

Obtaining a Good Estimate of a Quantity

Replicate error

Calibration error

Reading error

$$\rho = \frac{M_F - M_E}{V_{pyc}}$$

$$\mu = \rho \alpha \Delta t$$

$$Q = \dot{m}C_p(T_{out} - T_{in})$$

$$etc.$$

But how do we combine the

And what do we do when we obtain a quantity from a calculation?

© Faith A. Morrison, Michigan Tech U.

Obtaining a Good Estimate of a Quantity

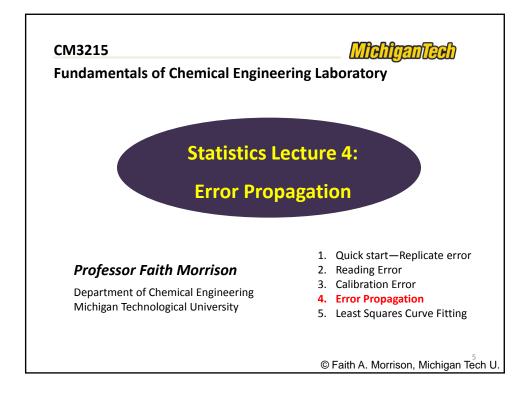
Replicate error

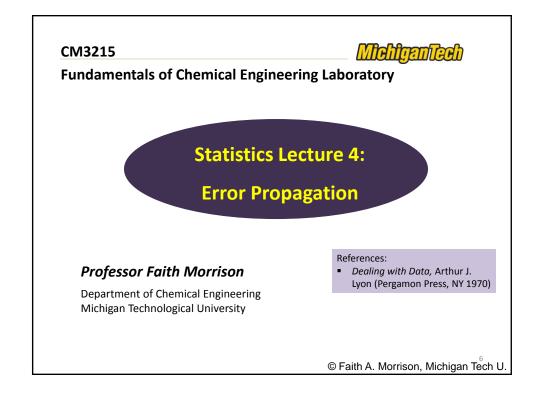
Calibration error

Reading error

$$\rho = \frac{M_F - M_E}{V_{pyc}}$$

$$\mu = \rho \alpha \Delta t$$


$$Q = \dot{m}C_p(T_{out} - T_{in})$$
 etc.


But how do we **combine** the errors?

And what do we do when we obtain a quantity from a calculation?

Answer for both:

Propagate the error through the calculation

Example 1:

What is the uncertainty (95% confidence interval) in $\rho_{bluefluid}$ as determined in the lab?

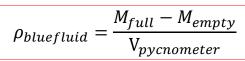
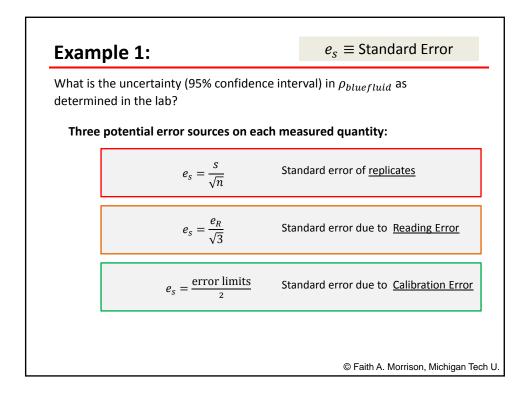
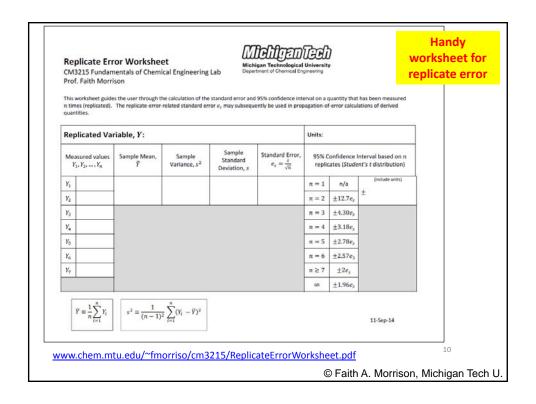


Image source: www.coleparmer.com Image source: //en.wikipedia.org/wiki/Relative_density

© Faith A. Morrison, Michigan Tech U.

Example 1:


What is the uncertainty (95% confidence interval) in $\rho_{bluefluid}$ as determined in the lab?



- The value of density obtained is a function of three measurements
- Each measurement has its own uncertainty

Image source: www.coleparmer.com

Image source: //en.wikipedia.org/wiki/Relative_density

	CM3215 Prof. Fai This works or off a dig	gital readout (yielding value x		and 9	error-related		Handy worksheet for reading error	
		Device name:]				
		Measured Quantity: (give symbol)						
		Representative value:	(include units)		Quantity or N ot A pplicable			
		issue	contribution to error			. I		
		Sensitivity (manufac. or estimated)	How much signal does it take to cause the reading to change?	1				Ϊ.
	Reading error, ea:	Resolution: limitation on marked scale or digital readout	Half smallest division or decimal place	2				och U
		Fluctuations with time of observation	(max-min)/2	3				an Te
			Maximum of 1, 2, & 3: $e_R =$				chig	
		Standard error based on reading error:	$e_s = e_R/\sqrt{3}$	e	(units)			Ę,
			95% Confidence Interval on the reading: $\pm 2e_s$					risor
			gilied by, for example, a manufacturer, with n truse this worksheet. Instead, see the Calibra					Faith A. Morrison, Michigan Tech
	13-Jan-16						11	
<u>v</u>	www.chem	ı.mtu.edu/~fr	morriso/cm3215/	Rea	adingErrorWork	sheet.pdf		0

Michigan Technological In	Jniversity			Hand workshe calibration
	ror Worksheet entals of Chemical E on			cambiation
nanufacturer or for a parti- pecifications of a device n iscometer constant α , for ase, the rule of thumb me ser may take steps to cali- ase" error) has the advant	icular device by someone nay indicate that it is accu example) may be provide thod of "least significant brate a meter on site; this	with authority to certify the grate to a value $\pm 2e_s$. Alter ed by the manufacturer with digit" is acceptable for eval	mined for a brand-new unit by a e value. For example, the technical natively, a value of a constant (the no specific uncertainty. In this uating the uncertainty. Finally, a elyt to be greater than the "best r unit in question.	
Device name: Measured quantity:	Symbol:	Representative value: (include units)		
		Estimate of e _s : (or Not Applicable)		
Rigorous Method: Manufacturer maximum error allowable	2 e _s ≈			
Manufacturer maximum error	$\begin{array}{l} 2~e_{\scriptscriptstyle S} \approx \\ \\ \text{Least significant digit} \\ \text{varies by at least} \\ \pm 1 = \pm 2e_{\scriptscriptstyle S} \end{array}$		_	
Manufacturer maximum error allowable Rule of Thumb Method: Least significant digit	Least significant digit varies by at least		_	
Manufacturer maximum error allowable Rule of Thumb Method: Least significant digit on provided value Method 3:	Least significant digit varies by at least $\pm 1 = \pm 2e_s$		95% CI, Calibration error	

Example 1: What is the uncertainty (95% confidence interval) in $\rho_{bluefluid}$ as determined in the lab?

First:

What are the uncertainties e_{x_i} for M_{full} , M_{empty} , and V_{pyc} ?

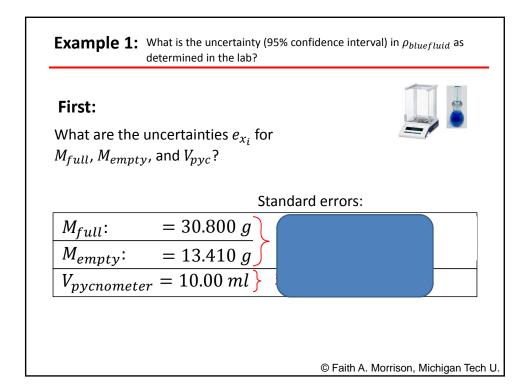
You try.

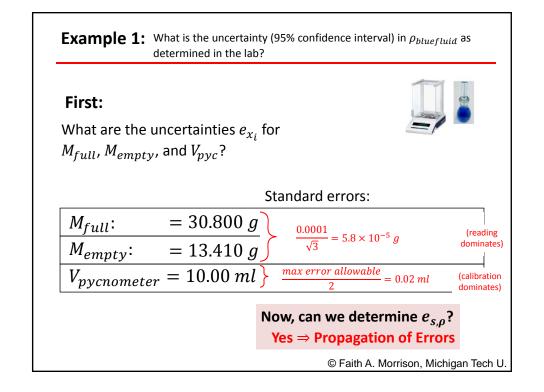
Image source: www.coleparmer.com

Image source: //en.wikipedia.org/wiki/Relative_density

© Faith A. Morrison, Michigan Tech U.

Example 1: What is the uncertainty (95% confidence interval) in $\rho_{bluefluid}$ as determined in the lab?


First:


What are the uncertainties e_{x_i} for M_{full} , M_{empty} , and V_{pyc} ?

Standard errors:

M_{full} :	$= 30.800 \ g$
M_{empty} :	= 13.410 g
$V_{pycnometer}$	$= 10.00 \ ml$

We seek to

- Combine the individual contributions to overall error: replicate, reading, calibration
- Combine the errors associated with the various quantities in a calculation.

$$\rho_{bluefluid} = \frac{M_{full} - M_{empty}}{V_{pycnometer}}$$

For both of these tasks we use an analysis based on the calculation of <u>variance</u>. We use the <u>Taylor series expansion</u> of a nonlinear function.

1

© Faith A. Morrison, Michigan Tech U.

Error Propagation

We use an analysis based on the Taylor series

expansion of a nonlinear function. (Derivation omitted)

Taylor series:

$$f(x_1, x_2, x_3) = f^0 + \frac{\partial f}{\partial x_1} x_1 + \frac{\partial f}{\partial x_2} x_2 + \frac{\partial f}{\partial x_3} x_3 + h.o.t.$$
(higher order terms)

A determination (measurement) of a value of the function $f(x_1, x_2, x_3)$ from uncertain values of x_1, x_2, x_3 is a stochastic variable of mean \bar{f} and variance σ_f^2 , given by:

$$\sigma_f^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 \sigma_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 \sigma_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 \sigma_{x_3}^2 + \text{Covariance terms, if } x_i \text{ are correlated}$$

where the variances $\sigma_{x_i}^2$ are the variances of the stochastic variables x_1, x_2, x_3 .

18

We use an analysis based on the Taylor series
expansion of a nonlinear function. (Derivation omitted)

Taylor series:

$$f(x_1, x_2, x_3) = f^0 + \frac{\partial f}{\partial x_1} x_1 + \frac{\partial f}{\partial x_2} x_2 + \frac{\partial f}{\partial x_3} x_3 + h.o.t.$$
(higher order to

A determination (measurement) of a value of the function $f(x_1, x_2, x_3)$ from uncertain values of x_1, x_2, x_3 is a stochastic variable of mean \bar{f} and variance σ_f^2 , given by:

$$\sigma_f^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 \sigma_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 \sigma_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 \sigma_{x_3}^2 + \text{Coveriance terms, if } x_i \text{ are correlated}$$

where the variances $\sigma_{x_i}^2$ are the variances of the stochastic variables x_1, x_2, x_3 .

Note: covariance terms are not always zero or small; but they often are. For now, this is fine.

© Faith A. Morrison, Michigan Tech U.

Let's now apply the Error Propagation equation to determine the error for experimental density.

Error Propagation equation

Function:

$$f(x_1, x_2, x_3)$$

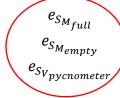
Example 1:

What is the uncertainty (95% confidence interval) in \$\rho_{blue fluid}\$ as determined in the lab?

In agreement the lab of the lab

Error on Function:

$$\sigma_f^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 \sigma_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 \sigma_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 \sigma_{x_3}^2$$


20

© Faith A. Morrison, Michigan Tech U

(To avoid confusion with other variances, we use e_{x_i} nomenclature for errors) \frown

$$e_{s_f}^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 e_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 e_{x_3}^2$$

 $\rho_{bluefluid} = f \left(M_{full}, M_{empty}, V_{pycnometer} \right)$

We estimate these standard errors with our 3 worksheets

2

© Faith A. Morrison, Michigan Tech U.

Error Propagation

$$e_{s_f}^2 = \left(\left(\frac{\partial f}{\partial x_1}\right)^2 e_{x_1}^2 + \left(\left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 + \left(\left(\frac{\partial f}{\partial x_3}\right)^2 e_{x_3}^2\right)^2 + \left(\left(\frac{\partial f}{\partial x_3}\right)^2 e_{x_3}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 + \left(\frac{\partial f}{\partial x_3}\right)^$$

 $\rho_{bluefluid} = f \left(M_{full}, M_{empty}, V_{pycnometer} \right)$

These come from the formula for

Pbluefluid

$$\rho_{BF} = \frac{M_F - M_E}{V_{pyc}}$$

22

Error Propagation
$$e_{sf}^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 e_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 e_{x_3}^2$$

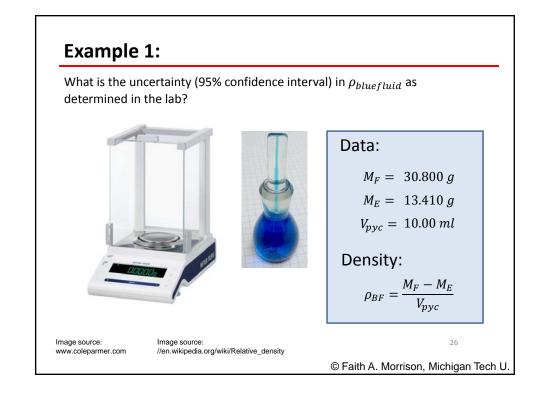
$$f = \rho_{BF} = \frac{M_F - M_E}{V_{pyc}}$$

$$\frac{\partial \rho_{BF}}{\partial M_F} = \frac{\partial \rho_{BF}}{\partial M_E} = \frac{\partial \rho_{BF}}{\partial V_{pyc}} = \frac{\partial \rho_{BF}}{\partial V$$

$$e_{s_f}^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 e_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 e_{x_3}^2$$

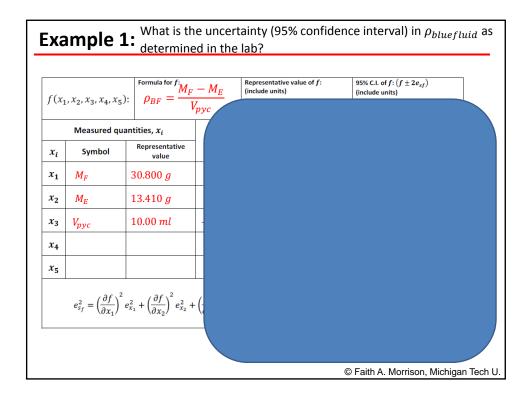
We seek this, the standard error of the calculated property,

$$f = \rho_{bluefluid}$$

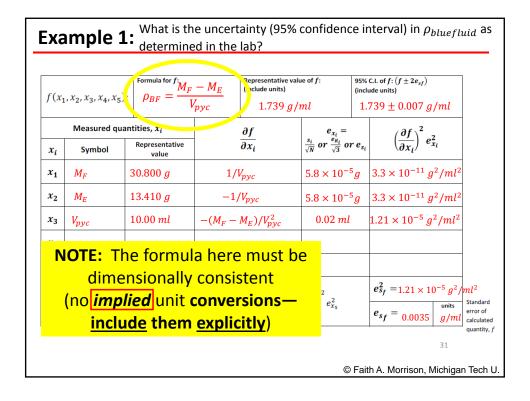

 $\rho_{bluefluid} = f(M_{full}, M_{empty}, V_{pycnometer})$

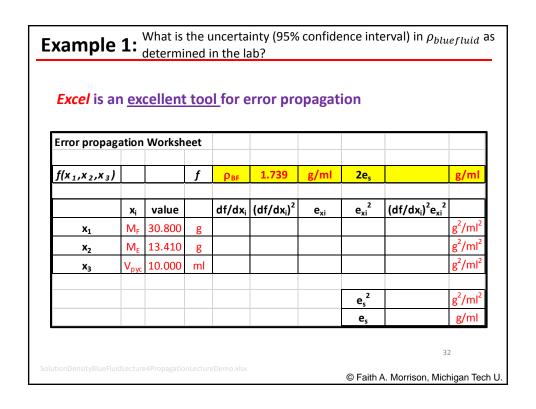
$$\rho_{BF} = \frac{M_F - M_E}{V_{pyc}}$$

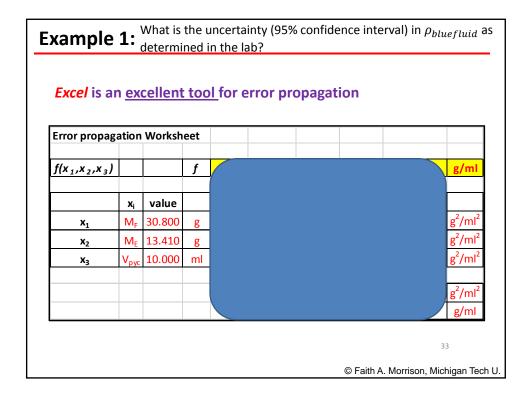
Think of the squared partial derivatives as the **weighting functions** for the individual *squared* standard errors.

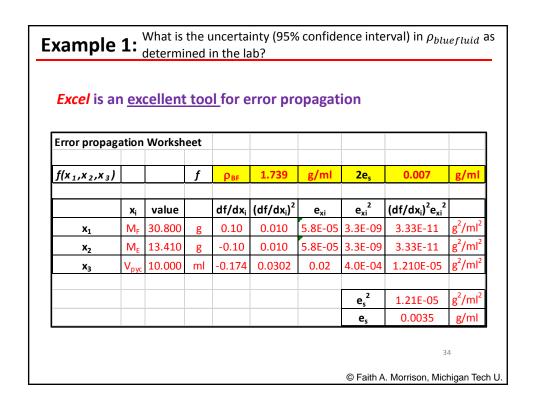

It's good to look at these numbers.

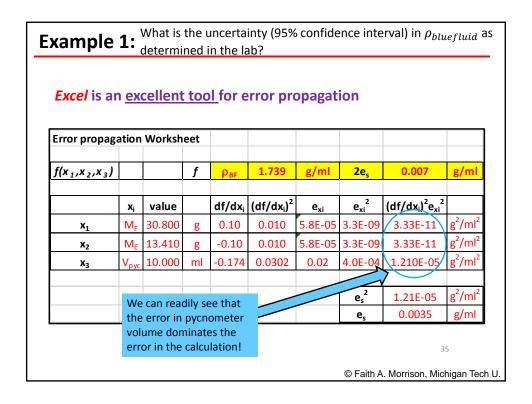
Erro CM32 Prof. I		n Worksheet Is of Chemical Engir	quantities x_1, x_2, x_3 standard error e_{x_1} variable x_1 is dete determine e_g , usin	x_3, x_4 and x_5 . The (replicate, readin rmined first, and in g the relationship	$x_h x_{s_2}$ that is calculated from meass $e_t q$ are subject to random errors. If g_e calibration, use the largest] for exthese uncertainties are propagated to given below. 95% C.I. of f : $(f \pm 2e_{sf})$ (include units)	he ach
	Measured qua	antities, x_i	∂ <i>f</i>	$e_{x_i} =$	$(\partial f)^2$	
x_i	Symbol	Representative value	$\frac{\partial f}{\partial x_i}$	$e_{x_i} = rac{s_i}{\sqrt{N}} \ or \ rac{e_{R_i}}{\sqrt{3}} \ or$	$\left(\frac{\partial f}{\partial x_i}\right)^2 e_{x_i}^2$	
<i>x</i> ₁						
<i>x</i> ₂						
<i>x</i> ₃						
x4						
x ₅						
	$e_{s_f}^2 = \left(\frac{\partial f}{\partial x_1}\right)^2$	$e_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 +$	$\left(\frac{\partial f}{\partial x_3}\right)^2 e_{x_3}^2 + \left(\frac{\partial f}{\partial x_4}\right)^2 e_{x_4}^2 + \left(\frac{\partial f}{\partial x_4}\right)^2 e_{x_5}^2 + \left(\frac{\partial f}{\partial x_4}\right)^2 e_{x_5}^2 + \left(\frac{\partial f}{\partial x_4}\right)^2 e_{x_5}^2 + \left(\frac{\partial f}{\partial x_4}\right)^2 e_{x_5}^$	$\left(\frac{\partial f}{\partial x_5}\right)^2 e_{x_5}^2$	$e_{s_f}^2 = egin{array}{c} e_{s_f} = & & & & & & & & & & & & & & & & & & $	Standard error of calculated quantity, f
	w chom mt	u odu/~fmorri	so/cm3215/ErrorPro	nagationM	Vorksheet ndf	25

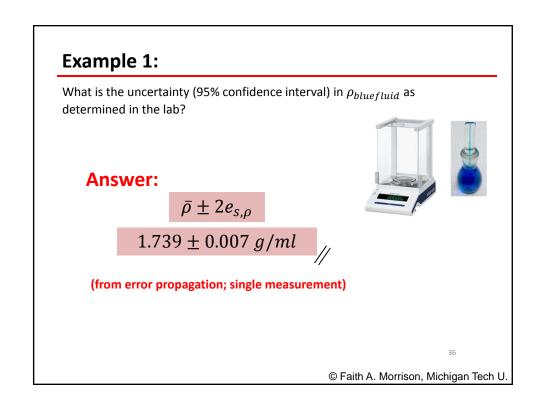



$f(x_1,$, x ₂ , x ₃ , x ₄ , x ₅	$\rho_{BF} = \frac{M_F}{V}$	$\frac{-M_E}{p_{yc}}$	Representative (include units)	value of f :		C.I. of f : $(f\pm 2e_{sf})$ ide units)		
	Measured qu	antities, x_i		∂f	$e_{x_i} =$	1	$(\partial f)^2$		
x_i	Symbol	Representative value		$\frac{\partial f}{\partial x_i}$	$e_{x_i} = \frac{s_i}{\sqrt{N}} \text{ or } \frac{e_{R_i}}{\sqrt{3}} \text{ or } \frac{e_{R_i}}{\sqrt{3}}$	re_{s_l}	$\left(\frac{\partial f}{\partial x_i}\right)^2 e^{\frac{2}{3}}$	ž _i	
<i>x</i> ₁									
<i>x</i> ₂									
<i>x</i> ₃									
<i>x</i> ₄									
<i>x</i> ₅									
	$e_{s_f}^2 = \left(\frac{\partial f}{\partial x_1}\right)^2$	$e_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 +$	$-\left(\frac{\partial f}{\partial x_3}\right)^2 e_x^2$	$e_3 + \left(\frac{\partial f}{\partial x_4}\right)^2 e_{x_4}^2$	$+\left(\frac{\partial f}{\partial x_5}\right)^2 e_{x_5}^2$		$e_{s_f}^2 =$ $e_{s_f} =$	units	Standa error o calcula quantii






$f(x_1)$	(x_2, x_3, x_4, x_5)	Formula for $f: M_F$ $\rho_{BF} = \frac{M_F}{M_F}$	$\frac{-M_E}{V_{pyc}}$	Representative vi (include units)	,	(incl	C.I. of f : $(f \pm 2e_{sf})$ ude units) $739 \pm 0.007 g$	/ml
	Measured q	uantities, x_i		$\frac{\partial f}{\partial x_i}$	$e_{x_i} =$		$(\partial f)^2$	2
x_i	Symbol	Representative value		$\overline{\partial x_i}$	$\frac{s_i}{\sqrt{N}}$ or $\frac{e_{R_i}}{\sqrt{3}}$ o	re_{s_i}	$\left(\frac{\partial f}{\partial x_i}\right)^2 e_i^2$	x _i
<i>x</i> ₁	M_F	30.800 g	1,	V_{pyc}	5.8 × 10 ⁻¹	·5 <i>g</i>	$3.3 \times 10^{-11} g$	l^2/ml^2
<i>x</i> ₂	M_E	13.410 <i>g</i>	-1	$/V_{pyc}$	5.8 × 10	·5g	$3.3 \times 10^{-11} g$	l^2/ml^2
<i>x</i> ₃	V_{pyc}	10.00 ml	$-(M_F -$	$-M_E)/V_{pyc}^2$	0.02 m	l	$1.21 \times 10^{-5} g$	$^2/ml^2$
<i>x</i> ₄								
<i>x</i> ₅								
	$a^2 - \left(\frac{\partial f}{\partial f}\right)$	$e_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 +$	$\left(\frac{\partial f}{\partial x}\right)^2 a^2$	$+\left(\frac{\partial f}{\partial x}\right)^2 a^2 +$	$\left(\frac{\partial f}{\partial x}\right)^2 a^2$		$e_{s_f}^2 = 1.21 \times 10$	Stan
	$c_{s_f} - (\partial x_1)$	(∂x_1)	$(\partial x_3)^{-c_{x_3}}$	$\partial x_4 = \partial x_$	$(\partial x_5)^{-c_{x_5}}$		$e_{sf} = _{0.0035}$	units

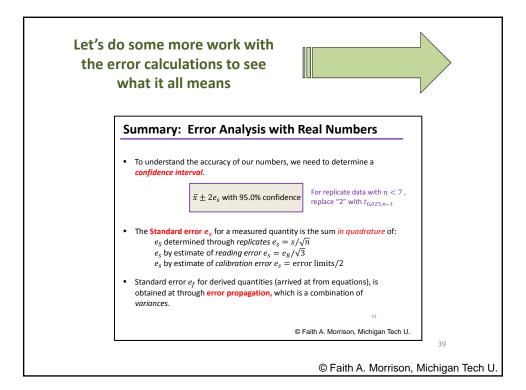


Summary: Error Analysis with Real Numbers

 To understand the accuracy of our numbers, we need to determine a confidence interval.

 $ar{x}\pm 2e_s$ with 95.0% confidence

For replicate data with n < 7 , replace "2" with $t_{0.025,n-1}$


- The Standard error e_s for a measured quantity is the sum in quadrature of:
 - e_S determined through *replicates* $e_S = s/\sqrt{n}$
 - e_s by estimate of reading error $e_s = e_R/\sqrt{3}$
 - e_s by estimate of *calibration error* $e_s = \text{error limits}/2$
- Standard error e_f for derived quantities (arrived at from equations), is obtained at through error propagation, which is a combination of variances.

37

© Faith A. Morrison, Michigan Tech U.

CM3215 (and U.O.) Error Analysis Expectations

- From this point forward, you are to include uncertainty limits (95% CI or PI intervals as appropriate) on your data.
- The second property of the second property o
- I will be working with you for the remainder of the semester to develop your ability to make your error analysis judgments.
- Please include error analysis worksheets in your report appendix (if there are many worksheets, include only selected, significant worksheets; please use your judgment)
- For error propagation, you may create tables for the appendix from your Excel
 calculations (recommendation: Paste Special as an Enhanced Metafile so that
 you can easily adjust the size of the graphic; put numbers in scientific notation).

Example 2: Using CI/PI to Interpret Data

In Example 1, we used error propagation to calculate uncertainty a single determination of density.

In lab, we determined uncertainty from replicates of density measurements.

How does the result from the single value measurement compare to the result determined from replicates? Are they consistent?

i	ρ_{BFi}
	g/cm
1	1.7162
2	1.7162
3	1.69942
4	1.7110
5	1.7152
6	1.70616
7	1.73097
8	1.73746
9	1.727

40

Example 2: Using CI/PI to Interpret Data

In Example 1, we used error propagation to calculate uncertainty a single determination of density.

In lab, we determined uncertainty from replicates of density measurements.

How does the result from the single value measurement compare to the result determined from replicates? Are they consistent?

Calculate the mean and the 95%CI of the mean using the replicates:

Replicate Worksheet

i p_{BFI}
g/cm
me

1/4	epiicate vi			
i	ρ_{BFi}	n=	9	
	g/cm	mean ρ=	1.718	g ² /ml ²
1	1.7162	s ² =	0.00015	g ² /ml ²
2	1.7162	s=	0.0121	g/cm
3	1.69942	s/sqrt(n)=	0.0040	g/cm
4	1.7110	2e _s =	0.008	g/cm
5	1.7152	te _s =	0.009	g/cm
6	1.70616			
7	1.73097			
8	1.73746			
9	1.727			

4

Side Question: What makes a replicate?

© Faith A. Morrison, Michigan Tech U.

Example 2: Using CI/PI to Interpret Data

In Example 1, we used error propagation to calculate uncertainty a single determination of density.

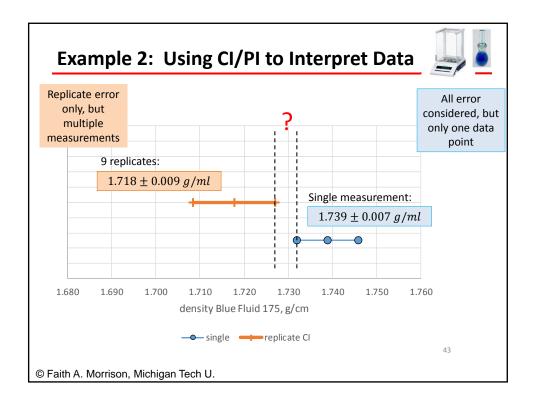
In lab, we determined uncertainty from replicates of density measurements.

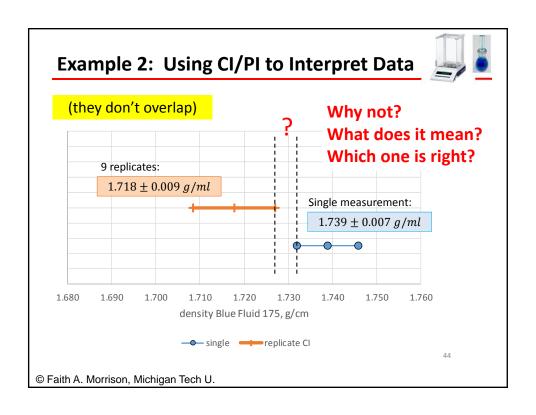
How does the result from the single value measurement compare to the result determined from replicates? Are they consistent?

Results:

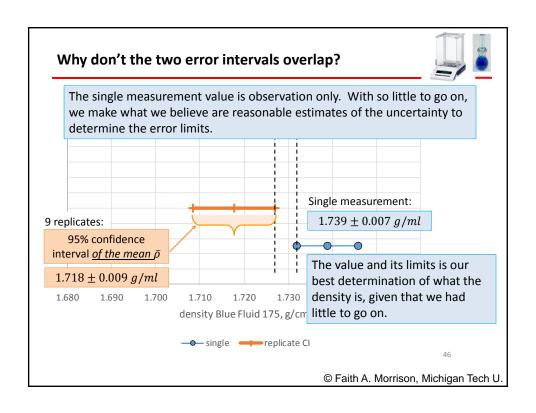
Mean of 9 replicates:

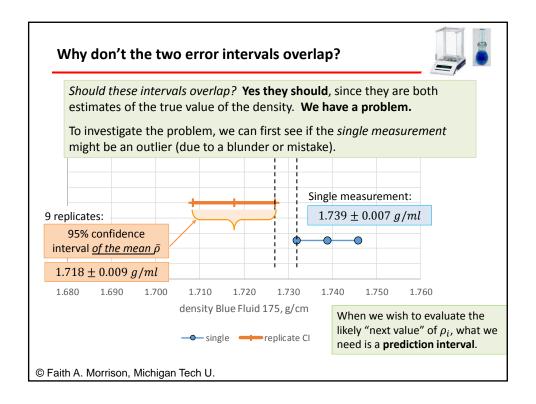
 $1.718 \pm 0.009 \ g/ml$

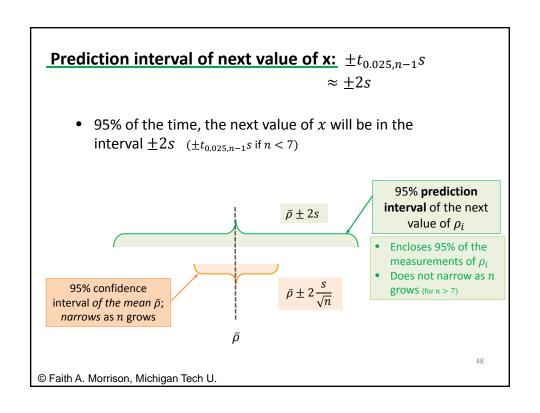

Single measurement:

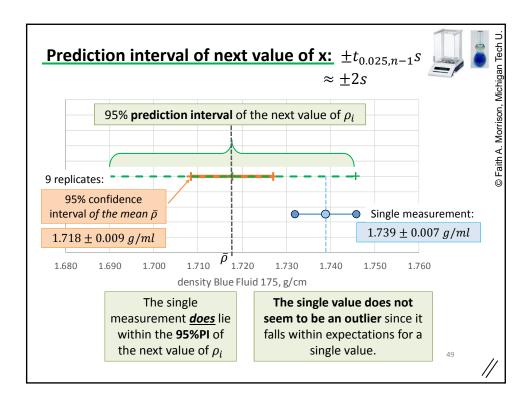

 $1.739 \pm 0.007 \ g/ml$

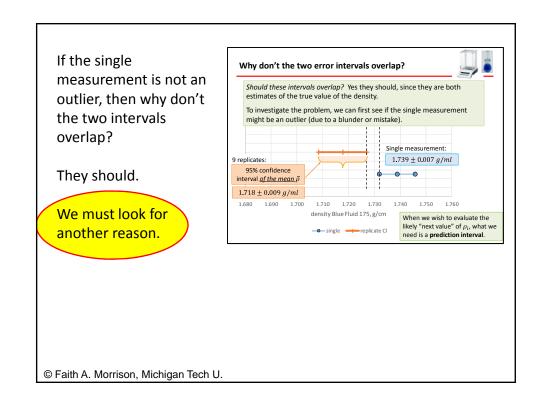
(error propagation)

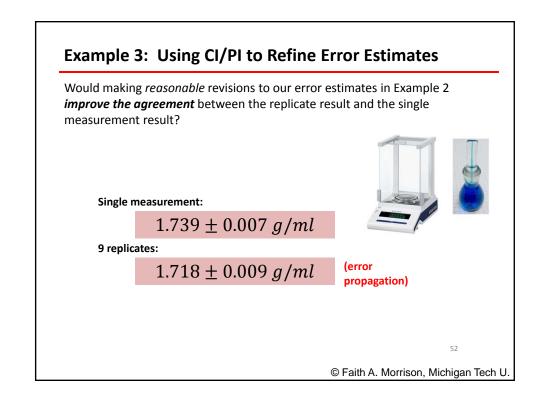

Are these two results consistent?

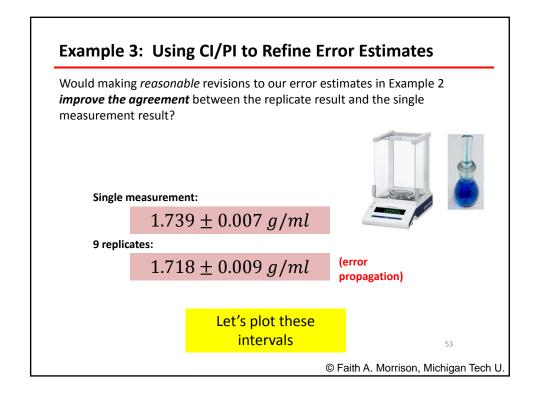

42

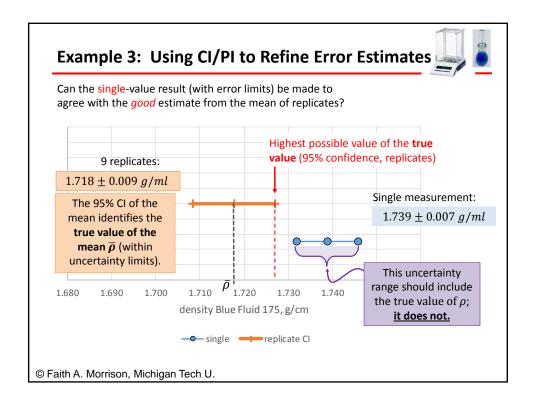


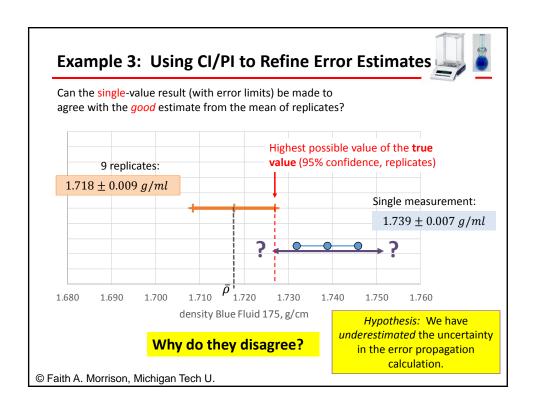


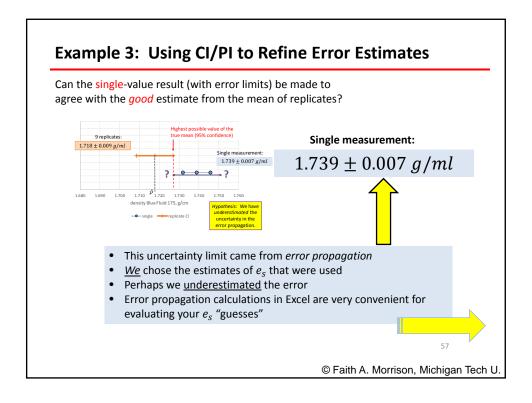


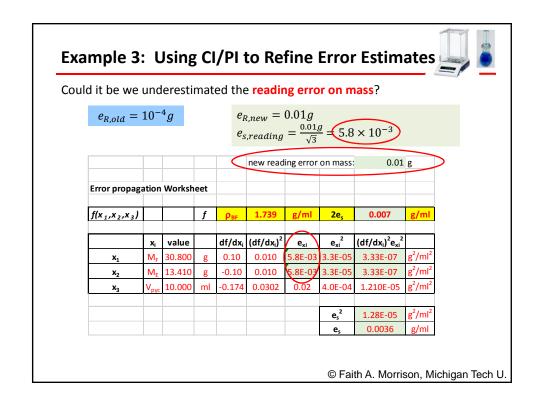


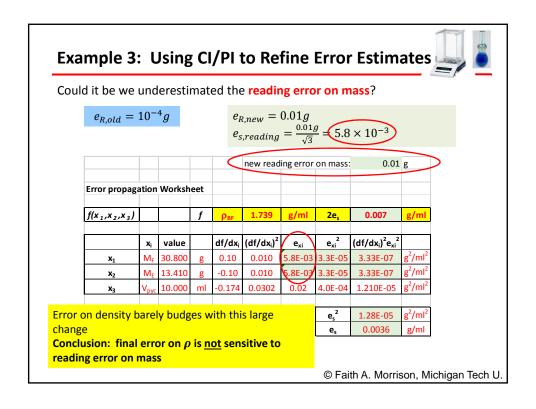


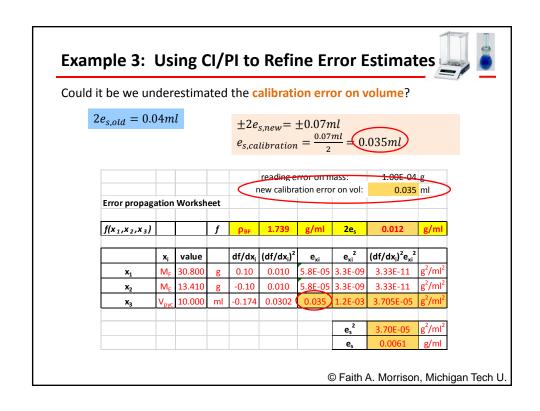


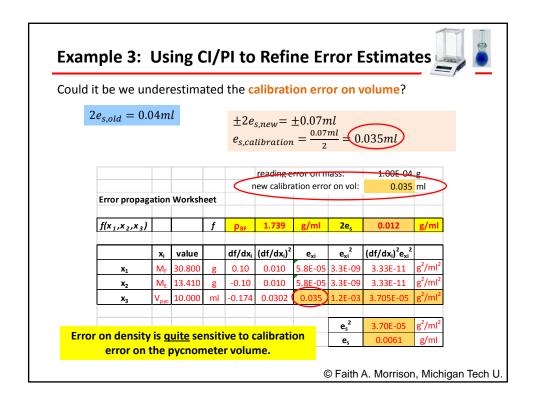

If the single Why don't the two error intervals overlap? measurement is not an Should these intervals overlap? Yes they should, since they are both outlier, then why don't estimates of the true value of the density. To investigate the problem, we can first see if the single measurement the two intervals overlap? Single measurement: $1.739 \pm 0.007 \ g/ml$ 9 replicates: 95% confidence They should. interval $\underline{\mathit{of the mean}}\, \bar{\rho}$ $1.718 \pm 0.009 \ g/ml$ We must look for density Blue Fluid 175, g/cm When we wish to evaluate the likely "next value" of ρ_i , what we need is a **prediction interval**. another reason. - single - replicate CI Hypothesis: The error limits determined for the single measurement are too narrow. © Faith A. Morrison, Michigan Tech U.

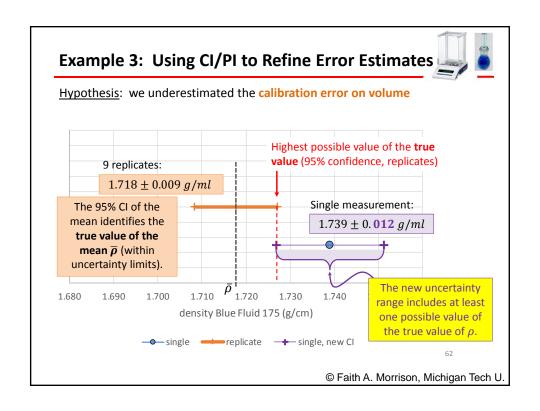












Example 3: Using CI/PI to Refine Error Estimates

Can we do this? (Seems like fudging the data)

- The individual measured density values are very sensitive to pycnometer volume
- The manufacturer reports a calibration uncertainty of $\pm 0.04ml$
- We need to increase this to $\pm 0.07ml$ to get a final answer consistent with the "true" value determined from replicates
- Hypothesis: lab workers may over/under fill pycnometer leading to this increased uncertainty compared to the manufacturer's limits

Yes, we can do this.

- Conclusion: good training and practice is needed in order to achieve the manufacturer's error tolerances
- Conclusion: It is preferable to have replicates rather than relying on a single measurement of a value.

9 replicates:

 $1.718 \pm 0.009 \ g/ml$

Single measurement:

 $1.739 \pm 0.012 \ g/ml$

replace "2" with $t_{0.025,n-1}$

63

© Faith A. Morrison, Michigan Tech U.

Summary: Error Analysis with Real Numbers

- To understand the accuracy of our numbers, we need to determine a *confidence interval*. $\bar{x}\pm 2e_{s}$ with 95.0% confidence For replicate data with n<7,
- The Standard error e_s for a measured quantity is the sum, in quadrature, of:
 - e_s determined by <u>replicates</u> $e_s = s/\sqrt{n}$
 - e_s by estimate of <u>reading error</u> $e_s = e_R/\sqrt{3}$
 - $e_{\scriptscriptstyle S}$ by estimate of <u>calibration error</u> $e_{\scriptscriptstyle S} = {\rm error\ limits/2}$
- Standard error e_f for derived quantities (arrived at from equations), is obtained through
 error propagation, which is a combination of variances.
- Replication improves the estimation of the mean.

 The answer from replicates is more reliable.
- The prediction interval of the next value of x should encompass 95% of all measured values.

95% PI: $\bar{x}\pm 2s$ or $\bar{x}\pm t_{0.025,n-1}s$ if n<7

than single values (if no systematic errors).

- The weighting values $\left(\frac{\partial f}{\partial x_i}\right)^2 e_{x_i}^2$ indicate the **impact** of individual errors on the final value.
- Estimates for e_S (particularly those obtained through e_R) may need to be re-evaluated, if unreasonably narrow confidence intervals are identified.

64

Note: We can use error propagation to justify the <u>quadrature</u> addition of independent errors.

Error in a Single Observation

Function \underline{f} : An individual measurement of density, ho_i

Error Propagation We use an analysis based on the Taylor series expansion of a nonlinear function. Taylor series: $f(x_1,x_2,x_3) = f^0 + \frac{\partial f}{\partial x_1}x_1 + \frac{\partial f}{\partial x_2}x_2 + \frac{\partial f}{\partial x_3}x_3 + h.o.t.$ A calculation of a value of the function $f(x_1,x_2,x_3)$ from uncertain values of x_1,x_2,x_3 as a stochastic variable of mean f and variance of given by: $\sigma_f^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 \sigma_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 \sigma_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 \sigma_{x_3}^2 + \frac{\partial f}{\partial x_3} = \frac{\partial f}{\partial x_3}$ where the variances $\sigma_{x_1}^2$ are the variances of the stochastic variables x_1,x_2,x_3 .

Stochastic variables:

 $\delta_1 = \delta_{i,replicate}$ is a stochastic variable of variance $e_{s,replicate}^2$

 $\delta_2 = \delta_{i,reading}$ is a stochastic variable of variance $e_{s,reading}^2$

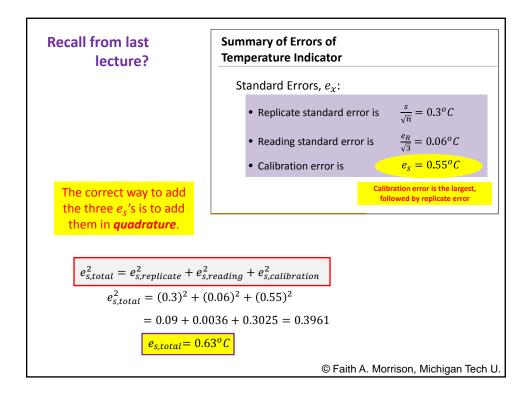
 $\delta_3 = \delta_{i,calibration}$ is a stochastic variable of variance $e_{s,calibration}^2$

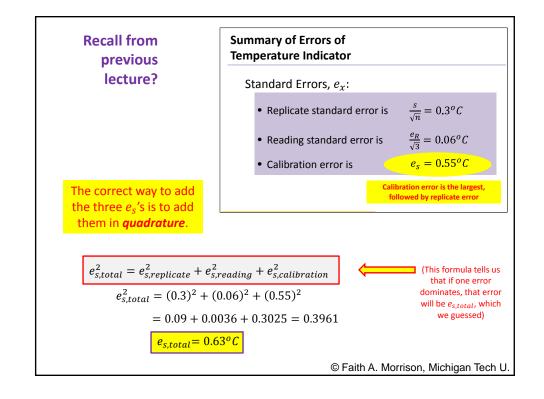
$$f_i = f_{true} + \delta_{i,replicate} + \delta_{i,reading} + \delta_{i,calibration}$$

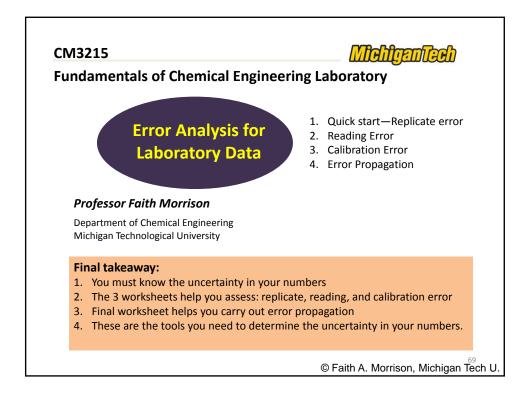
$$\frac{\partial f_i}{\partial \delta_{i,replicate}} = 1 \qquad \frac{\partial f_i}{\partial \delta_{i,reading}} = 1 \qquad \frac{\partial f_i}{\partial \delta_{i,calibration}}$$

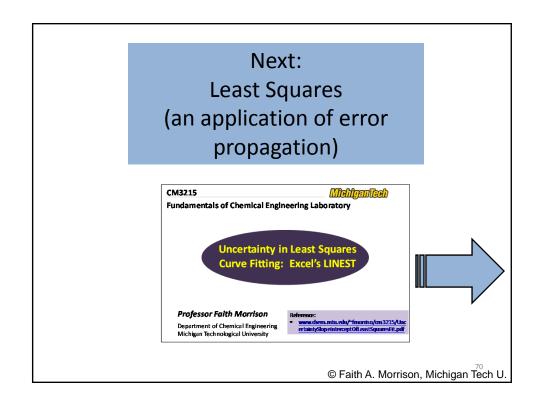
© Faith A. Morrison, Michigan Tech U.

Error in a Single Observation


$$f_i = f_{true} + \delta_{i,replicate} + \delta_{i,reading} + \delta_{i,calibration}$$


$$e_f^2 = \left(\frac{\partial \rho}{\partial \delta_1}\right)^2 e_s^2 \Big|_{replicate} + \left(\frac{\partial \rho}{\partial \delta_2}\right)^2 e_s^2 \Big|_{reading} + \left(\frac{\partial \rho}{\partial \delta_3}\right)^2 e_s^2 \Big|_{calibration}$$


$$e_f^2 = e_s^2 \Big|_{replicate} + e_s^2 \Big|_{reading} + e_s^2 \Big|_{calibration}$$


 \Rightarrow The correct way to add the three e_s 's is to add them in **quadrature**.

66

