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Obtaining a Good Estimate of a Measured Quantity

Summary:

Replicate error: -\

e  Measure the quantity several times — replicates

e The average value is a good estimate of the quantity we gre measuring if only

random errors are present
¢ The 95% confidence interval comes from £ ( **)e;
e (xx) = 2if the number of replicates is 7 or higher

e (*%) comes from the Student’s t distribution if N < 7
¢ Report one sig fig on error (unless that digit is 1 or 2)

Reading error:
e Determine signal needed to change reading

e  Determine half smallest division or decimal place

¢  Determine average of fluctuations

+  Max of those /+/3 =reading error

e use *2¢, for 95% confidence interval

Calibration error:
¢ Determine manufacturer maximum error allowable
¢ Assume least significant digit varies by +1
¢  Calibrate in-house
e Use largest uncertainty as determined above

Measured
quantities,
e.g.: mass,
temperature,
DC current,
time interval,
etc.

*  Replication cannot reduce calibration error ‘/
2
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Obtaining a Good Estimate of a Quantity

Replicate error .
P But how do we combine the
Calibration error errors?
Reading error
And what do we do when
My — Mg -
p= Voye we obtain a quantity from a
calculation?
u = palt < |

Q= me (Toue — Tin)

etc.

© Faith A. Morrison, Michigan Tech U.

Obtaining a Good Estimate of a Quantity

Replicate error .
P But how do we combine the
Calibration error errors?
Reading error
And what do we do when
My — Mg - )
p= Vove we obtain a quantity from a
calculation?
U = palt

Q= me (Tout - Tin)
Answer for both:

Propagate the error through
the calculation

etc.
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CM3215 Michiganjlech

Fundamentals of Chemical Engineering Laboratory

Statistics Lecture 4:

Error Propagation

Quick start—Replicate error
Reading Error

Calibration Error

Error Propagation

Least Squares Curve Fitting

Professor Faith Morrison

Department of Chemical Engineering
Michigan Technological University
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CM3215 Michiganjlech

Fundamentals of Chemical Engineering Laboratory

Statistics Lecture 4:

Error Propagation

References:

Professor Faith Morrison = Dealing with Data, Arthur J.
Lyon (Pergamon Press, NY 1970)
Department of Chemical Engineering

Michigan Technological University
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Example 1:

What is the uncertainty (95% confidence interval) in ppyefiuia as
determined in the lab?

e f——

Image source:
Image source: Ilen.wikipedia.org/wiki/Relative_density
www.coleparmer.com

© Faith A. Morrison, Michigan Tech U.

Example 1:

What is the uncertainty (95% confidence interval) in ppyefivia as
determined in the lab? o -

&

A

Mfull - Mempty

Pbluefluid =

prcnometer

e The value of density obtained is a function of
three measurements

e Each measurement has its own uncertainty o e oleparmer.com

Image source:
/len.wikipedia.org/wiki/Relative_density

© Faith A. Morrison, Michigan Tech U.
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Example 1: es = Standard Error

What is the uncertainty (95% confidence interval) in ppyefiuia as
determined in the lab?

Three potential error sources on each measured quantity:

S .
ey = — Standard error of replicates
Jyn
€r .
e =— Standard error due to Reading Error
V3
.= error limits Standard error due to Calibration Error
2
© Faith A. Morrison, Michigan Tech U.
1
Handy
Replicate Error Worksheet Michigan Technological University worksheet for
CM3215 Fundamentals of Chemical Engineering Lab Departmant of Ghemical Engnearing replicate error
Prof. Faith Morrison
This workshest guides the user through the of error and 95% Interval on a quantity that has been measwred
n times The repl -related standard &, may subseguently be used in propagatien-of-errar caloulations of derived
quantities.
Replicated Variable, ¥: Units:
Sample Standard Error,
Measured values Sample Mean, Sample " 95% Confidence Interval based on n
Y ¥poi ¥y 4 Variance, ¢ Di:::::‘ﬂv = replicates (Student’s ¢ distribution)
¥ Y] [ o
Y n=2 | £12.7¢, =
¥ n=3 +4.30e,
Y, n=4 | +318¢,
Ve n=5 | +2.78e,
Yg n=6 | +257e,
Ya nz7 12e,
o +1.96¢,
1 1 5 _y
T TE _.Z-(Y' 2 11-5ep-14
. . 10
www.chem.mtu.edu/~fmorriso/cm3215/ReplicateErrorWorksheet.pdf
© Faith A. Morrison, Michigan Tech U.
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iTech Handy

Reading Error Worksheet Michigan Technelogical University
CM3215 Fundamentals of Chemical Engineering Lab Department of Gremical Enginsering worksheet

Prof. Faith Morrison .
for reading

nis worksheet guides the user through the calculation of error and
or off 3 digital readout x and subject to 3
ard ereor e, may 4 ion of error calcul. f derived quantities. error

Device name:

Measured Quantity:
(give symbol)

{include units)

Representative value
o Quantity or Not Applicable

issue ta error
Sensitivity How much signal does t taketo |
(manufac. or estimated) cause the reading to change?

Resolution: limitation
Half smallest division or decimal
on marked scale or 2

I
digital readout place

Fluctuations with time

o abeamation (max-min)/2 3

Maximum of 1,2, & 3 ep =
—— anits)
tandard error based on e, = V3 e =

reading error.

95% Confidence Interval on the
reading:  +2e,

Nate: 1 for exsmpls

uncertainty, we do ot use this workheet. Instead, see the Calibration Error worksheet

13-Jan-16

11
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www.chem.mtu.edu/~fmorriso/cm3215/ReadingErrorWorksheet.pdf

Handy
Tech] worksheet for

Michigan Techrological University
G calibration error
Calibration Error Worksheet

CM3215 of Chemical i ing Lab
Prof. Faith Morrison

The error , is defined as the “best-case” standard error for a quantity as determined for a brand-new unit by 3
manufacturer or for a particular device by someone with authority to certify the value. For example, the technical
specifications of a device may indicate that itis accurate to a value +2e;. Alternatively, a value of a constant (the
viscometer constant a, for example) may be provided by the manufacturer with no specific uncertainty. In this
case, the rule of thumb methad of “least significant digit” is acceptable for evaluating the uncertainty. Finally, a
user may take steps to calibrate a meter on site; this error (likely to be g the “best
case” error) has the advantage of reflecting issues associated with the particular unitin question.

Device name:

Measured quantity: | Symbol: Representative value:
(include units)

Estimate of e:
(or Not Applicable)

Rigorous Method:

Manufacturer
. 2e=
maximum error
allowable
Rule of Thumb o
trathod Least significant digit

varies by at least

Least significant digit +12 426,

on provided value

Method 3:

2e,%
User calibration

95% Ci, Calibration error
only: quantity:Ze,

Maximum of
Methods 1-3
2=

(units)

12

www.chem.mtu.edu/~fmorriso/cm3215/CalibrationErrorWorksheet.pdf

© Faith A. Morrison, Michigan Tech U.
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Example 1: Whatis the uncertainty (95% confidence interval) in pyyefiia as
determined in the lab?

First:

What are the uncertainties ey, for pUis

Mfullf Memptyr and V;ch? ‘

R 4

—

You try.

Image source:
wwwAcoIeparmer.com

Image source:
/len.wikipedia.org/wiki/Relative_density

© Faith A. Morrison, Michigan Tech U.

Example 1: Whatis the uncertainty (95% confidence interval) in pyyefiia as
determined in the lab?

First: @
-

—_
What are the uncertainties e, for =/
Mfullf Memptyr and V;ch?

Standard errors:

Mfull: = 30.800 g

Mempty: = 134109

Voycnometer = 10.00 ml

© Faith A. Morrison, Michigan Tech U.
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Example 1: Whatis the uncertainty (95% confidence interval) in Py fiiq @S
determined in the lab?

First: @

|l .
What are the uncertainties e, for =/
Mfulll Memptyr and prc?

Standard errors:

Mfull: = 30.800 g
Mempty: = 13.410 g
Voycnometer = 10.00 ml}

© Faith A. Morrison, Michigan Tech U.

Example 1: Whatis the uncertainty (95% confidence interval) in Py efiiq @S
determined in the lab?

First: @

|l .
What are the uncertainties e, for =/
Mfulll Memptyr and prc?

Standard errors:

Mfull: = 30.800 g 00001 _ o (realmg
= 5. g .
Mem . — 13 410 \/g dominates)
pty- . 9 |
— max error allowable o
Vpyenometer = 10.00 mi } U o

Now, can we determine e; ,?
Yes = Propagation of Errors

© Faith A. Morrison, Michigan Tech U.
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Error Propagation

We seek to

¢ Combine the individual contributions to overall error:
replicate, reading, calibration

¢ Combine the errors associated with the various quantities in a

calculation.
_ Mfull - Mempty
Pbluefluid = vV
pycnometer

For both of these tasks we use an analysis based on the
calculation of variance. We use the Taylor series expansion
of a nonlinear function.

17

© Faith A. Morrison, Michigan Tech U.

Error Propagation

We use an analysis based on the Taylor series

expansion of a nonlinear function.  (perivation omitted)
Taylor series:
af af af
f(xl;xsz3) = fO +—x; +=——x, + —x3 + h.o.t.
axl axZ ax:;

(higher order terms)

A determination (measurement) of a value of the function f (x4, x5, x3) from uncertain
values of x4, x,, x3 is a stochastic variable of mean f and variance (rfz, given by:

2 2 2
g2 = i o2 + ﬁ o2 + ﬂ g2 4 Covariance
! axl 1 6x2 2 aJC3 3 terms, if x; are

correlated

where the variances J,?i are the variances of the stochastic variables x4, x5, x3.

18

© Faith A. Morrison, Michigan Tech U.
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Error Propagation

We use an analysis based on the Taylor series
expansion of a nonlinear function.  (perivation omitted)

Taylor series:

of af of
f(x1;x2,x3) = fO +—x; +=——x, + —x3 + h.o.t.
axl axZ axg )
(higher order terms)
A determination (measurement) of a value of the function f (x4, x5, x3) from uncertain

values of x;,x,, x5 is a stochastic variable of mean f and variance afz, given by:

often zero
2 2 2
. _[9f of of
of =(=—| o2 — | o2 —| a2 +¢
f 0 X1 P X2 d X3
X1 Xy X3 terms

where the variances J,?i are the variances of the stochastic variables x4, x5, x3.

19

Note: covariance terms are not always zero or
small; but they often are. For now, this is fine.

© Faith A. Morrison, Michigan Tech U.

Let’s now apply the Error Example 1:
. . What is the uncertainty (95% confidence interval) in pypefiuia 2
Propagation equation to determined in'the lab?
determine the error for = -
experimental density. &
L
Error Propagation equation —-‘E/
Function: B e st
mrEm——" © F aith A. Morrison, Michigan Tech L.
f (xlr X2, X3)

Error on Function:

2
2 (91 2 (9 .2

2
of

_ 2
of = T 0x1+ —2 cer+

— o
ox ox3 ) *3

20

© Faith A. Morrison, Michigan Tech U.
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(To avoid confusion with other variances,

Error PrOpagation we use e,; nomenclature for errors) ~

2 2 2

of of of /
2 2 2 7 2 —

Osp = <6x1> €t <6x2> €+ <ax3>

pbluefluid = f(Mfull: Mempty: prcnometer)

We estimate these
standard errors with
our 3 worksheets

21

© Faith A. Morrison, Michigan Tech U.

Error Propagation

2 2 2
s ex, | ex,
These come
M M from the
pbluefluld - f( fully Mempty» pycnometer formula for
Pbluefluid
Mg — Mg
Ppr = —F
V;JYC

22

© Faith A. Morrison, Michigan Tech U.
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] of \¢ of \2 of \'
Error Propagation (E) "@ ¢ @ ¢

f =ppr =

My — Mg
|74

pyc

0pgF
OMg

0PpF
dMg

0pBF

Wpye

23

© Faith A. Morrison, Michigan Tech U.

Error Propagation

2
0 d
dxq 1 dx,

We seek this, the

standard error of the
calculated property,

[ = Pbiuefiuid

Think of the squared partial derivatives as
the weighting functions for the individual
squared standard errors.

It’s good to look at these numbers.

)

2

2
of
ez, + <_6x3> e,%s

pbluefluid = f(Mfull; Mempty» prcnometer)

My — Mg
Ppr = —
Voyc

24

© Faith A. Morrison, Michigan Tech U.
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This worksheet guides the Lser thiough the determination of the standacd
MM@ error &, of a quantity f(x,, 3, %5, %y, %5) that s cakculated from measured
Michigan Technelogical University quantities x,, x,. ¥y, X, and .. The x, are subject to random errers. The
Copairmant of Cramical Bngisancg standard errar ¢, (replicate, reading. calibration; use the largest) for each
. variable x, is determined first, and these uncertainties are propagated to
Error Propagation Worksheet determine ¢, sing the relationship given below
£M3215 Fundamentals of Chemical Engineering Lab Worksheet
Prof. Faith Merrison
Farmula for f: Representative value of f- 95% Clof f: (f + 2e,) fO r error
) (include units) [include units) .

[y, %, X3, Xg, X5): propagation

Measured quantities, x; af e, = af 2

i
. _ 5 em, ( ) o2
¥ Symbol Rcﬂr::::::uvr dxl w or 5 or ey, dx; £
Xy
X2
*3
Xy
s
ef, =
af 2 aF 2 aF 2 aF H aF F] !
a2 =L 2 Pt 2 — 2 =) e ] a2 T Standard
€3¢ (ax,) e, + (axz) e+ (dx,} e+ (ax,) et (axg) €xs e — | et
Sf calculated
quantity, f
. . 25
www.chem.mtu.edu/~fmorriso/cm3215/ErrorPropagationWorksheet.pdf
© Faith A. Morrison, Michigan Tech U.

Example 1:

What is the uncertainty (95% confidence interval) in ppyefiyia as
determined in the lab?

/ﬁ. fo—

| My = 30.800 g
@i_

Mz = 134109
Vpye = 10.00 ml

Density:

e — —
_ My — Mg
PBr = v
pyc
Image source: Image source: 26
www.coleparmer.com Ilen.wikipedia.org/wiki/Relative_density

© Faith A. Morrison, Michigan Tech U.
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Example 1

. What is the uncertainty (95% confidence interval) in ppyefiuia as
° determined in the lab?

Formula for f:

Representative value of f:

95% C.L. of f: (f + 2e,)

_ MF - ME (include units) (include units)
x5, x3,%4,%5): | PRE = %
pyc
Measured quantities, x; ] e. = F) 2
Representative f S or & ore, ( f) 52f
X; Symbol P value dx; N 73 ¢ ax; t
X1
Xz
X3
X
X5
ef =
2 2 z 2z 2 f—
e = (af) el + (ﬂ) e + (ﬁ) el + (ﬁ) el + (ﬂ) &2 ———{ Standard
f dxy 1 dx, 2 x5 3 0x, + dxs s e.. = error of
i calculated

quantity, f

© Faith A. Morrison, Michigan Tech U.

Example 1

. What is the uncertainty (95% confidence interval) in ppyefiuia as
° determined in the lab?

Formula for f: Representative value of f: 95% C.I. of f: (ftzej,]
f( ) p _ MF - ME (include units) (include units)
X1, X, X3, X4, X5 )t BF —
Voye 1.739 g/ml
Measured quantities, x; ] e. = 2
— o o 2y e
x; Symbol eprisatla::atwe ax{' N or e or eg, axi i
x| My 30.800 g
Xy | Mg 13.410 g
X3 | Ve 10.00 ml .
X
x5
e =
af 2 af 2 of 2 af 2 af 2 I
z _ (Y1) 2 i N1 il -1 It T It Standard
=) () 4+ () 2+ Gr) e+ G) 2 | S
i calculated

quantity, f

© Faith A. Morrison, Michigan Tech U.

2/1/2016
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Example 1

. What is the uncertainty (95% confidence interval) in ppefiuia s
* determined in the lab?

J (g, 202, X3, %4, X5):

Measured quantities, x;

x; | Symbol | Pereemate
Xy | Mg 30.800 g

Xz | Mg 13410 g

X3 | Voye 10.00 ml

X4

s

- G oo Gr)

FnrmulafifMF _ ME
Per =,

Representative value of f:
(include units)

95% C.L. of f: (f + 2e,)

(include units)

© Faith A. Morrison, Michigan Tech U.

Example 1

. What is the uncertainty (95% confidence interval) in ppefiuia s
* determined in the lab?

FnrmulafmeF _ ME

Representative value of f:
(include units)

95% C.L. of f: (f + 2e,)

(include units)

© Faith A. Morrison, Michigan Tech U.

30

(x4, 09, X3, X4, X5): | PBF = 7
]y, 3, X3, x4, X Voye 1.739 g/ml 1.739 + 0.007 g/ml
Measured quantities, x; af ey, = (ﬂf )2 )
. D 5 eg
x; Symbol Repris;::atwe ax; JT‘T or T; oreg, ax; €x;
x| M 30.800 g 1/ Ve 58x1075g [3.3 x 1071 g2/ml?
*z | Mg 13410 g =1/ Voye 58x107%g |3.3 x 107 g2/ml?
X3 | Vyye 10.00 ml —(Mp — Mg)/Viye 0.02ml 121 x 1075 g?/mi?
X4
X5
2
es; =1.21 x 1075 g2/ml?
af 2 af 2 af 2 af 2 af 2 r
2 _ [ 2 -4 2 =7 2 =7 2 =t 2 ndari
Esp = (Bxl) e+ (6x2) &+ (6x3) et (6x4) ex t (axs) & P units ::;ufd
Sf~ 0.0035 g/ml calculated
quantity, f

2/1/2016
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. What is the uncertainty (95% confidence interval) in ppyefiuia as

Example 1' determined in the lab?

“epresentative value of f:
(. rclude units)

Formula for f:
Mp — Mg

95% C.L. of f: (f + 2e,)
(include units)

JCuxxaxa s | Por = Voye 1.739 g/ml 1.739 4+ 0.007 g/ml
Measured quant‘ities, x ﬂ e, = af\2 ,

x; | sympol | Fepresentatie ax; ForFores (axi) E

X1 | Mg 30.800 g 1/Vyye 58x107%g |3.3x 107 g2/ml?

Y2 | Mg 13.410 g —1/Voye 58x1075g [3.3x 1071t g2/ml?

23 | Voye 10.00 ml —(Mp — Mg)/Vi3c 0.02ml  [1.21 x 1075 g?/mi?

"NOTE: The formula here must be

dimensionally consistent

(no[implied|unit conversions— "

€% =1.21x 105 g2/mi2

Standard

€sf = 0.0035

units

error of

g/ml| calculated

include them explicitly)

© Faith A. Morrison, Michigan Tech U.

31

quantity, f

Example 1: determined in the lab?

. What is the uncertainty (95% confidence interval) in ppyefiuia as

Excel is an excellent tool for error propagation

Error propagation Worksheet
fixixaxs) || | £ | por | 2739 | g/mi | 2e, | | g/ml
% | value df/dx; | (df/dx)?| ey ey’ |(dffdx)’e,’
X M; |30.800| g g*/ml?
X M; |13.410| g g’/ml?
X V,,c|10.000| ml g*/ml?
e’ g'/ml’
e g/ml

© Faith A. Morrison, Michigan Tech U.

32
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. What is the uncertainty (95% confidence interval) in ppefiuia s

Example 1: determined in the lab?

Excel is an excellent tool for error propagation

Error propagation Worksheet

f(X1,X5,%5) | | f
X; | value
X M; |30.800
X M |13.410

X3 Vpy[10.000| ml

33

© Faith A. Morrison, Michigan Tech U.

. What is the uncertainty (95% confidence interval) in ppefiuia s

Example 1: determined in the lab?

Excel is an excellent tool for error propagation

Error propagation Worksheet

f(xl,xz,x3)| | f | Per | 1.739 | g/ml | 2e, | 0.007 |g/m|
x | value df/dx; | (df/dx)?| ey e |(df/dx)’e,?

X M |30.800 g | 0.10 | 0.010 [5.8E-05(3.36-09| 3.336-11 |g*/ml?

X M |13.410| g | -0.10| 0.010 [5.8E-05|3.3E-09| 3.336-11 |g*/ml’

X3 V,,c|10.000| ml |-0.174] 0.0302 | 0.02 |4.0E-04| 1.210E-05 |g’/ml®

e? | 1.21E-05 |g/ml

e 0.0035 g/ml

34

© Faith A. Morrison, Michigan Tech U.
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Example 1' determined in the lab?

. What is the uncertainty (95% confidence interval) in ppyefiuia as

Excel is an excellent tool for error propagation

Error propagation Worksheet

f(xl,xz,x3)| | | f | Psar | 1.739 | g/ml | 2e, | 0.007 |g/m|
x | value df/dx; | (df/dx)’| e, e |(df/dx)’e,’

X1 M; |30.800| g | 0.10 | 0.010 |5.8E-05|3.3E-09 3.33E-1R g*/ml’

X Mg |13.410| g |-0.10| 0.010 [5.8E-05(3.3E-09( 3.33-11 |g*/ml’

X3 Vyye|10.000] mi |-0.174] 0.0302 [ 0.02 |4.0e-04]\1.210€-05/]g*/mP

2 2 2
We can readily see that / e 1.21E-05 |g/ml
e 0.0035 g/ml

the error in pycnometer
volume dominates the
error in the calculation!

35

© Faith A. Morrison, Michigan Tech U.

Example 1:

What is the uncertainty (95% confidence interval) in ppyefivia as
determined in the lab?

Answer: d@ﬁ/ .

px 2es,p

1.739 + 0.007 g /ml
g/ Y

(from error propagation; single measurement)

36

© Faith A. Morrison, Michigan Tech U.

2/1/2016

18



Statistics 4: Error Propagation CM3215 2/1/2016
Morrison

Summary: Error Analysis with Real Numbers

e To understand the accuracy of our numbers, we need to determine a
confidence interval.

For replicate datawithn < 7,

X * 2e; with 95.0% confidence anm
replace “2” with tg 025 n—1

e The Standard error e, for a measured quantity is the sum in quadrature of:
es determined through replicates e, = s/\/n
e by estimate of reading error e; = e /\/3
es by estimate of calibration error e = error limits/2

* Standard error e for derived quantities (arrived at from equations), is
obtained at through error propagation, which is a combination of
variances.

37

© Faith A. Morrison, Michigan Tech U.

CM3215 (and U.0.) Error Analysis =
Expectations - e

e  From this point forward, you are to include
uncertainty limits (95% Cl or Pl intervals as
appropriate) on your data.

* | will be working with you for the remainder of the semester to develop your
ability to make your error analysis judgments.

¢ Please include error analysis worksheets in your report appendix (if there are
many worksheets, include only selected, significant worksheets; please use your
judgment)

* For error propagation, you may create tables for the appendix from your Excel
calculations (recommendation: Paste Special as an Enhanced Metafile so that
you can easily adjust the size of the graphic; put numbers in scientific notation).

© Faith A. Morrison, Michigan Tech U.
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Let’s do some more work with
the error calculations to see m
what it all means

Summary: Error Analysis with Real Numbers

¢ To understand the accuracy of our numbers, we need to determine a
confidence interval.

For replicate data withn < 7,

- . o .
X + 2eg with 95.0% confidence replace “2” with tg.g25n-1

¢ The Standard error e, for a measured quantity is the sum in quadrature of:
es determined through replicates e; = s/\n
e by estimate of reading error e; = ez /N3
es by estimate of calibration error e; = error limits/2

* Standard error ef for derived quantities (arrived at from equations), is
obtained at through error propagation, which is a combination of
variances.

1

© Faith A. Morrison, Michigan Tech U.

39

© Faith A. Morrison, Michigan Tech U.

Example 2: Using CI/PI to Interpret Data

In Example 1, we used error propagation to calculate uncertainty a single
determination of density.

In lab, we determined uncertainty from replicates of density measurements.

How does the result from the single value measurement compare to the result
determined from replicates? Are they consistent?

Peri
g/cm I_f‘;'ﬂ r .
1.7162 _-:r/

1.7162 g

1.69942
1.7110
1.7152
1.70616
1.73097
1.73746
1.727

V|0 (N[ |[d|wW|N|-

40

© Faith A. Morrison, Michigan Tech U.
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Example 2: Using CI/PI to Interpret Data

In Example 1, we used error propagation to calculate uncertainty a single
determination of density.

In lab, we determined uncertainty from replicates of density measurements.

How does the result from the single value measurement compare to the result
determined from replicates? Are they consistent?

Calculate the mean Replicate Worksheet
and the 95%Cl of the

[ )
a i " = L5
mean using the f—Pexi n S — /" .
replicates: g/cm mean pz= 1.718 gz/ml2 Ly /
1[1.7162 s’=| 0.00015|g’/ml
2|1.7162 s=| 0.0121|g/cm
3|1.69942 s/sqrt(n)=|  0.0040|g/cm
4|1.7110 2e= 0.008|g/cm
5 ; 5|1.7152 te= 0.009|g/cm
Side Question: /170616
What makes a 711.73097
replicate? 8|1.73746 a1
9|1.727

© Faith A. Morrison, Michigan Tech U.

Example 2: Using CI/PI to Interpret Data

In Example 1, we used error propagation to calculate uncertainty a single
determination of density.

In lab, we determined uncertainty from replicates of density measurements.

How does the result from the single value measurement compare to the result
determined from replicates? Are they consistent?

Results:

€
Mean of 9 replicates: == .
—7

1.718 £ 0.009 g/ml

Single measurement:

1.739 £ 0.007 g/ml ™

propagation)

Are these two results consistent?

42

© Faith A. Morrison, Michigan Tech U.
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Example 2: Using CI/PI to Interpret Data =5 i

Replicate error

All error
onIy,.but 3 considered, but
multiple R only one data

. .

measurements b point
1 1
9 replicates: ! !
1.718 +0.009 g/ml |
| Single measurement:

| 1| 173940007 g/ml |
: 1
1 |
1
1
1

1.680 1.690 1.700 1.710 1.720 1.730 1.740 1.750 1.760
density Blue Fluid 175, g/cm

—0—single esm=replicate Cl
43

© Faith A. Morrison, Michigan Tech U.

Example 2: Using CI/PI to Interpret Data — -

(they don’t overlap) Why not?
. *» What does it mean?
_ i 1+ Which one is right?
9 replicates: ! !
1.718 +0.009 g/ml |
; : o Single measurement:

| 1| 173940007 g/ml |
i —o—9

1.680 1.690 1.700 1.710 1.720 1.730 1.740 1.750 1.760
density Blue Fluid 175, g/cm

—0@—single === replicate Cl
44
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Why don’t the two error intervals overlap?

&
s
-7 T

When averaging replicates of p, we are estimating the mean value, p. The
95% Cl we calculate (+ts/+/n) is the confidence interval of the mean.
The error limits on the mean narrow as n increases.

Single measurement:
| 1739 +0.007 g/ml |

9 replicates:

95% confidence

interval of the mean p
1.718 + 0.009 g/ml

1.710 1.720 1.730 1.740 1.750 1.760

The expectation is
density Blue Fluid 175, g/cm

that the true value
of the density will be , ,

. .. ——ssingle replicate CI
within these limits .

© Faith A. Morrison, Michigan Tech U.

Why don’t the two error intervals overlap?

&
s
-7 T

The single measurement value is observation only. With so little to go on,
we make what we believe are reasonable estimates of the uncertainty to
determine the error limits.

Single measurement:

9 replicates: | 1.739+0.007 g/ml |
95% confidence & - -
interval of the mean p 1
! | The value and its limits is our
1.718 £ 0.009 g /ml best determination of what the

1680 1690 1700 1710 1720 1730 | density is, given that we had
density Blue Fluid 175, g/cn little to go on.

—@—ssingle replicate Cl
46
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Why don’t the two error intervals overlap?

&
Py
:-_-/

Should these intervals overlap? Yes they should, since they are both
estimates of the true value of the density. We have a problem.

To investigate the problem, we can first see if the single measurement

might be an outlier (due to a blunder or mistake).
1

1
1
1
1
! .
! Single measurement:
1
9 replicates: !
1

| 1739 +0.007 g/ml |

95% confidence

interval of the mean p
1.718 + 0.009 g/ml

1.680 1.690 1.700 1.710 1.720 1.730 1.740 1.750 1.760
density Blue Fluid 175, g/cm

When we wish to evaluate the
likely “next value” of p;, what we

—@— single replicate Cl . B
& P need is a prediction interval.

© Faith A. Morrison, Michigan Tech U.

Prediction interval of next value of x: +t; 05,15
=~ +2s

¢ 95% of the time, the next value of x will be in the
interval £2s  (ftgo25n-15ifn<7)

95% prediction

5t 2s / interval of the next
- value of p;
\ ¢ Encloses 95% of the
measurements of p;
e Does not narrow as n
grows (forn > 7)

p

95% confidence
interval of the mean p;
narrows as n grows

b D wt e ot

48
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Prediction interval of next value of x: +t;035,-15

&
Lty )
:-:/

~ +2s

‘ 95% prediction interval of the next value of p; ‘

9 replicates:

95% confidence
interval of the mean p

1.718 + 0.009 g/ml

1.680 1.690 1.700 1.710
density Blue Fluid 175, g/cm

© Faith A. Morrison, Michigan Tech U.

@—O——@ Single measurement:
| 1.739 4 0.007 g/ml

1.720 1.730 1.740 1.750 1.760

The single The single value does not
measurement does lie seem to be an outlier since it
within the 95%PI of falls within expectations for a
the next value of p; single value. 49

Va

If the single
measurement is not an
outlier, then why don’t
the two intervals
overlap?

They should.

We must look for
another reason.

Why don’t the two error intervals overlap?

=8

Should these intervals overlap? Yes they should, since they are both
estimates of the true value of the density.

To investigate the problem, we can first see if the single measurement
might be an outlier (due to a blunder or mistake).
i

'
'

'

[

1 Single measurement:
'

'

'

9 replicates: 1| 1739 £0.007 g/ml
95% confidence . 0 0

interval of the mean p
1.718 £ 0.009 g/ml

1.680 1.690 1.700 1710 1.720 1.730 1.740 1.750 1.760
density Blue Fluid 175, g/cm

When we wish to evaluate the
likely “next value” of p;, what we

—o—single replicate CI . St
€ P need is a prediction interval.

© Faith A. Morrison, Michigan Tech U.
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1 o
If the Sl ngle Why don’t the two error intervals overlap? 4 -
. E T i
m rementis n n
easure e t S Ot a Should these intervals overlap? Yes they should, since they are both
. ) " .
0 utl ier, the n Why d on’t estimates of the true value of the density.
. To investigate the problem, we can first see if the single measurement

th e tWO | nte rva IS might be an outlier (due to a blunder or mistake).

I
overlap? T

I Single measurement:

o

I

95% confidence '
They Should. interval of the mean p E !
1.718 + 0.009 g/ml T
1680 1690 1700 1710 1720 1730 1740 1750 1760
We mUSt IOOk for density Blue Fluid 175, g/cm When we wish to evaluate the
—e—singl icate ¢ likely “next value” of p;, what we

another reason. e SIS e is 3 prediction nterval.

Hypothesis: The error limits
determined for the single
measurement are too narrow.

© Faith A. Morrison, Michigan Tech U.

Example 3: Using CI/PI to Refine Error Estimates

Would making reasonable revisions to our error estimates in Example 2
improve the agreement between the replicate result and the single
measurement result?

Single measurement: g .
1.739 + 0.007 g/ml —_— /

9 replicates:

1.718 +£ 0.009 g/ml ™

propagation)

52
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Example 3: Using CI/PI to Refine Error Estimates

Would making reasonable revisions to our error estimates in Example 2
improve the agreement between the replicate result and the single
measurement result?

Single measurement: - .
1.739 + 0.007 g /ml =/

9 replicates:

1.718 +£ 0.009 g/ml ™

propagation)

Let’s plot these
intervals 53

© Faith A. Morrison, Michigan Tech U.

&3

Example 3: Using CI/PI to Refine Error Estimates ~4 -

Can the single-value result (with error limits) be made to
agree with the good estimate from the mean of replicates?

9 replicates:

1.718 + 0.009 g/ml
Single measurement:

1.739 + 0.007 g/ml

1
1
1
]
1
1
1
1
1
I
1
5!

1.680 1.690 1.700 1.710 P 1.720 1.730 1.740 1.750 1.760
density Blue Fluid 175, g/cm

——ssingle replicate Cl

© Faith A. Morrison, Michigan Tech U.
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Example 3: Using CI/PI to Refine Error Estimates ~4 8

Can the single-value result (with error limits) be made to
agree with the good estimate from the mean of replicates?

Highest possible value of the true

9 replicates: value (95% confidence, replicates)
1.718 £ 0.009 g/ml l
The 95% Cl of the Single measurement:

mean identifies the
true value of the
mean p (within

uncertainty limits).

1.739 + 0.007 g/ml

i

This uncertainty
range should include
the true value of p;

it does not.

1.680 1.690 1.700 1.710 P 1.720 1.730 1.740
density Blue Fluid 175, g/cm

—e—ssingle replicate Cl

© Faith A. Morrison, Michigan Tech U.

Example 3: Using CI/PI to Refine Error Estimates ~4 8

Can the single-value result (with error limits) be made to
agree with the good estimate from the mean of replicates?

Highest possible value of the true
9 replicates: value (95% confidence, replicates)

1.718 + 0.009 g/ml l
Single measurement:
1.739 + 0.007 g/ml

e—0—0_—9 ,7

1.680 1.690 1.700 1.710 P 1.720 1.730 1.740 1.750 1.760

density Blue Fluid 175 .
ensity Bluerul g/cm Hypothesis: We have

underestimated the uncertainty
in the error propagation
calculation.

Why do they disagree?

© Faith A. Morrison, Michigan Tech U.
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Example 3: Using CI/PI to Refine Error Estimates

Can the single-value result (with error limits) be made to
agree with the good estimate from the mean of replicates?

Highest possible value of the

9 replicates: true mean (95% confidence) . .

1.718 £ 0.009 g/ml S"’\gle measurement:
. : Single measurement:

3 w1739 + 0,007 g/ml

?e—e—o?

1680 1690 1700 1710 P
density Blue Fluid 175, g/cm

1720 1730 1740 1750 1760

Hypothesis: We have
underestimated the
uncertainty in the
error propagation.

—o—single replicate CI

e This uncertainty limit came from error propagation

¢ We chose the estimates of eg that were used

e Perhaps we underestimated the error

e Error propagation calculations in Excel are very convenient for
evaluating your e “guesses”

57
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Example 3: Using CI/PI to Refine Error Estimates ~4 -

Could it be we underestimated the reading error on mass?

€Rold = 10_49 ernew = 0.01g

__0.01g
es,reading T3
@or on mass: 0.01g

Error propagation Worksheet

[fx x50 | | £ ] poe | 2739 [ g/mi | 2e, | 0.007 |g/mi]
% | value df/dx;|(df/dx)*)/ ey \| e |(df/dx)’e

X M |30.800( g 0.10 0.010 {5.8E-03]3.3E-05| 3.33E-07 gz/mlZ

X M [13.410| g | -0.10| 0.010 |6.8E-03|3.3E-05| 3.33e-07 [g%/ml’

X3 Vpye|10.000| ml [-0.174| 0.0302 | 0:02 [4.0E-04| 1.210€-05 |g*/ml’

e? | 1.286-05 |g/ml’

e 0.0036 g/ml

© Faith A. Morrison, Michigan Tech U.
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Example 3: Using CI/PI to Refine Error Estimates ~4 8

Could it be we underestimated the reading error on mass?

eroa = 107*g ernew = 0.01g
__0.01g
es,reading -3
@or on mass: 0.01g

Error propagation Worksheet

[foxo o) || [ [ pu | 1739 | g/mi | 2e, | 0.007 |g/mi]
x | value df/dx; | (df/dx)*)/ ey e |(df/dx)’e,’
X1 M [30.800| g | 0.10 | 0.010 [5.86-03)3.3E-05| 3.336-07 |g*/ml’
X M [13.410| g | -0.10| 0.010 |6.8E-03|3.3E-05| 3.33e-07 [g*/ml’
X3 Vo[ 10.000] ml [-0.174] 0.0302 | 0:02 [4.0E-04| 1.210E-05 |g*/ml®
Error on density barely budges with this large e’ 1.28€-05 |g*/ml®
change e, 0.0036 | g/ml

Conclusion: final error on p is not sensitive to
reading error on mass

© Faith A. Morrison, Michigan Tech U.

&

Example 3: Using CI/PI to Refine Error Estimates ~4 -

Could it be we underestimated the calibration error on volume?

Zes,o1q = 0.04ml 426, o= +0.07ml

__0.07ml
€s,calibration = 2
C_ new calibration error on vol: 0.035 ml p)

Error propagation Worksheet

|f(x1,xz,x3)| | | f | Per | 1.739 | g/ml | 2e | 0.012 | g/mll
% | value df/dx | (df/dx)?| ey e, |(df/dx) e’

X, M [30.800| g | 0.10 | 0.010 [5.86-05|3.36-09| 3.33E-11 |g*/ml’

X, M [13.410| g |-0.10| 0.010 [5.86-05|3.36-09| 3.33E-11 |g’/ml’

X3 V,yc[10.000| ml [-0.174] 0.0302 \0.035) 1.2E-03| 3.705E-05 |g’/ml’

e? | 3.70E-05 |g*/ml’
e 0.0061 g/ml

© Faith A. Morrison, Michigan Tech U.
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Example 3: Using CI/PI to Refine Error Estimates ~4 8

Could it be we underestimated the calibration error on volume?

Zes‘old = 0.04ml izes,new= +0.07ml

__0.07ml
€s,calibration = 2
C_ new calibration error on vol: 0.035 ml p)

Error propagation Worksheet

(x| | [ £ [ por | 1739 | g/mi | 2e, | 0012 |g/ml]
% | value df/dx, | (df/dx)?| ey e, |(df/dx) e’

X; M 130.800| g 0.10 0.010 |[5.8E-05|3.3E-09| 3.33E-11 gz/ml2

X Mg [13.410| g | -0.10| 0.010 |5.8E-05|3.3E-09| 3.33E-11 gz/ml2

X3 Vo[ 10.000] mi [-0.174] 0.0302 {0.035 ) 1.2€-03] 3.705E-05 [g/mP

2 2 2
o i L X . e 3.70E-05 |g’/ml
Error on density is quite sensitive to calibration e, 0.0061 | g/ml

error on the pycnometer volume.

© Faith A. Morrison, Michigan Tech U.

@

Example 3: Using CI/PI to Refine Error Estimates ~4 -

Hypothesis: we underestimated the calibration error on volume

Highest possible value of the true
9 replicates: value (95% confidence, replicates)

1.718 + 0.009 g/ml l

The 95% Cl of the 4—'—5- Single measurement:
1

mean identifies the ! ‘ 1.739 £ 0.012 g/ml ‘

true value of the
mean p (within ! . /I
. | (-

uncertainty limits).
1.680 1.690 1.700 1.710 p 1.720 1.730 1.740
density Blue Fluid 175 (g/cm)

The new uncertainty

range includes at least
one possible value of
the true value of p.

—@—single emmmreplicate —4—single, new Cl
62

© Faith A. Morrison, Michigan Tech U.

2/1/2016

31



Statistics 4: Error Propagation CM3215

Morrison

Example 3: Using CI/PI to Refine Error Estimates ~4 8

Can we do this?  (Seems like fudging the data)

The individual measured density values are very sensitive to
pycnometer volume

The manufacturer reports a calibration uncertainty of +0.04ml

We need to increase this to £0.07ml to get a final answer consistent
with the “true” value determined from replicates

Hypothesis: lab workers may over/under fill pycnometer leading to this | Yes, we
increased uncertainty compared to the manufacturer’s limits can do

this.
Conclusion: good training and practice is needed in order to achieve

the manufacturer’s error tolerances

Conclusion: It is preferable to have replicates rather than relying on a

single measurement of a value. //
9 replicates: Single measurement:
1.718 £+ 0.009 g/ml 1.739 £ 0.012 g/ml ‘ o

© Faith A. Morrison, Michigan Tech U.

Summary: Error Analysis with Real Numbers

¢ To understand the accuracy of our numbers, we need to determine a confidence interval.

X + 2e, with 95.0% confidence For replicate data withn < 7,
replace “2” with tg 25 n-1

¢ The Standard error e for a measured quantity is the sum, in quadrature, of:

* Standard error ef for derived quantities (arrived at from equations), is obtained through
error propagation, which is a combination of variances.

¢ Replication improves the estimation of the mean.

¢ The prediction interval of the next value of x should 95% PI: X + 2s
encompass 95% of all measured values. orXx + tgoosn-15ifn <7

2
¢  The weighting values (—) e,%i indicate the impact of individual errors on the final value.

¢ Estimates for e; (particularly those obtained through eg) may need to be
re-evaluated, if unreasonably narrow confidence intervals are identified. 64

e determined by replicates e = s/\n

e, by estimate of reading error e; = eg /3
es by estimate of calibration error egs= error limits/2

The answer from replicates is more reliable
than single values (if no systematic errors).

of
ax;

© Faith A. Morrison, Michigan Tech U.
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Error Propagation

Note: We can use error

We use an analysis based on the Taylor series

propagation to justify the expansion of a nonlinear function,
quadrature addition of e o o o "
fx1,x0,%3) = 0+ I tag et hoo.t.

independent errors.

Acalculation of a value of the function f (x, X, ¥;) from uncertain values of
Xy, 3,3 Is a stochastic variable of mean / and variance a7’ given by:

ro

, ot
of \* of \* of

> (N 2 (9N 2 (2L 2 40

o (63(1) %t 5m) 7 o) T T amag e

correlate

Error in a Single Observation

where the variances o7, are the variances of the stochastic variables x;, Xz, X3.

Function f: An individual measurement of density, p;

Stochastic variables:
_ . . . . 2
81 = & repticate 1s @ stochastic variable of variance e repiicqte

- ; ; ; ; 2
82 = bi reaaing is @ stochastic variable of variance € ,.¢q4ing

03 = 8 catibration 1S @ stochastic variable of variance egca”bmtion

fi = ftrue + 6i,replicate + 6i,reading + 5i,calibration

A constant af 6f af
i i
I L E——© S L — 7t -1
a(SL',replicate a51’,reading a61’,calibration

65
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Error in a Single Observation

fi = ftrue + 5i,replicate + 6i,reading + é‘i,calibration

2 2 2
2 op\ o\ o\ .
er = eg ) + eg o+ eg ) )
396, replicate a6, reading 063 calibration
ef = el + e? + e?
replicate reading calibration

= The correct way to add the three
e;’s is to add them in quadrature.

66
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Recall from last Summary of Errors of
lecture? Temperature Indicator

Standard Errors, e,:

* Replicate standard error is ‘/iﬁ = 0.3°C

* Reading standard error is % = 0.06°C

* Calibration error is es = 0.55°C
The correct way to add Calibration error is the largest,

followed by replicate error

the three e’s is to add
them in quadrature.

e

s?,total = esz,replicate + esz,'reading + esz,calibration
e2otar = (0.3)2 + (0.06)2 + (0.55)2
= 0.09 4+ 0.0036 + 0.3025 = 0.3961

es‘total= 0.630 C

© Faith A. Morrison, Michigan Tech U.

Recall from Summary of Errors of
previous Temperature Indicator
lecture? Standard Errors, e,:
. 2 a i _ 1)
Replicate standard error is e 0.3°C
. . . er _ 0
Reading standard error is N 0.06°C
* Calibration error is es = 0.55°C
The correct way to add Calibration error is the largest,

followed by replicate error

the three e’s is to add
them in quadrature.

2 =2 2 2 = mi
€stotal = Esreplicate T €sreading T Es,calibration (TT:aftoirfT,Ef;fr”:rus
2 — 2 2 2 dominates, that error
e = (0.3)“ + (0.06)“ + (0.55 ,
s,total 03) ( ) ( ) will be e ¢o¢qr, which
= 0.09 + 0.0036 + 0.3025 = 0.3961 we guessed)

es‘total= 0.630 C

© Faith A. Morrison, Michigan Tech U.
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CMm3215

Fundamentals of Chemical Engineering Laboratory

Error Analysis for

Laboratory Data

Professor Faith Morrison

Department of Chemical Engineering
Michigan Technological University

Final takeaway:

1. You must know the uncertainty in your numbers

2. The 3 worksheets help you assess: replicate, reading, and calibration error
3. Final worksheet helps you carry out error propagation

4. These are the tools you need to determine the uncertainty in your numbers.

Michiganjlech

Quick start—Replicate error
Reading Error

Calibration Error

Error Propagation

PN

69
© Faith A. Morrison, Michigan Tech U.

Next:
Least Squares
(an application of error
propagation)

CM3215 IMichiganiech;

Fundamentals of Chemical Englneering Laboratory

Uncertainty in Least Squares

Curve Fitting: Excel’s LINEST ||[

Professor Faith Morrison Referene:

Dy of Chemigal Engineeri = L
HOfL it pdf
Michigan Technalogical University =

70
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