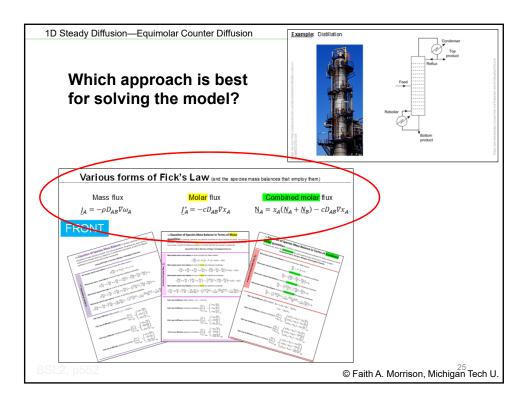


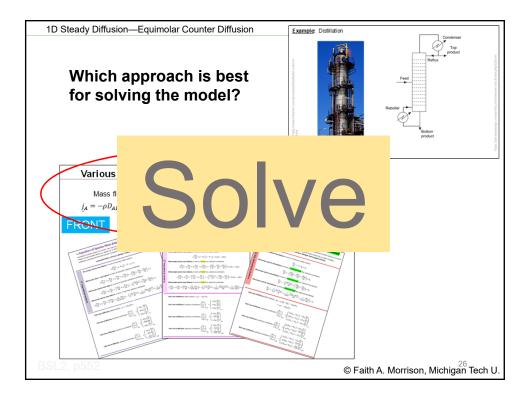


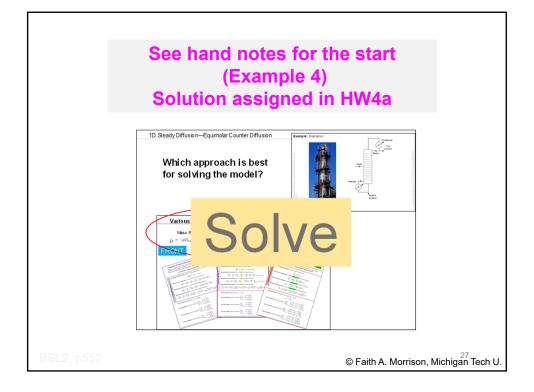

	1D Steady Diffusion—Heterogeneous Chemical Reaction		
	The Equation of Species Mass Balance in Terms of Molar quantities in Cartesian, cylindriad, and spherical coordinates for binary mixture of A and B. Two cases are presented: the general case, where the encode fur with respect to main vectory (C) papers (p. 3), and the more usual case (p. 3), where diffusion confirmed constraint and Fick's the base incorporated. Spring 2019 Faith A. Morrison, Michigan Technological University	J_A^* : Molar flux relative to a mixture's molar average velocity \underline{v}^*	
terms of molar flux, ${\it L}_{A}$	$\begin{split} & \text{Microscopic species mass balance, in terms of mater flux GBbs notation \\ & c(\frac{2\pi_{B}}{2\pi_{B}}+\chi^{+}\nabla x_{A}) = -\nabla \cdot f_{A} + (x_{B}R_{A} - x_{A}R_{B}) \end{split}$	Definition: $\underline{J}_{A}^{*} = cx_{A}(\underline{v}_{A} - \underline{v}^{*})$ Fick's law:	
In terms	$\begin{split} & e\left(\frac{\partial x_{k}}{\partial x} + v_{i}^{2}\frac{\partial x_{k}}{\partial x} + \frac{v_{k}^{2}}{\partial x_{k}} + v_{k}^{2}\frac{\partial x_{k}}{\partial x}\right) = -\left(\frac{\partial (\partial x_{k})}{\partial x} - \frac{\partial (\partial x_{k})}{\partial x} + \frac{\partial (\partial x_{k})}{\partial x} + \left(l_{k}g_{k} - x_{k}g_{k}\right)\right) \\ & \text{Microscopic spectra mass balance, in terms of model flux spherical coordinates} \\ & e\left(\frac{\partial x_{k}}{\partial x} + v_{k}^{2}\frac{\partial x_{k}}{\partial x} + \frac{v_{k}^{2}}{\partial x}\frac{\partial x_{k}}{\partial x} + \frac{v_{k}^{2}}{\partial x}\frac{\partial x_{k}}{\partial x}\right) = -\left(\frac{1}{2}\frac{\partial (r_{k}^{2}f_{k})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (f_{k}g_{k} + \alpha)}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial f_{k}g_{k}}{\partial \theta}\right) + \left(r_{k}g_{k} - x_{k}g_{k}\right) \\ & = -\left(\frac{1}{2}\frac{\partial (r_{k}^{2}f_{k})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (f_{k}g_{k} + \alpha)}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial (f_{k}g_{k} + \alpha)}{\partial \theta}\right) + \left(r_{k}g_{k} - x_{k}g_{k}\right) \\ & = -\left(\frac{1}{2}\frac{\partial (r_{k})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (f_{k}g_{k} + \alpha)}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial (f_{k}g_{k} + \alpha)}{\partial \theta}\right) \\ & = -\left(\frac{1}{2}\frac{\partial (f_{k})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (f_{k}g_{k} + \alpha)}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial (f_{k}g_{k} + \alpha)}{\partial \theta}\right) \\ & = -\left(\frac{1}{2}\frac{\partial (f_{k})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (f_{k}g_{k} + \alpha)}{\partial \theta}\right) \\ & = -\left(\frac{1}{2}\frac{\partial (f_{k})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (f_{k}g_{k} + \alpha)}{\partial \theta}\right) \\ & = -\left(\frac{1}{2}\frac{\partial (f_{k})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (f_{k}g_{k} + \alpha)}{\partial \theta}\right) \\ & = -\left(\frac{1}{2}\frac{\partial (f_{k})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (f_{k}g_{k} + \alpha)}{\partial \theta}\right) \\ & = -\left(\frac{1}{2}\frac{\partial (f_{k})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (f_{k}g_{k} + \alpha)}{\partial \theta}\right) \\ & = -\left(\frac{1}{2}\frac{\partial (f_{k})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (f_{k}g_{k} + \alpha)}{\partial \theta}\right) \\ & = -\left(\frac{1}{2}\frac{\partial (f_{k})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (f_{k}g_{k} + \alpha)}{\partial \theta}\right) \\ & = -\left(\frac{1}{2}\frac{\partial (f_{k})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (f_{k}g_{k} + \alpha)}{\partial \theta}\right) \\ & = -\left(\frac{1}{2}\frac{\partial (f_{k})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (f_{k}g_{k} + \alpha)}{\partial \theta}\right) \\ & = -\left(\frac{1}{2}\frac{\partial (f_{k})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (f_{k}g_{k} + \alpha)}{\partial \theta}\right) \\ & = -\left(\frac{1}{2}\frac{\partial (f_{k})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (f_{k}g_{k} + \alpha)}{\partial \theta}\right) \\ & = -\left(\frac{1}{2}\frac{\partial (f_{k})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (f_{k}g_{k} + \alpha)}{\partial \theta}\right) \\ & = -\left(\frac{1}{2}\frac{\partial (f_{k})}{\partial r} + \frac{1}{r\cos\theta}\frac{\partial (f_{k})}{\partial \theta}\right) \\ & = -\left(\frac{1}{2}\frac{\partial (f_{k})}{\partial r} + \frac{1}{r\cos\theta}\frac{\partial (f_{k})}{\partial \theta}\right) \\ & = -\left(\frac{1}{2}\frac{\partial (f_{k})}{\partial r} + \frac{1}{r\cos\theta}\frac{\partial (f_{k})}{\partial \theta}\right) \\ \\ & = -\left(\frac{1}{2}\frac{\partial (f_{k})}{\partial $	$J_A^* = -cD_{AB}\nabla x_A$	
	Fick's law of diffusion, Cartesian coordinates: $ \begin{pmatrix} J_{a,a} \\ J_{a,b} \\ J_{a,b} \end{pmatrix}_{a,f} = -\frac{-O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}} + \frac{-O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}} + \frac{-O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}\pi^{\frac{2}}c_{a,b}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}\pi^{\frac{2}}c_{a,b}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}\pi^{\frac{2}}c_{a,b}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}\pi^{\frac{2}}c_{a,b}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}\pi^{\frac{2}}c_{a,b}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}\pi^{\frac{2}}c_{a,b}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}\pi^{\frac{2}}c_{a,b}}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}\pi^{\frac{2}}c_{a,b}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}\pi^{\frac{2}}c_{a,b}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}\pi^{\frac{2}}c_{a,b}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}\pi^{\frac{2}}c_{a,b}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}\pi^{\frac{2}}c_{a,b}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}\pi^{\frac{2}}c_{a,b}}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}\pi^{\frac{2}}c_{a,b}}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}\pi^{\frac{2}}c_{a,b}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}\pi^{\frac{2}}c_{a,b}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}\pi^{\frac{2}}c_{a,b}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}\pi^{\frac{2}}c_{a,b}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}\pi^{\frac{2}}c_{a,b}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}\pi^{\frac{2}}c_{a,b}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{ab}\pi^{\frac{2}}c_{a,b}}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{a,b}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{a,b}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{a,b}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{a,b}} + \frac{O_{ab}\pi^{\frac{2}}c_{a,b}}{C_{a,b}} + \frac{O_{ab}\pi^{\frac{2}}$	Microscopic species A mass balance:	
	Fick's tare of diffusion, cylindrical eccordinates: $\begin{pmatrix} T_{ab} \\ T_{ab} \\ T_{ab} \end{pmatrix}_{able} = \begin{pmatrix} -\frac{c_{ab}}{c_{ab}} \frac{d_{ab}}{d_{ab}} \\ -\frac{c_{ab}}{c_{ab}} \frac{d_{ab}}{d_{ab}} \\ -\frac{c_{ab}}{c_{ab}} \frac{d_{ab}}{d_{ab}} \\ -\frac{c_{ab}}{c_{ab}} \frac{d_{ab}}{d_{ab}} \end{pmatrix}_{able}$ Fick's tare of diffusion, spharical coordinates: $\begin{pmatrix} T_{ab} \\ T_{ab} \\ T_{ab} \\ q_{ab} \end{pmatrix}_{able} = \begin{pmatrix} -c_{ab} \frac{d_{ab}}{d_{ab}} \\ -c_{ab} \frac{d_{ab}}{d_{ab}} \\ q_{ab} & T_{ab} \end{pmatrix}$	$c\left(\frac{\partial x_A}{\partial t} + \underline{v}^* \cdot \nabla x_A\right) = cD_{AB}\nabla^2 x_A + (x_BR_A - x_AR_B)$	
_	$\sqrt{f_{e,\theta}} \left(-\frac{\pi g_{e,\theta} \tilde{\sigma}_{\theta}}{\pi m \hbar A \theta} \right)_{rep}$		
	$R_A \equiv$ rate of production of moles homogeneous chemical reaction	-	
		© Faith A. Morrison, Michigan Tech U.	

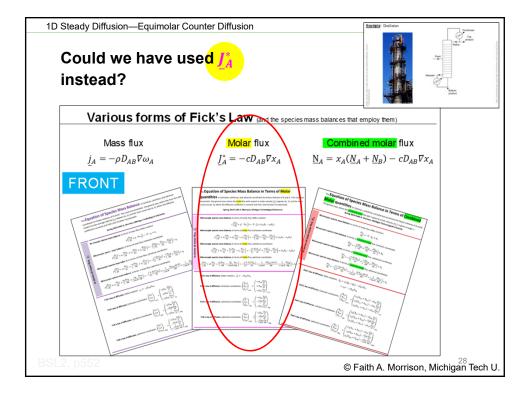


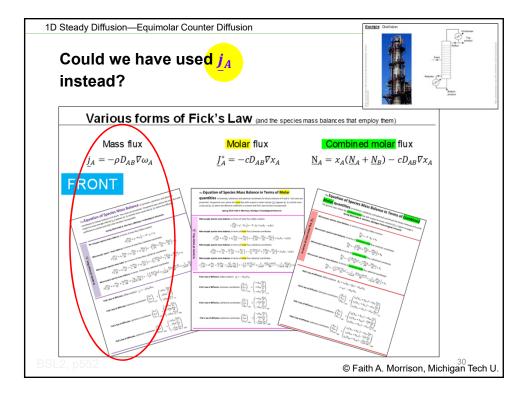

1	D Steady Diffusion—Heterogeneous Chemica	Reaction
	The Equation of Species Mass Balance in Carlesian, equivalent, and spherical and spherical coordinates for binary minitures of A and B. Two cases are presented: the general case, where the mass flow with respect to mass sevenge velocity (a) appears (b, 1), and the more sual case (b, 2), where the diffusion coefficient a constant and off's live has been intermorported. Spring 2019 Faith A. Morrison, Michigan Technological University M. Toscopic species mass balance, in terms of mass flux, Gabis notation	j_A : Mass flux relative to a mixture's mass average velocity \underline{v} Definition: $\underline{j}_A = \rho \omega_A (\underline{v}_A - \underline{v})$ Fick's law: $j_A = -\rho D_{AB} \nabla \omega_A$
	$\begin{split} \rho\left(\frac{1}{2t} + \frac{1}{t_{e}}\frac{1}{2t_{e}} + \frac{1}{t_{e}}\frac{1}{2\theta} + \frac{1}{r_{abb}\frac{1}{\theta}\frac{1}{\theta}\frac{1}{\theta}\frac{1}{\theta}}\right) + \left(\frac{1}{r_{ab}}\frac{1}{\theta}\frac{1}{r_{ab}} + \frac{1}{r_{abb}\frac{1}{\theta}\frac{1}{\theta}\frac{1}{\theta}}\right) + r_{abb}\frac{1}{\theta}\frac{1}{\theta}\frac{1}{\theta}\right) + r_{abb}\frac{1}{\theta}\frac{1}{\theta}\frac{1}{\theta}\right) + r_{abb}\frac{1}{\theta}\frac$	– Microscopic species A mass balance:
	Tick's law of diffusion, cylindrical coordinates $\begin{pmatrix} I_{AA} \\ I_{AA} \end{pmatrix}_{abc} = \begin{pmatrix} I_{AA} \\ I_{AA} \end{pmatrix}_{abc} = \begin{pmatrix} -I_{AB} \frac{I_{AB}}{I_{AB}} \\ -I_{AB} \frac{I_{AB}}{I_{AB}} \end{pmatrix}_{abc}$ Fick's law of diffusion, spherical coordinates $\begin{pmatrix} I_{AA} \\ I_{AB} \end{pmatrix}_{abc} = \begin{pmatrix} -I_{AB} \frac{I_{AB}}{I_{AB}} \\ -I_{AB} \frac{I_{AB}}{I_{AB}} \end{pmatrix}_{abc}$	$\rho\left(\frac{\partial\omega_A}{\partial t} + \underline{v}\cdot\nabla\omega_A\right) = \rho D_{AB}\nabla^2\omega_A + r_A$
	Fight we diffusion, spherical coordinates: $\int_{A\phi} \int_{\phi\phi\phi} \left[-\frac{1-\frac{1}{2}}{\frac{1}{1-\frac{1}{1-\frac{1}{2}}}} \right]_{\phi\phi\phi} + \frac{1}{2} \int_{\phi\phi\phi} \int_{\phi\phi$	
	$r_A \equiv$ rate of production of mass of homogeneous chemical reaction	5
		© Faith A. Morrison, Michigan Tech U.

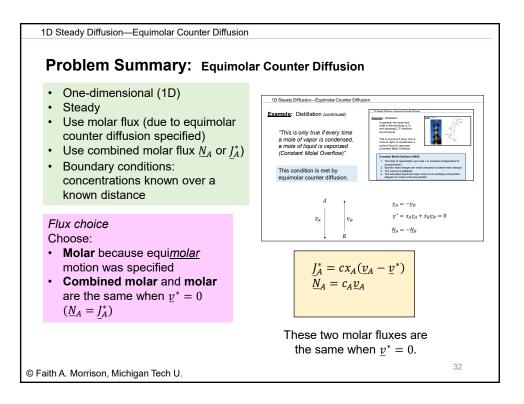


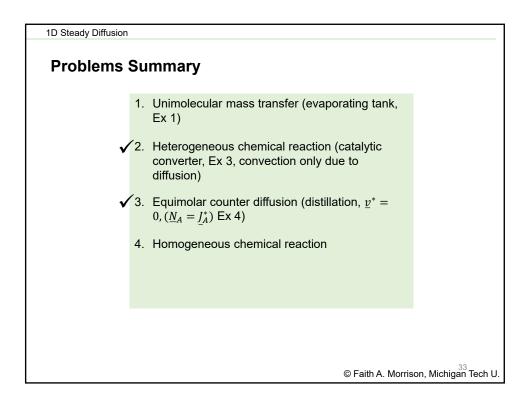




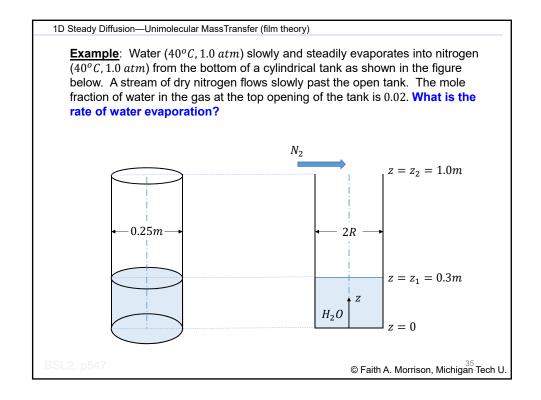


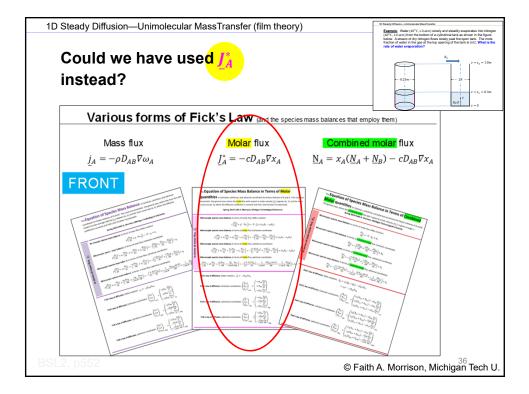


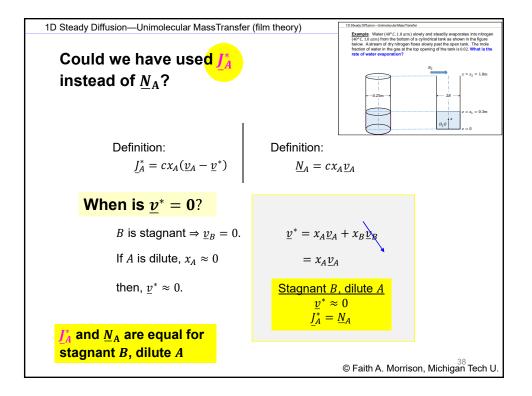


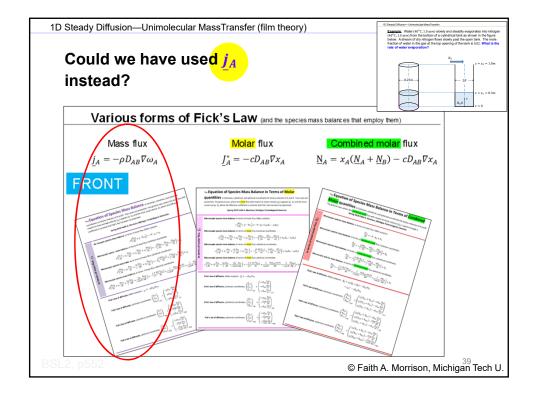


	1D Steady Diffusion—Equimolar Counter Diffus	sion
	The Equation of Species Mass Balance in Terms of Molar quantities in Catalance, opinitiate, and solverlation continues for binary minitare of A and B. Two cases are presente the general case, where the tables of an wath respect to mater websity (2) appears (b. 1), and the more usual case (b. 2), where the diffusion contence in contrast and facts that base incorporate. Spring 2015 Faith A. Morrison, Michigan Technological University	J_A^* : Molar flux relative to a mixture's molar average velocity v
	Microscopic species mass balance, in terms of molar flux; Gibbs notation $c\left(\frac{\partial x_{k}}{\partial x} + v^{*} \cdot \nabla x_{k}\right) = -\nabla \cdot f_{k} + (x_{k}R_{k} - x_{k}R_{k})$	Definition:
molar flux, \underline{f}_A	$\begin{split} & \left(\frac{\partial x_{k}}{\partial t} + \frac{\partial x_{k}}{\partial x} + \frac{\partial x_{k}}{\partial y} + \frac{\partial x_{k}}{\partial x} - \frac{\partial x_{k}}{\partial x} + \frac{\partial x_{k}}{\partial y} + \frac{\partial x_{k}}{\partial x} + \partial $	$\underline{J}_A^* = c x_A (\underline{v}_A - \underline{v}^*)$
terms of mo	Microscopic species mass balance, in terms of molar flux; qviindrical coordinates $c\left(\frac{\partial x_A}{\partial x} + v_c^* \frac{\partial x_A}{\partial x} + v_{a}^* \frac{\partial x_A}{\partial x} + v_{a}^* \frac{\partial x_A}{\partial x}\right) = -\left(\frac{1}{2}\frac{\partial (T_A x)}{\partial x} + \frac{1}{2}\frac{\partial T_A x}{\partial x} + \frac{\partial T_A x}{\partial x}\right) + (x_B R_A - x_A R_B)$	Fick's law:
In ter	$ \begin{array}{cccc} (\partial x_1 & \partial y_1 & \partial y_2 & \partial y_1 & \partial y_2 \\ \hline \mathbf{M} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} G$	$\underline{J}_A^* = -cD_{AB}\nabla x_A$
	Pick's have of diffusion, Globo motation: $f_{\mu}^{\mu} = -\partial_{\mu\mu}\nabla e_{\mu}$ Fick's have of diffusion, Cartenian coordinate: $\begin{pmatrix} I_{\mu\nu} \\ I_{\mu\nu} \end{pmatrix}_{\mu\nu} = \begin{pmatrix} -\partial_{\mu\mu}\frac{T_{\mu\nu}}{T_{\mu\nu}} \\ -\partial_{\mu\nu}\frac{T_{\mu\nu}}{T_{\mu\nu}} \\ -\partial_{\mu\nu}\frac{T_{\mu\nu}}{T_{\mu\nu}} \end{pmatrix}_{\mu\nu}$	Microscopic species A mass balance:
	Fick's law of diffusion, cylindrical coordinates: $\begin{pmatrix} H_{xx} \\ H_{xx} \\ J_{xx} \end{pmatrix}_{vitx} = \begin{pmatrix} -CD_{xx} \frac{2J_{xx}}{v_{xx}} \\ -\frac{-CD_{xx} \frac{2J_{xx}}{v_{xx}}}{v_{xx}} \\ -DD_{xx} \frac{2J_{xx}}{v_{xx}} \end{pmatrix}_{vitx}$	$c\left(\frac{\partial x_A}{\partial t} + \underline{v}^* \cdot \nabla x_A\right) = cD_{AB}\nabla^2 x_A + (x_BR_A - x_AR_B)$
_	Fick's law of diffusion, spherical coordinates: $ \begin{pmatrix} I_{\lambda,\rho} \\ I_{\lambda,\rho} \\ \gamma_{\rho\phi\phi} \end{pmatrix}_{\rho\phi\phi} = \begin{pmatrix} -cD_{\rho\sigma}\frac{dz_{\lambda}}{dz_{\lambda}} \\ -\frac{dz_{\lambda}dz_{\lambda}}{dz_{\lambda}} \\ -\frac{dz_{\lambda}dz_{\lambda}}{dz_{\lambda}} \\ -\frac{dz_{\lambda}dz_{\lambda}}{dz_{\lambda}} \end{pmatrix}_{r\phi\phi} $	
		(The two fluxes are the
	$R_A \equiv$ rate of production of moles homogeneous chemical reaction	
		© Faith A. Morrison, Michigan Tech U.

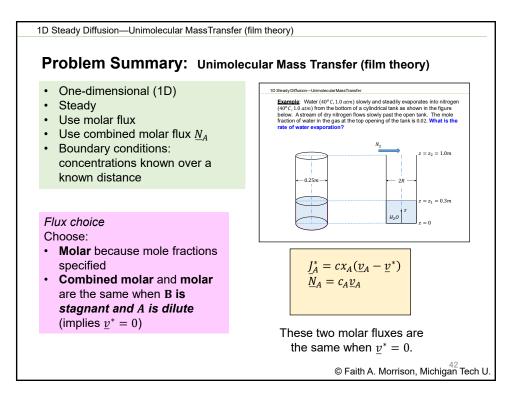

1	D Steady Diffusion—Equimolar Counter Diffus	sion
	The Equation of Species Mass Balance in cartesian, ophicitical, and spherical coordinates for binary minuters of A and B. Two caves are presented: the general case, where the mass flux with respect to mass workage websith (J), oppense (in: 1), and the none sual case (in: 2), where the diffusion coefficient is constant and rich's live has been incorporated. Spring 2019 Faith A. Morrison, Michigan Technological University	\underline{j}_A : Mass flux relative to a mixture's mass average velocity \underline{v}
In terms of mass flux, \underline{J}_{A}	In reacepic species mass balance, in terms of mass flag. Gibbs notation $\rho\left(\frac{\partial w_{2}}{\partial x}+v, \nabla w_{3}\right)=-\nabla \cdot y_{1}+v_{6}$ Microscepic species mass balance, in terms of mass flag. Gibbs notation $\rho\left(\frac{\partial w_{1}}{\partial x}+v, \frac{\partial w_{3}}{\partial x}+v, \frac{\partial w_{3}}{\partial y}+v, \frac{\partial w_{3}}{\partial x}\right)=\left(-\frac{\partial w_{3}}{\partial x}+\frac{\partial w_{3}}{\partial y}+v, \frac{\partial w_{3}}{\partial y}\right)+\rho\left(-\frac{\partial w_{3}}{\partial x}+v, \frac{\partial w_{3}}{\partial y}+v, \frac{\partial w_{3}}{\partial x}\right)+\rho\left(-\frac{\partial w_{3}}{\partial x}+v, \frac{\partial w_{3}}{\partial y}+v, \frac{\partial w_{3}}{\partial x}\right)+\rho\left(-\frac{\partial w_{3}}{\partial x}+v, \frac{\partial w_{3}}{\partial y}+v, \frac{\partial w_{3}}{\partial x}\right)+\rho\left(-\frac{\partial w_{3}}{\partial x}+v, \frac{\partial w_{3}}{\partial x}+v, \frac{\partial w_{3}}{\partial x}\right)+\rho\left(-\frac{\partial w_{3}}{\partial x}+v, \frac{\partial w_{3}}{\partial x}+v, \partial w_{3$	Definition: $\underline{j}_A = \rho \omega_A (\underline{v}_A - \underline{v})$ Fick's law: $\underline{j}_A = -\rho D_{AB} \nabla \omega_A$
	Field's law of diffusion, Gibbs notation: $t_A = -pD_{AB}\nabla u_A$ Field's law of diffusion, Cartesian coordinates $\begin{pmatrix} I_A \\ I_A \\ I_A \\ I_A \\ I_B \end{pmatrix}_{A=1} = \begin{pmatrix} -pD_{AA}, \frac{2u_A}{2u_A} \\ -pD_{AB}, \frac{2u_A}{2u_A} \\ -pD_{AB}, \frac{2u_A}{2u_A} \end{pmatrix}$	Microscopic species A mass balance:
	Fick's law of diffusion, cylindrical coordinates $\begin{pmatrix} I_{AT} \\ J_{AB} \\ J_{AT} \end{pmatrix}_{rest} - \begin{pmatrix} -\frac{P_{AB}}{r_{B}} \frac{B_{AT}}{B_{AT}} \\ -\frac{P_{AB}}{r_{B}} \frac{B_{AT}}{B_{AT}} \\ -\frac{P_{AB}}{r_{B}} \frac{B_{AT}}{B_{AT}} \\ -\frac{P_{AB}}{r_{B}} \frac{B_{AT}}{B_{AT}} \end{pmatrix}$	$\rho\left(\frac{\partial\omega_A}{\partial t} + \underline{v}\cdot\nabla\omega_A\right) = \rho D_{AB}\nabla^2\omega_A + r_A$
	Fick's have of diffusion, spherical coordinates: $\binom{h_{A^{-}}}{h_{A^{-}}}_{reg} = \begin{pmatrix} -\frac{e^{-h_{B^{-}}}{e^{h_{A^{-}}}} \\ -\frac{e^{-h_{B^{-}}}{e^{h_{A^{-}}}} \\ -\frac{e^{-h_{B^{-}}}{e^{h_{A^{-}}}} \\ -\frac{e^{-h_{B^{-}}}{e^{h_{A^{-}}}} \end{pmatrix}_{reg}}$ $r_{A} \equiv rate of production of mass of homogeneous chemical reaction$	
		© Faith A. Morrison, Michigan Tech U.

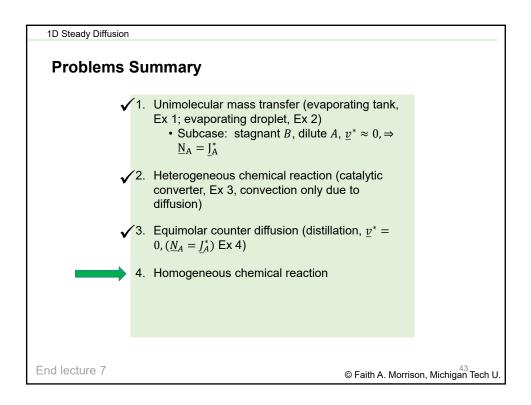


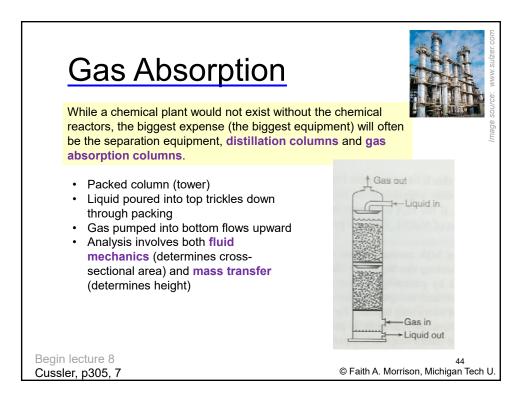

1D Steady Diffusion			
Problems	Problems Summary		
We did this	;		
earlier \rightarrow Could we	1. Unimolecular mass transfer (evaporating tank, Ex 1)		
have taken a different approach?	 Heterogeneous chemical reaction (catalytic converter, Ex 3, convection only due to diffusion) 		
\checkmark	3. Equimolar counter diffusion (distillation, $\underline{v}^* = 0$, ($\underline{N}_A = \underline{J}_A^*$) Ex 4)		
	4. Homogeneous chemical reaction		
	© Faith A. Morrison, Michigan Tech U.		

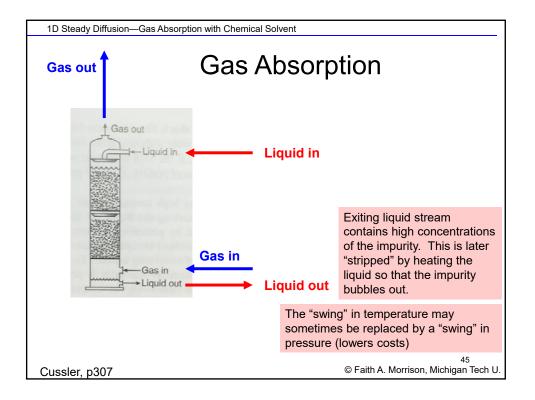

Diffusion Lectures 7 & 8 Modeling 1D Steady Diffusion

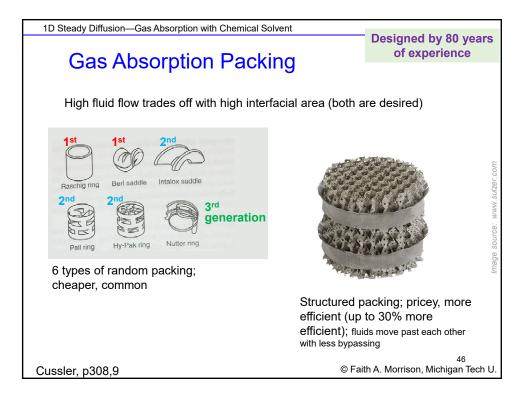
	1D Steady Diffusion—Unimolecular MassTransfer (film theory)		
	The Equation of Species Mass Balance in Terms of Molar quantities in Caretae, obticat, and selecta conditates for blave mature of A and A. Two cares we prostate: The generatical, when the target are with report matter webers (C) appears (b. 3), and the more small care (b. 2), where the diffusion conditions in contrast and RST is that here incorporated. Spring 2015 Faith A. Morrison, Michigan Technological University	J_A^* : Molar flux relative to a mixture's molar average velocity v	
molar flux, $ar{L}_A$	$\begin{split} & \text{Mensecopic species mass balance, in terms of model flux. Gibbs notation \\ & (\frac{\partial k_x}{\partial x_y} + z^*, \nabla x_x) = -\overline{r} \cdot j_x^* + (x_x R_x - x_x R_y) \\ & \text{Mensecopic species mass balance, in terms of matter flux. Certasian constraints \\ & c(\frac{\partial x_x}{\partial x_y} + x_y^2 \frac{\partial x_y}{\partial x_y} + x_y^2 \frac{\partial x_y}{\partial x_y} + x_y^2 \frac{\partial x_y}{\partial x_y} = - \left(\frac{\partial x_x}{\partial x_y} + \frac{\partial x_y}{\partial x_y} + \frac{\partial x_y}{\partial x_y} + \frac{\partial x_y}{\partial x_y} + \frac{\partial x_y}{\partial x_y} + x_y^2 \partial$	Definition: $\underline{J}_{A}^{*} = cx_{A}(\underline{v}_{A} - \underline{v}^{*})$	
In terms of m	$\begin{split} & Microscopic species mass balance. In terms of Basel Russ, relations and the set of the set $	Fick's law: $\underline{J}_{A}^{*} = -cD_{AB}\nabla x_{A}$	
	Fick's law of diffusion, Gibbs notation: $f_{\mu}^{i} = -iD_{i0}\nabla e_{\mu}$ Fick's law of diffusion, Cartenian coordinates: $\begin{pmatrix} f_{\mu\nu}^{i} \\ f_{\lambda\nu}^{i} \end{pmatrix}_{ij} = \begin{cases} -cD_{i0}\frac{2e_{\mu}}{2e_{\mu}} \\ -cD_{i0}\frac{2e_{\mu}}{2e_{\mu}} \\ -cD_{i0}\frac{2e_{\mu}}{2e_{\mu}} \end{cases}$	Microscopic species A mass balance:	
	Fick's law of diffusion, coloring conditions: $ \begin{pmatrix} f_{ab}\\ f_$	$c\left(\frac{\partial x_A}{\partial t} + \underline{v}^* \cdot \nabla x_A\right) = cD_{AB}\nabla^2 x_A + (x_BR_A - x_AR_B)$	
_	· (rans 46/149	(Let's explore \underline{v}^*	
	$R_A \equiv$ rate of production of moles homogeneous chemical reaction	-	
		© Faith A. Morrison, Michigan Tech U.	

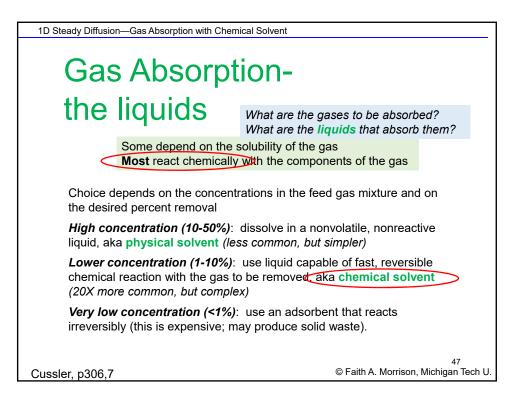


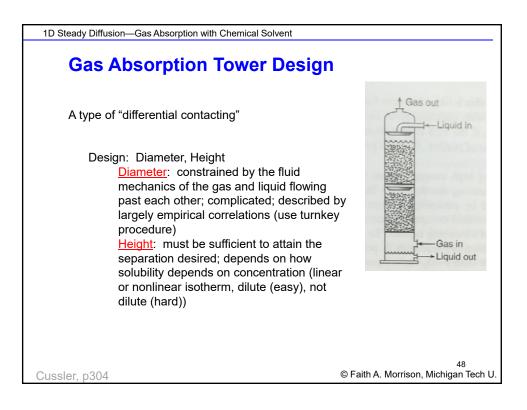


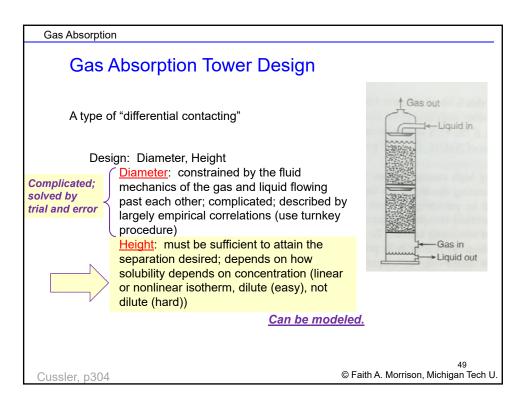

1D Steady Diffusion—Unimolecular MassTransfer (film theory)		
In terms of mass flux, \underline{f}_A	The Equation of Species Mass Balance in Carlesian, cylindrical, and spherical coordinates for hanny matures of A and B. Two cases are presented: the general cases, where the mass flow with the effect on rans-serving to the constraint and Frick's law has been interproteint. If the constraint and Frick's law has been interproteint. If the constraint and Frick's law has been interproteint. Michigan Technological University B4. Vescepic species mass balance, in terms of mass flux, Gibbs notation $\mu\left(\frac{\partial u}{\partial t} + v, \frac{\partial u}{\partial y} + v, \frac{\partial u}{\partial y} + v, \frac{\partial u}{\partial y}\right) = -\left(\frac{\partial (u}{\partial t} + \frac{\partial (u}{\partial t} + \frac{\partial (u}{\partial t} + v))\right)$ Microscopic species mass balance, in terms of mass flux, Collection coordinates $\mu\left(\frac{\partial u}{\partial t} + v, \frac{\partial u}{\partial y} + v, \frac{\partial u}{\partial y}\right) = -\left(\frac{\partial (u}{\partial t} + \frac{\partial (u}{\partial t} + \frac{\partial (u}{\partial t} + v))\right) + r_{A}$ Microscopic species mass balance, in terms of mass flux, cylindraid coordinates $\mu\left(\frac{\partial u}{\partial t} + v, \frac{\partial u}{\partial y} + v, \frac{\partial u}{\partial y}\right) = -\left(\frac{\partial (u}{\partial t} + \frac{\partial (u}{\partial t} + \frac{\partial (u}{\partial t} + v))\right) + r_{A}$ Microscopic species mass balance, in terms of mass flux, cylindraid coordinates $\mu\left(\frac{\partial u}{\partial t} + v, \frac{\partial u}{\partial y} + v, \frac{\partial u}{\partial y}\right) = -\left(\frac{\partial (u}{\partial t} + \frac{\partial (u}{\partial t} + \frac{\partial (u}{\partial t} + \frac{\partial (u}{\partial t} + v))\right) + r_{A}$ Microscopic species mass balance, in terms of mass flux, cylindraid coordinates $\mu\left(\frac{\partial u}{\partial t} + v, \frac{\partial u}{\partial t} + v, \frac{\partial u}{\partial t} + v, \frac{\partial u}{\partial t}\right) = -\left(\frac{\partial (u}{\partial t} + \frac{\partial (u}{\partial t} + \frac{\partial (u}{\partial t} + v))\right) + r_{A}$ Microscopic species mass balance, in terms of mass flux, cylindraid coordinates $\mu\left(\frac{\partial u}{\partial t} + v, \frac{\partial u}{\partial t} + \frac{v}{\partial t} + \frac{\partial u}{\partial t} + v, \frac{\partial u}{\partial t}\right) = -\left(\frac{\partial (u}{\partial t} + v, \frac{\partial (u}{\partial t} + v, \frac{\partial (u}{\partial t} + v)\right) + r_{A}$ Microscopic species mass balance, in terms of mass flux cylindraid coordinates $\mu\left(\frac{\partial u}{\partial t} + v, \frac{\partial u}{\partial t} + \frac{v}{\partial t} + v, \frac{\partial u}{\partial t} + v, \frac{\partial (u}{\partial t} + v, \frac{\partial (u}{\partial t} + v)\right) + r_{A}$	$ \underbrace{\boldsymbol{j}_{A}: \text{ Mass flux relative to a}}_{\textbf{mixture's mass average velocity } \underline{\nu} $ Definition: $ \underline{j}_{A} = \rho \omega_{A} (\underline{\nu}_{A} - \underline{\nu}) $ Fick's law: $ \underline{j}_{A} = -\rho D_{AB} \nabla \omega_{A} $
	Fid's law of diffusion, Gibbs notation: $\mu = -pO_{AB}\nabla \omega_A$ Fid's law of diffusion, Cartesian coordinates $\begin{pmatrix} J_{AB} \\ J_{AB} \end{pmatrix}_{AB} = \int_{AB} -\frac{-pO_{AB}\frac{2\omega_A}{2\mu}}{-pO_{AB}\frac{2\omega_A}{2\mu}}$	Microscopic species A mass balance:
	Fid-'s taw of diffusion, cylindrical coordinates $\begin{pmatrix} f_{AT} \\ f_{AS} \end{pmatrix}_{eff} = \begin{pmatrix} -F_{BA} \frac{2\pi}{b_{eff}} \\ -F_{BA} \frac{2\pi}{b_{eff}} \\ -F_{BA} \frac{2\pi}{b_{eff}} \end{pmatrix}_{eff}$	$\rho\left(\frac{\partial\omega_A}{\partial t} + \underline{\nu}\cdot\nabla\omega_A\right) = \rho D_{AB}\nabla^2\omega_A + r_A$
	$\label{eq:response} \begin{split} & \text{Fick's tare of diffusion, spherical coordinates:} \begin{pmatrix} J_{s,k} \\ J_{s,k} \end{pmatrix}_{s \in \mathcal{G}} & -\frac{-\sigma \rho h_{s,k}}{\sigma h_{s,k}} \\ & -\frac{-\sigma \rho h_{s,k}}{\sigma h_{s,k}} \\ & -\frac{\sigma \rho h_{s,k}}{\sigma h_{s,k}} \end{pmatrix}_{s \in \mathcal{G}} \end{split}$	
	$r_A \equiv$ rate of production of mass of homogeneous chemical reaction	5
		© Faith A. Morrison, Michigan Tech U.

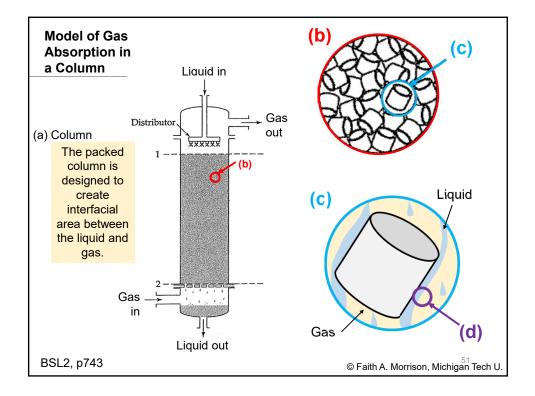

Diffusion Lectures 7 & 8 Modeling 1D Steady Diffusion

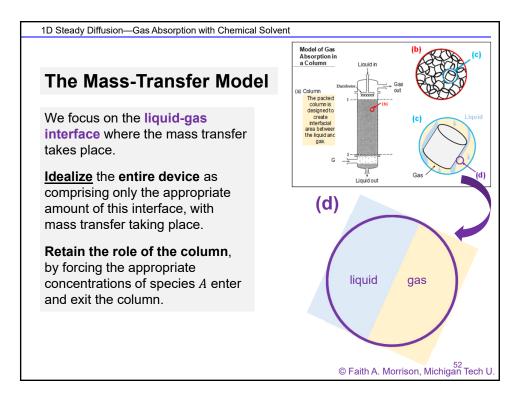

1D Steady Diffusion—Unimolecular MassTransfer (film theory)		
coordinates for binary mixtures o respect to mass-average velocity coefficient is constant and Fick's	cies Mass Balance in cartesian, offendral, and opherical At and 3. Two cases are presented: the general case, where the miss flux with (y) appears (n. 1), and the more usual case (n. 2), where the diffusion is a base in incorporated. 319 Trith A. Marrison, Michigan Technological University	j_A : Mass flux relative to a mixture's mass average velocity \underline{v}
$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	ree, in terms of mass flaw, Gibbs notation $\begin{split} &\rho\left(\frac{\partial u_{i}}{\partial x_{i}}+\frac{v}{2}\cdot\nabla u_{i}\right)=-\nabla\cdot y_{i}+r_{i}\\ &\\ &\rho_{i}\left(\frac{\partial u_{i}}{\partial x_{i}}+v_{i}\frac{\partial u_{i}}{\partial x_{i}}\right)=\rho_{i}\left(\frac{\partial u_{i}}{\partial x_{i}}+\frac{\partial v_{i}}{\partial y_{i}}+\frac{\partial (u_{i}}{\partial x_{i}}+\frac{\partial (u_{i}}{\partial x_{i}}+\frac{\partial (u_{i}}{\partial x_{i}}+\frac{\partial (u_{i}}{\partial x_{i}})\right)+r_{i} \end{split}$	Definition: $\underline{j}_{A} = \rho \omega_{A} (\underline{v}_{A} - \underline{v})$
	$\begin{split} \mathbf{v}_{\mathbf{k}} & \text{in terms of mass flaw constraints constraints} \\ \mathbf{a}_{\mathbf{k}}^{-1} & \frac{\nabla_{\mathbf{k}}^{-1} \partial d u_{\mathbf{k}}}{\partial \theta} + \nabla_{\mathbf{k}}^{-1} \partial \mathbf{a}_{\mathbf{k}}^{-1} - \left(-\frac{1}{\theta} \frac{\partial f(x_{\mathbf{k}})}{\partial x} + \frac{1}{\theta} \frac{\partial f(x_{\mathbf{k}})}{\partial \theta} + \frac{\partial f(x_{\mathbf{k}})}{\partial x}\right) + \mathbf{v}_{\mathbf{k}} \\ \text{reg. in terms of mass flaw spherial coordinates} \\ + & \frac{\nabla_{\mathbf{k}}^{-1} \partial \theta}{\partial \theta} \frac{\partial \phi}{\partial \theta} \right) = - \left(\frac{1}{\theta} \frac{\partial f(x_{\mathbf{k}})}{\partial \theta} + \frac{1}{\tau \sin \theta} \frac{\partial f(x_{\mathbf{k}}) \partial \theta}{\partial \theta} + \frac{1}{\tau \sin \theta} \frac{\partial f(x_{\mathbf{k}})}{\partial \theta} + \mathbf{v}_{\mathbf{k}}\right) \\ + & \frac{1}{\tau \sin \theta} \frac{\partial \phi}{\partial \phi} \right) = - \left(\frac{1}{\theta} \frac{\partial f(x_{\mathbf{k}})}{\partial \theta} + \frac{1}{\tau \sin \theta} \frac{\partial f(x_{\mathbf{k}}) \partial \theta}{\partial \theta} + \mathbf{v}_{\mathbf{k}}\right) \\ + & \frac{1}{\tau \sin \theta} \frac{\partial \phi}{\partial \phi} \right) = - \left(\frac{1}{\theta} \frac{\partial f(x_{\mathbf{k}})}{\partial \theta} + \frac{1}{\tau \sin \theta} \frac{\partial f(x_{\mathbf{k}})}{\partial \theta} + \frac{1}{\tau \sin \theta} \frac{\partial f(x_{\mathbf{k}})}{\partial \theta} + \mathbf{v}_{\mathbf{k}}\right) \\ + & \frac{1}{\tau \sin \theta} \frac{\partial \phi}{\partial \phi} \right) = - \left(\frac{1}{\theta} \frac{\partial f(x_{\mathbf{k}})}{\partial \theta} + \frac{1}{\tau \sin \theta} \frac{\partial f(x_{\mathbf{k}})}{\partial \theta} + \frac{1}{\tau \sin \theta} \frac{\partial f(x_{\mathbf{k}})}{\partial \theta} + \mathbf{v}_{\mathbf{k}}\right) \\ + & \frac{1}{\tau \sin \theta} \frac{\partial \phi}{\partial \phi} \right) = - \left(\frac{1}{\theta} \frac{\partial f(x_{\mathbf{k}})}{\partial \theta} + \frac{1}{\tau \sin \theta} \frac{\partial f(x_{\mathbf{k}})}{\partial \theta} + \frac{1}{\tau \cos \theta} \frac{\partial f(x_{\mathbf{k})}}{\partial \theta} +$	Fick's law: $\underline{j}_{A} = -\rho D_{AB} \nabla \omega_{A}$
Fick's law of diffusion, Gibbs not	etter: $j_{h} = -\rho D_{hb} \nabla \omega_{h}$ coordinate: $\begin{pmatrix} J_{hx} \\ J_{hx} \\ J_{hx} \end{pmatrix}_{gy2} = \begin{pmatrix} -\rho D_{hb} \frac{\delta \omega_{h}}{\delta \phi} \\ -\rho D_{hb} \frac{\delta \omega_{h}}{\delta \phi} \\ -\rho D_{hb} \frac{\delta \omega_{h}}{\delta \psi} $	Microscopic species A mass balance:
	coordinates: $\begin{pmatrix} I_{AV} \\ J_{AS} \\ J_{AV} \\ J_{FF} \\ = \begin{pmatrix} -\frac{\rho D_{AE}}{m_{FF}} \\ -\frac{\sigma P_{AE}}{m_{FF}} \\ -\frac{\sigma P_{AE}}{m_{FF}} \\ -\frac{\rho D_{AE}}{m_{FF}} \\ J_{AV} \\ \end{pmatrix}$	$\rho\left(\frac{\partial\omega_A}{\partial t} + \underline{v} \cdot \nabla\omega_A\right) = \rho D_{AB} \nabla^2 \omega_A + r_A$
Fick's law of diffusion, spherical	coordinates: $\begin{pmatrix} L_{s,k} \\ J_{s,k,q} \end{pmatrix}_{symp} = \begin{pmatrix} -p_{s,k} \frac{m_{s}}{m_{s}} \\ -\frac{-p_{s,k}}{m_{s}} \frac{m_{s}}{m_{s}} \\ -\frac{p_{s,k}}{m_{s}} \frac{m_{s}}{m_{s}} \end{pmatrix}_{symp}$	(There is no advantage to the
21	e of production of mass o neous chemical reaction	
		© Faith A. Morrison, Michigan Tech U.

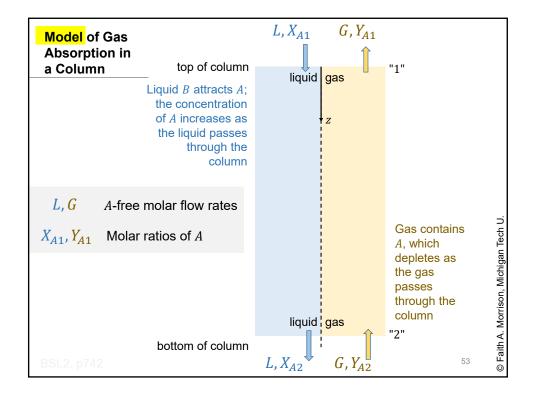


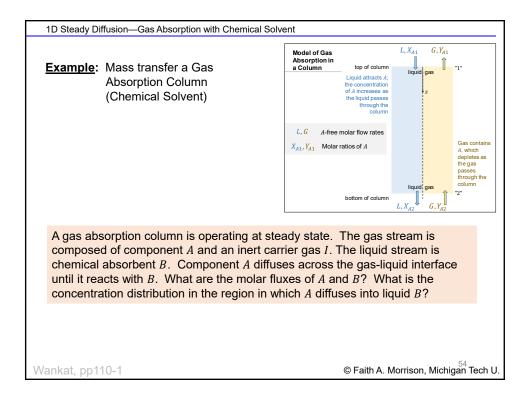


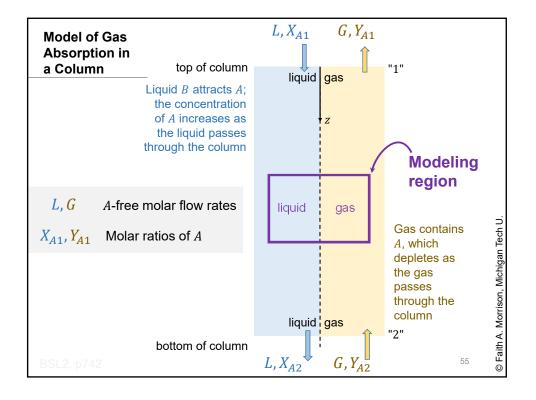


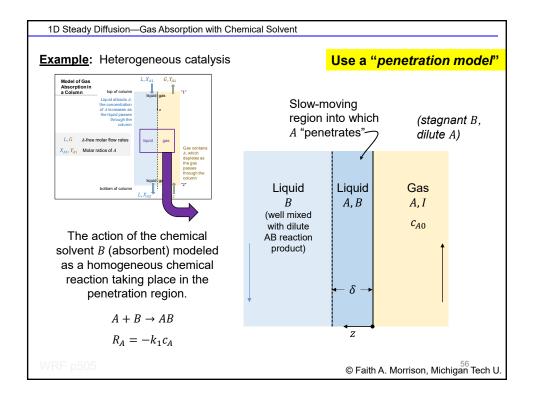


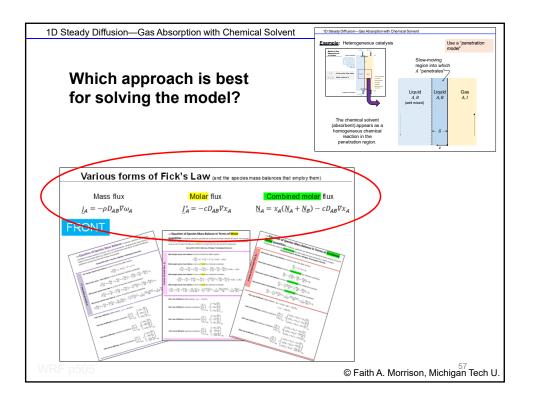


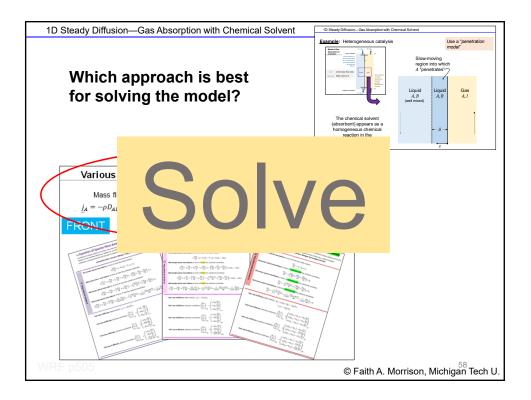


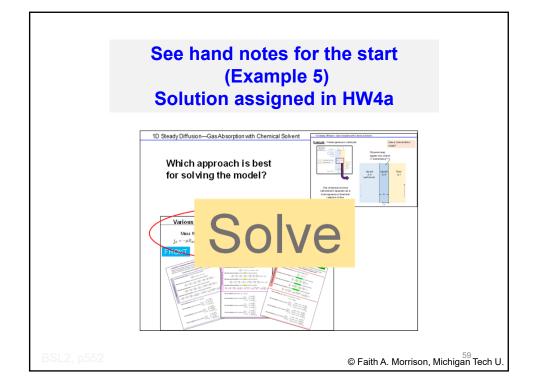


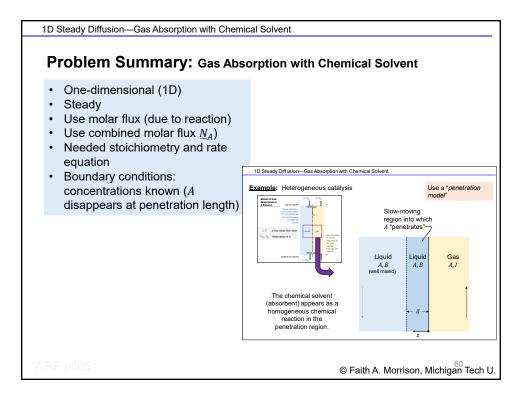

1D Steady Diffusion—Gas Absorption		
	Gas Absorption	
	Gas A	bsorption Tower Design
<u>Column height</u> must be sufficient to attain the separation desired.	Design: Dia me pas larg Hei	*differential contacting* Diameter, Height meter: constrained by the fluid chanics of the gas and liquid flowing t each other; complicated; described by lefy empriced correlations (use turnkey codure) ght: must be sufficient to attain the
	solu or r	aration desired; depends on how ubility depends on concentration (linea) onlinear isotherm, dilute (easy), not te (hard))
We need a <u>model</u> of how a chieved to produce the d the height of the column.	•	
A model that w will reveal what physics of the u	the	Models that only partially work also reveal important aspects of the physics.
Cussler, p304		50 © Faith A. Morrison, Michigan Tech U.

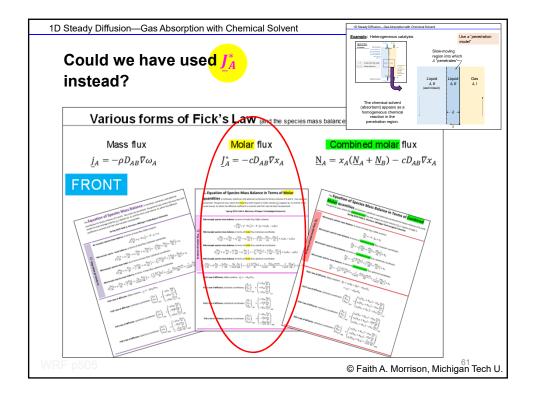


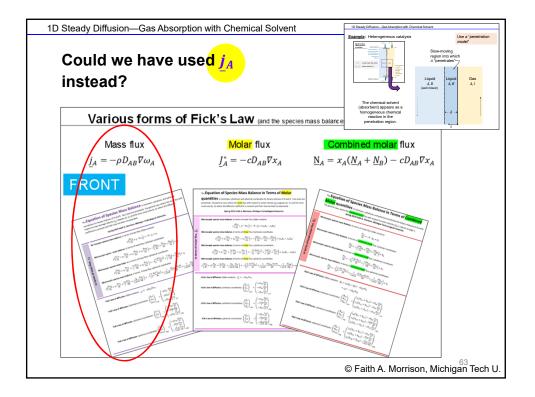


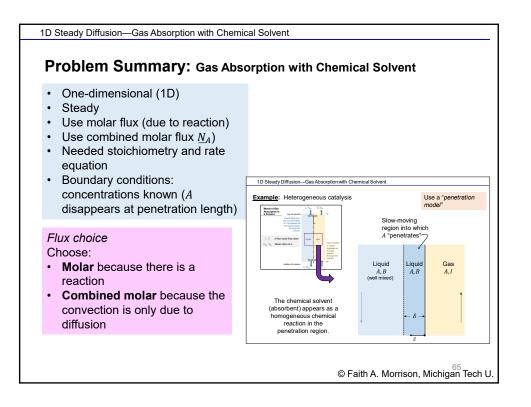


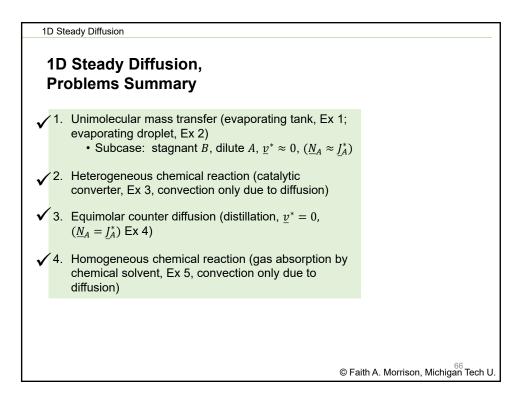


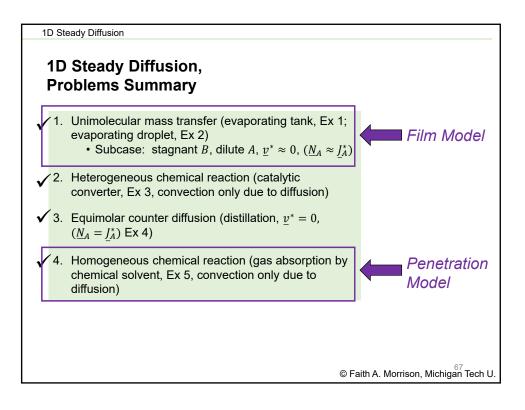


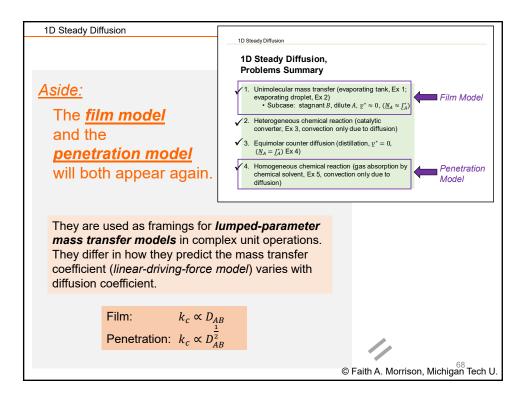









1D Steady Diffusion—Gas Absorption with Chemical Solvent		
	The Equation of Species Mass Balance in Terms of Molar quantities in Cartains, childrial, and solvrical conditates for bolary mutater of A and B. Two cases we presente: The general case, where the most fire with respect to make websity (C) appears (p. 1), and the nore usual case (p. 2), where the diffusion coefficient is constant and PA's law has been incorporated. Spring 2019 Faith. Morrison, Middigan Technological University	J_A^* : Molar flux relative to a mixture's molar average velocity ${m v}^*$
In terms of molar flux, f_A^{*}	$\begin{split} & Microscopic spectra mass balance, in terms of multir flux, Gibbs notation \\ & \qquad \qquad$	Definition:
-	$c_1\left(\frac{\partial x_1}{\partial t} + v_2^2 \frac{\partial x_2}{\partial t} + \frac{v_2^2}{\pi} \frac{\partial x_3}{\partial t} + \frac{v_3^2}{\pi \sin^2} \frac{\partial x_3}{\partial t}\right) = \left(\frac{1}{\sqrt{2}} \frac{dv_1^2}{dr} + \frac{1}{1\sin^2} \frac{\partial (x_2 - m)}{\partial t}\right) + \frac{1}{r\sin^2} \frac{\partial (x_2 - m)}{\partial t} + \frac{1}{r\sin^2} \frac{\partial (x_2 - m)}{\partial t}\right)$ Fick's law of diffusion. Cattesian coordinates: $\begin{pmatrix} f_{x_1} \\ f_{x_2} \end{pmatrix}_{x_1} = \frac{f_{x_2}}{f_{x_2}} + \frac{f_{x_2}}{2} \frac{\partial (x_2 - m)}{\partial t} + \frac{f_{x_2}}{2} \frac$	Microscopic species A mass balance:
	$ \begin{aligned} & \text{Fide's law of diffusion, cylindrical coordinate:} \begin{pmatrix} T_{k,r} \\ T_{k,d} \end{pmatrix}_{r,d} & = \begin{pmatrix} -\frac{1}{2}\sigma_{k,d} & \sigma_{k} \\ -$	$c\left(\frac{\partial x_A}{\partial t} + \underline{v}^* \cdot \nabla x_A\right) = cD_{AB}\nabla^2 x_A + (x_BR_A - x_AR_B)$
	$R_A \equiv$ rate of production of moles homogeneous chemical reaction	



1D Steady Diffusion—Gas Absorption with Che	mical Solvent
The Equation of Species Mass Balance in certesian, opinatical, and spherical coordinates for binary misures of A and B. Two cases are presented: the general case, where the miss flux with respect to mass average volces (f), j) appears (p. 1), and the more usual case (p. 2), where the diffusion coefficient is constant and rafk is the mise increporated to be increporated Spring 2019 Faith A. Morrison, Nichigan Technological University	\underline{j}_A : Mass flux relative to a mixture's mass average velocity \underline{v}
M. vacceptic species mass balance, in terms of mass flux; Gibbs notation $\begin{split} & \mu\left(\frac{\partial u_{11}}{\partial x}+\xi\cdot\nabla u_{2}\right)-\nabla\cdot\gamma_{1}+\gamma_{4} \\ & Moreoscopic species: mass balance, in terms of mass flux; Catesian coordinate: \\ & \mu\left(\frac{\partial u_{11}}{\partial x}+v_{2},\frac{\partial u_{21}}{\partial x}+v_{2},\frac{\partial u_{22}}{\partial x}+v_{2},\frac{\partial u_{22}}{\partial$	Definition: $\underline{j}_{A} = \rho \omega_{A} (\underline{v}_{A} - \underline{v})$ Fick's law: $\underline{j}_{A} = -\rho D_{AB} \nabla \omega_{A}$
Fick's law of diffusion, Gibbs notation: $t_{j,k} = -\rho \partial_{j,k} \nabla \phi_{j,k}$ Fick's law of diffusion, Containing coordinates: $\begin{pmatrix} I, \lambda \\ I, \lambda \\ J, \lambda \\ I, \lambda \\ $	Microscopic species A mass balance:
Fick's law of diffusion, collidical eccordinates: $\begin{pmatrix} J_{AX} \\ J_{AX} \\ J_{AX} \end{pmatrix}_{eff} = \begin{pmatrix} -D_{AX} \frac{D_{AY}}{D_{AX}} \\ -D_{AX} \frac{D_{AX}}{D_{AX}} \\ -D_{AX} \frac{D_{AX}}{D_{AX$	$\rho\left(\frac{\partial\omega_A}{\partial t} + \underline{v}\cdot\nabla\omega_A\right) = \rho D_{AB}\nabla^2\omega_A + r_A$
$r_A \equiv$ rate of production of mass of homogeneous chemical reaction	-
	© Faith A. Morrison, Michigan Tech L

