Error Propagation Worksheet

Faith A. Morrison

Uncertainty Analysis for Engineers and Scientists: A Practical Guide (Cambridge University Press, 2020)

This worksheet guides the user through the determination of the standard error $e_{s_{\phi}}$ of a quantity $\phi(x_1, x_2, x_3, x_4, x_5)$ that is calculated from measured quantities x_1, x_2, x_3, x_4 and x_5 . The x_i are subject to uncertainties. The standard error e_{s,x_i} (replicate, reading, calibration; combine in quadrature, if present) for each variable x_i is determined first, and these uncertainties are propagated to determine $e_{s_{\phi}}$ using the relationship given below.

$\phi(x_1, x_2, x_3, x_4, x_5)$:		Formula for $oldsymbol{\phi}$:*		Representative value of ϕ : (include units)		95% level of confidence: $(\phi \pm 2e_{s,\phi})$ (include units)			
		*Note: units must wo	rk as written.		<u> </u>				
Measured quantities, x_i			$\partial \phi$				$(\partial \phi)^2$		
x_i	Symbol	Representative value	$\frac{\partial \phi}{\partial x_i}$		e_{s,x_i}		$\left(\frac{\partial \boldsymbol{\phi}}{\partial x_i}\right)^2 e_{s,x_i}^2$		
x_1		units							
x_2		units							
<i>x</i> ₃		units							
<i>x</i> ₄		units							
<i>x</i> ₅		units							
$(\partial\phi)^2$ $(\partial\phi)^2$ $(\partial\phi)^2$ $(\partial\phi)^2$ $(\partial\phi)^2$ $(\partial\phi)^2$							$e_{s,\phi}^2 =$		
$e_{s_{\phi}}^2 = \left(\frac{\partial \phi}{\partial x_1}\right)^2 e_{x_1}^2 + \left(\frac{\partial \phi}{\partial x_2}\right)^2 e_{x_2}^2 + \left(\frac{\partial \phi}{\partial x_3}\right)^2 e_{x_3}^2 + \left(\frac{\partial \phi}{\partial x_4}\right)^2 e_{x_4}^2 + \left(\frac{\partial \phi}{\partial x_5}\right)^2 e_{x_5}^2$							$e_{s,\phi} =$	units	
* All variables x_i must be independent for this equation to hold.							- 3,φ		

Standard error of calculated quantity, ϕ

Note: For some quantities, you will look up the uncertainty; for example, the volume of a volumetric flask may be given as $100.00 \pm 0.04ml$. In these circumstances it is reasonable to assume that the reported uncertainty is $\pm 2e_s$. For example, if volume is given as $100.00 \pm 0.04ml$, then $2e_s = 0.04ml$. Ref.: p. 564 of Fritz and Schenk, Quantitative Analytical Chemistry, Allyn & Bacon, Boston, 1987.