

Measurements are affected by errors

(uncertainty)

There are two general categories of errors
(uncertainties) in experimental measurements:

Systematic errors
Random errors

Each A. Morrison, Michigan Tech U.

But, more than random errors are present NOT DONE Systematic Errors © Faith A. Morrison, Michigan Tech U.

From Lecture 1: Quick Start, Replicate Errors: Measurements are affected by errors (uncertainty) **Systematic errors** 1. Has same sign and magnitude for identical conditions 2. Must be checked for, identified, eliminated, randomized • Calibration of instruments Reading error (resolution, coarse scale) © Faith A. Morrison, Michigan Tech U. Consistent operator error Failure to produce experimentally conditions assumed in an analysis (e.g. steady state, isothermal, well mixed, pure component, etc.) **Solutions:** • Recalibrate Improve instrument resolution Apply correction for identified error Improve procedures, experimental design Shift to other methods Take data in random order; rotate operators

Measurements are affected by errors (uncertainty)

We have identified three sources of error:

- Random errors (replicate error)
- Reading errors
- Calibration errors

We standardize the individual errors so that we can combine them (apples to apples)

 $e_s = \frac{3}{\sqrt{n}}$ Standard error of <u>replicates</u> $e_s = ?$ Standard <u>reading</u> error

Standard <u>calibration</u> error

The techniques developed to understand and report replicate error can be the template that we use to account for the other two sources of uncertainty.

1

© Faith A. Morrison, Michigan Tech U.

Measurements are affected by errors (uncertainty)

We have identified three sources of error:

- Random errors (replicate error)
- Reading errors
- Calibration errors

Now:

Standard error of replicates

 $e_s = ?$

Standard reading error

 $e_s = 1$

Standard calibration error

The techniques developed to understand and report **replicate error** can be the template that we use to account for the other two sources of uncertainty.

16

Second source of standard error...

Obtaining a Good Estimate of Reading Error

Sometimes a measurement is very reproducible (negligible replicate error) but there is still error/uncertainty inherent in how the reading is taken.

Example: Digital Multimeter reading a 4-20mA instrument signal

Image from: appliancerepairstartup.com/wp-content/uploads/2010/12/220px-Digital_Multimeter_Aka.jpg

19

© Faith A. Morrison, Michigan Tech U.

Second source of standard error...

Obtaining a Good Estimate of Reading Error

Systematic errors due to **Reading errors**, include:

- 1. Limits of instrument sensitivity (i.e. the magnitude of change required for the instrument to respond)
- Limits of the degree of subdivision of the scale or display
- 3. Fluctuations of an instrument reading

We take each in turn→

20

CM3215 Prof. Fai This works or off a dig	ital readout (yielding value : error e, may subsequently be		and 9	-error-related		Handy worksheet for reading error	
	Device name: Measured Quantity:		_				
	(give symbol)		200-0				
	Representative value:	(include units)		Quantity or Not Applicable			
	issue	contribution to error					
	Sensitivity (manufac, or estimated)	How much signal does it take to cause the reading to change?	1				<u> </u>
Reading error, e _a :	Resolution: limitation on marked scale or digital readout	Half smallest division or decimal place	2				ech l
nearing crion, eg.	Fluctuations with time of observation	(max-min)/2	3				Jan T
		Maximum of 1, 2, & 3:	e	$_R$ =			ichig
	Standard error based on reading error:	$e_s = e_R/\sqrt{3}$	e	s = (units)			Morrison, Michigan Tech
		95% Confidence Interval on the reading: ±2e _s					orrisc
Note: If a value is supplied by, for example, a manufacturer, with no indication of the uncertainty, we do not use this worksheet. Instead, see the Calibration Error worksheet. 13-Jan-16						21	© Faith A. Mo
www.ch	em.mtu.edu/	fmorriso/cm3215	/R	eadingErrorWork	sheet.pdf		

Second source of standard error...

Obtaining a Good Estimate of Reading Error

Systematic errors due to **Reading errors**, include:

Limits of the degree of subdivision of the scale or display

How to determine?

Estimate as

- 1/2 the smallest subdivision on the scale or
- 1/2 the smallest digit on a digital readout

2

© Faith A. Morrison, Michigan Tech U.

Second source of standard error...

Obtaining a Good Estimate of Reading Error

Systematic errors due to Reading errors, include:

3. Fluctuations of an instrument reading

How to determine?

Estimate as: $\frac{1}{2}(x_{max}-x_{min})$ over an interval

24

One source of standard error...

Obtaining a Good Estimate of Reading Error

Possible reading errors:

- Determine the limits of instrument sensitivity (magnitude of change required for instrument to respond)
- Determine ½ the smallest subdivision of the scale or display
- Determine $\frac{1}{2}(x_{max}-x_{min})$ for time-fluctuating data
- Designate the reading error:

 e_R = maximum of the possible reading errors

© Faith A. Morrison, Michigan Tech U.

Obtaining a Good Estimate of Reading Error **Possible** reading

errors:

One source of standard error...

- Determine the limits of instrument sensitivity (magnitude of change required for instrument to respond)
- Determine ½ the smallest subdivision of the scale or display
- Determine $\frac{1}{2}(x_{max}-x_{min})$ for time-fluctuating data
- Designate the reading error:

• e_R = maximum of the possible reading errors

Question: is this way of thinking about error the same method as we used for random error?

 $\mathbf{e}_{,replicate} =$

One source of standard error... Obtaining a Good Estimate of Reading Error Determine the limits of instrument sensitivity (magnitude **Possible** of change required for instrument to respond) reading • Determine ½ the smallest subdivision of the scale or display errors: • Determine $\frac{1}{2}(x_{max}-x_{min})$ for time-fluctuating data Designate the reading error: • e_R = maximum of the possible reading errors **Question:** is this way of thinking about error the same method as we used for random error? We need to **standardize** the individual errors No.

so that we can combine them (apples to apples)

Measurements are affected by errors (uncertainty)

We have identified three sources of standard error:

- Random errors (replicate error)
- **Reading errors**
- **Calibration errors**

Standard error of replicates Now we know how to Standard reading error compute two out of three measurement Standard calibration error

For all three types of errors, we write a variance of the sampling distribution.

steandard errors.

Why? Because we know how to combine variances (see literature):

 $\sigma_{total}^2 = \sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \cdots$

© Faith A. Morrison, Michigan Tech U.

They add in quadrature.

Obtaining a Good Estimate of Reading Error

Possible reading errors:

- Determine the limits of instrument sensitivity (magnitude of change required for instrument to respond)
- Determine ½ the smallest subdivision of the scale or display
- Determine $\frac{1}{2}(x_{max}-x_{min})$ for time-fluctuating data
- Designate the reading error:

 $e_R = \text{maximum of the possible}$

Calculate the standard reading error,

 $e_{s,reading} = \frac{e_R}{\sqrt{3}}$

These steps are summarized (and you are guided through them) on the Reading Error Worksheet:

Faith A. Morrison, Michigan Tech U.

www.chem.mtu.edu/~fmorriso/cm3215/ReadingErrorWorksheet.pdf 34

17

Obtaining a Good Estimate of a Quantity

Summary:

Replicate (random) error:

- Measure the quantity several times replicates
- The average value is a good estimate of the quantity we are measuring if only random errors are present
- The 95% confidence interval comes from $\pm (**)e_s$
- (**) = 2 if the number of replicates is 7 or higher
- (**) comes from the Student's t distribution if N < 7 (=t.inv.2t(0.05,n-1))
- Report one sig fig on error limits (unless that digit is 1 or 2)

Reading error:

- Determine signal needed to change reading
- Determine half smallest division or decimal place
- Determine average of fluctuations
- Max of those $\sqrt{3}$ = reading standard error
- use $\pm 2e_s$ for 95% confidence interval

Combining Errors:

 $e_{s,combined}^2 = e_{s,replicate}^2 + e_{s,reading}^2 + e_{s,calibration}^2$

