Properties of Radiation

Lecture outline

- Flux and intensity
- Solid angle and the steradian
- Inverse square law
- Global insolation
- Interaction of radiation with matter

Flux or Flux density

- e.g., the incident flux of solar radiation on an area of Earth's surface
- No information on direction of origin

Intensity or radiance

 Roughly corresponds to 'brightness' of a radiation source – e.g., the sky, clouds, the Sun.

Spherical polar coordinates

Direction plays an important role in any discussion of radiation

Solid angle: the steradian

- Three-dimensional analog of the planar radian (ratio of arc length:radius)
- Ω = area of surface A / r² (NB. Solid angle is dimensionless)
- Sphere subtends a solid angle of ... sr
- The entire sky (hemisphere) above the horizon subtends ... sr
- Sun seen from Earth covers ~0.00006 sr

Solid angle: the steradian

• sin θ accounts for the convergence of 'longitude' lines at the 'pole'

$$\int_{4\pi} d\omega = \int_{0}^{2\pi} \int_{0}^{\pi} \sin\theta \, d\theta \, d\phi = 2\pi \int_{0}^{\pi} \sin\theta \, d\theta = 4\pi$$

Solid angle problem

- Mean distance of the moon from Earth = $3.84 \times 10^5 \text{ km}$
- Radius of the moon = $1.74 \times 10^3 \text{ km}$
- Mean distance of the Sun from Earth = $1.496 \times 10^8 \text{ km}$
- Radius of the Sun = $6.96 \times 10^5 \text{ km}$
- What is the angular diameter subtended by the Sun and moon?
- What is the solid angle subtended by the Sun and moon?
- Which appears larger from the Earth?

Solid angle problem

Geometric framework for calculating the solid angle subtended by a sphere of radius *R* whose center is a distance *D* from the observer

Solid angle problem

(a) $\theta_{max} = 2 \sin^{-1} (R/D)$; Moon = 0.52° Sun = 0.53°

(b) Solid angle of a cone with apex angle 2θ :

$$\int_{0}^{2\pi} \int_{0}^{\theta} \sin\theta \, d\theta \, d\phi = 2\pi \int_{0}^{\theta} \sin\theta \, d\theta$$
$$= 2\pi \left[-\cos\theta \right]_{0}^{\theta} = 2\pi (1 - \cos\theta)$$

Moon: 6.5×10⁻⁵ Sun: 6.8×10⁻⁵

(c) Sun subtends a solid angle 5% larger than the moon

If these values were constant, could total solar eclipses be explained?

Formal definition of intensity

• Flux (F; measured on a surface normal to the beam) per unit solid angle (ω) traveling in a particular direction $\hat{\Omega}$

• Typical units: Watts per square meter per steradian (W m⁻² sr⁻¹)

• **Conservation of intensity**: *intensity* (*radiance*) *does not decrease with distance from the source* (within a vacuum or other transparent medium)

• Contrast with flux density

Inverse square law

- Irradiance (or flux density) decreases as the square of distance from the source
- Radiance is invariant with distance (note dependence of solid angle on r²)
- Solar 'constant' (irradiance at top of Earth's atmosphere) is ~1370 W m⁻²

Relationship between flux and intensity

- Flux (F): total power incident on a unit surface area
- Intensity (/): Flux contribution arriving from small element of solid angle along a direction $\hat{\Omega}$

ĥ

- Hence, flux incident on or emerging from an arbitrary surface is found by integrating *I* over all relevant solid angles
- Since intensity is defined as the flux per unit solid angle *normal to the beam*, the contributions to the flux must be weighted by a factor of $\cos \theta$

The flux density of radiation carried by a beam in the direction Ω through a surface element dA is proportional to $\cos \theta = \hat{n} \cdot \hat{\Omega}$

Relationship between flux and intensity

• The upward-directed flux from a surface is therefore given by:

$$F^{\dagger} = \int_{0}^{2\pi} I \cos \theta \, d\omega = \int_{0}^{2\pi} \int_{0}^{\pi/2} I^{\dagger}(\theta, \phi) \cos \theta \sin \theta \, d\theta \, d\phi$$

• What is the flux density of *isotropic*
radiation? (i.e., if intensity is constant)
$$F^{\dagger} = \int_{0}^{2\pi} \int_{0}^{\pi/2} I^{\dagger}(\theta, \phi) \cos \theta \sin \theta \, d\theta \, d\phi$$
$$= 2\pi I \int_{0}^{\pi/2} \cos \theta \sin \theta \, d\theta$$
$$= 2\pi I \int_{0}^{\pi/2} \frac{1}{2} \sin 2\theta \, d\theta$$
$$= \pi I \qquad \text{e.g., illumination of a horizontal}$$

Global insolation

- How much total solar radiation Φ is incident on Earth's atmosphere?
- Consider the amount of radiation intercepted by the Earth's disk

- Applies for mean Sun-Earth distance of 1.496 x 10⁸ km
- But Earth's orbit is elliptical, so the *solar flux (S)* actually varies from 1330 W m⁻² in July to 1420 W m⁻² in January

Global insolation

- In addition to Earth's orbit, the power output from the Sun also varies over time (e.g., sunspot cycles)
- Furthermore, radiation is not uniformly incident on the surface but varies with incidence angle of the Sun

Radiative properties of natural surfaces

• Illumination of the atmosphere from below by 'upwelling' radiation

The fate of incident radiation

- Radiation incident on a surface is either *reflected, absorbed or transmitted*
- Conservation of energy dictates that the sum of these must be 100% (or 1)
- For opaque objects \rightarrow negligible transmission $\rightarrow a_{\lambda} + r_{\lambda} = 1$ and $a_{\lambda} = 1 r_{\lambda}$
- If the object is highly reflective, a_{λ} must be low (e.g., aluminum foil)
- Both a_{λ} and r_{λ} depend on the direction of the incident radiation

Transmission - Beer's Law

• The rate of power attenuation per unit distance is given by the *absorption* coefficient β_a (with dimensions of inverse length), related to n_i and wavelength λ by:

$$\beta_a = \frac{4\pi n_i}{\lambda}$$

• For an initial intensity I_0 at position x = 0 in a medium, propagating in the *x*-direction:

$$I(x) = I_0 e^{-\beta_a x}$$
$$\Rightarrow \frac{I(x)}{I_0} = e^{-\beta_a x} = t(x)$$

• Where *t* is the *transmittance*: the fraction of radiation that survives the trip over the distance *x* (i.e., that which is not absorbed)

This equation is a form of a very important relationship known as

BEER'S LAW (also referred to as the Beer-Bouguer-Lambert Law)

Interaction of radiation with matter

• Note very small n_i in the visible band, increasing in the UV and IR bands

Refractive index of aerosols

Reflection and refraction

Absorption

Absorption by silicates

Geometric optics

• When particle size is larger than wavelength, geometric optics or ray tracing can be used to analyze the interaction of EM waves with matter

- e.g., scattering of visible light by cloud ice particles (>50 μ m) and raindrops (100 μ m < r < 3 mm) External reflection
- Reflection and refraction at each boundary

Geometric optics

(a)

• Ray tracing predicts the geometry of the primary and secondary rainbows

Reflectivity spectra

- Which surface type has the generally highest albedo?
- Where is the visible reflectivity peak for grass?
- What about a dead plant vs. a live plant? What happens in the Fall?
- Note generally low reflectivity of vegetation, soil, and water, and strong contrast in reflectivity between visible and near-IR bands

MODIS images

http://rapidfire.sci.gsfc.nasa.gov/subsets/

False Color: **R** (Band 7: 2155 nm), **G** (Band 2: 876 nm), **B** (Band 1: 670 nm)

Snow and cloud reflectance

From: http://www.nohrsc.noaa.gov/technology/avhrr3a/avhrr3a.html

Dirty snow/ice

MODerate resolution Imaging Spectroradiometer (MODIS)

- MODIS: a broadband, multispectral satellite instrument
 - Flying on two polar-orbiting NASA satellites: Terra (10:30 am overpass) and Aqua (1:30 pm overpass)
 - http://modis.gsfc.nasa.gov/index.php
 - Swath width: 2330 km
 - 36 spectral bands from VIS to IR, but not contiguous
 - High radiometric resolution: 12-bit (0-4095)
 - Spatial resolution: 250 m (bands 1-2), 500 m (bands 3-7), 1000 m (bands 8-36)
 - Why the difference in spatial resolution between bands?

MODIS bands

Primary Use	Band	Bandwidth ¹	Spectral
l			Radiance ⁻
Land/Cloud/Aerosols Boundaries	1	620 - 670	21.8
	2	841 - 876	24.7
Land/Cloud/Aerosols Properties	3	459 - 479	35.3
	4	545 - 565	29.0
	5	1230 - 1250	5.4
	6	1628 - 1652	7.3
	7	2105 - 2155	1.0
Ocean Color/ Phytoplankton/ Biogeochemistry	8	405 - 420	44.9
	9	438 - 448	41.9
	10	483 - 493	32.1
	11	526 - 536	27.9
	12	546 - 556	21.0
	13	662 - 672	9.5
	14	673 - 683	8.7
	15	743 - 753	10.2
	16	862 - 877	6.2
Atmospheric Water Vapor	17	890 - 920	10.0
	18	931 - 941	3.6
	19	915 - 965	15.0

Primary Use	Band	Bandwidth 1	Spectral
		Dalamati	Radiance ²
Surface/Cloud Temperature	20	3.660 - 3.840	0.45(300K)
	21	3.929 - 3.989	2.38(335K)
	22	3.929 - 3.989	0.67(300K)
	23	4.020 - 4.080	0.79(300K)
Atmospheric Temperature	24	4.433 - 4.498	0.17(250K)
	25	4.482 - 4.549	0.59(275K)
Cirrus Clouds Water Vapor	26	1.360 - 1.390	6.00
	27	6.535 - 6.895	1.16(240K)
	28	7.175 - 7.475	2.18(250K)
Cloud Properties	29	8.400 - 8.700	9.58(300K)
Ozone	30	9.580 - 9.880	3.69(250K)
Surface/Cloud Temperature	31	10.780 - 11.280	9.55(300K)
	32	11.770 - 12.270	8.94(300K)
Cloud Top Altitude	33	13.185 - 13.485	4.52(260K)
	34	13.485 - 13.785	3.76(250K)
	35	13.785 - 14.085	3.11(240K)
	36	14.085 - 14.385	2.08(220K)

¹ Bands 1 to 19 are in nm; Bands 20 to 36 are in µm ² Spectral Radia<u>nce values are (W/m²-um-sr)</u>

http://modis.gsfc.nasa.gov/about/specifications.php

- Often specified by the full width at half-maximum (FWHM) response
 - 'bandwidth' > 100 nm
 - FWHM = 100 nm in this case

Multispectral sensors

Wavelength in micrometers

Hyperspectral sensors

	E0-1				
Parameters	ALI	HYPERION	AC		
Spectral Range	0.4 - 2.4 µm	0.4 - 2.4 µm	0.9 - 1.6 µm		
Spatial Resolution	30 m	30 m	250 m		
Swath Width	36 Km	7.6 Km	185 Km		
Spectral Resolution	Variable	10 nm	6 nm		
Spectral Coverage	Discrete	Continuous	Continuous		
Pan Band Resolution	10 m	N/A	N/A		
Total Number of Bands	10	220	256		

- NASA EO-1 satellite
- Launched in Nov 2000
 - Advanced Land Imager (ALI)
 - Hyperion
 - Atmospheric Corrector (AC)

Hyperspectral sensors

- Spectral radiance of Madison lakes
- http://www.lakesat.org/madison_compare_hyperion.php

Angular distribution of reflected radiation

- Specular: radiation incident at angle θ reflected away from surface at angle θ
- Lambertian: radiation incident at angle θ reflected equally at all angles

Example of variable reflectance: glossy, semi gloss and flat paint

Sun glint

- Observed in direction of reflection of the sun from smooth surfaces
- Specular reflection of visible light from smooth water surface

Lambertian reflectivity

• A Lambertian surface has the same radiance (or brightness) when viewed from any angle

• A common assumption in remote sensing using reflected radiation

$$F_{r} = rF_{i} \qquad F_{r} = \pi I_{r}$$
$$I^{\uparrow} = \frac{rF_{i}}{\pi}$$
$$I^{\uparrow} = \frac{rS_{0}\cos\theta_{i}}{\pi}$$

← Flux density of isotropic radiation derived earlier

← Assume incident flux is entirely due to direct solar radiation from a zenith angle θ_i , where S_0 is the solar flux

 Note that this is an assumption that simplifies radiative transfer calculations – the actual angular distribution of reflection must be determined from measurements

Albedo and solar heating

• Surface albedo determines direct heating by sunlight and hence the heating of adjacent air

- Compare bare soil (albedo ~10%) with fresh, dry snow (albedo ~90%)
- Surface type therefore affects the temperature of the overlying air

Satellite imaging in the Visible and Near-IR

• Schematic viewing geometry for satellite remote sensing measurements

Geostationary Satellite Imagery from UW-Madison

http://www.ssec.wisc.edu/data/geo/