
Data management with dplyr, tidyr, and reshape2

Shane T. Mueller shanem@mtu.edu

2025-01-13

Data Management Libraries
In recent years, RStudio has spearheaded development of a series of libraries that make data refactoring,
selecting, and management simple and fast for large data sets. Many of these tools are equiva lent to what you
can do using selection, sorting, aggregate, and tapply of normal data frames. Some of them offer very useful
capabilities that are otherwise very difficult to manage. Most of these are developed by Hadley Wickham, who
also created ggplot2. Part of the reason for the proliferation of libraries is the philosophy to not break what
people rely on, and so when improved functionality is made, a new library is created so that compatibility
can be broken without harming anyone relying on certain functionality.

Some relevant libraries include:

plyr and dplyr
These libraries are sets of tools for splitting, applying, and combining data. The goal is to have a coherent
set of tools for breaking down data into smaller pieces, operating on each chunk of data and reassembling
them–an idiom called “split-apply-combine”.

dplyr is a successor to plyr, written to be much faster, to integrate with remote databases, but it works only
with data frames. The dplyr library seems to be better supported, and tests show it can be more than a
hundred times faster than plyr.

reshape, reshape2 and tidyr
The reshape2 library is a ‘reboot’ of reshape, that is faster and better. These libraries allow easily transforming
a data set from ‘long’ to ‘wide’ format and back again. That is, you can take a data set with multiple columns
you are treating as distinct DVs, and reframe the data set so they are both in a single DV column, with a
separate column specifiying which level of IV a row belongs to. The tidyr library is the newest entry into
data management libraries, also by Wickham, and is described as an “evolution” of reshape2.

Magrittr and forward-piping
Although most of the functions in these libraries can be used like normal functions, it is common to compose
a set of operations that are applied in sequence, where the output of one function is used as the input of
another function. Most of the tidyverse work together with a library called magrittr (“Ceci n’est pas un
pipe”) to support a code-efficient way of doing this. It works by putting the output of one function into the
first argument of the next function using the %>%operator. However, R now includes the slightly-different
pipe operator “‘|>’ ’ ’ as a first-class part of the language. It mostly works the same as the magrittr version,
but there are some differences in how it works with functions that have multiple arguments, so you may need
to use the magrittr version in some cases.

1

mailto:shanem@mtu.edu


Forward-piping
Piping can be useful when you think about a series of operations you want to perform on a single data set.
Magrittr supports this mainly through an operator %>%, but there are a few others supported by the library,
while |> is the built-in equivalent. These operators are supported widely by a number of libraries–all of the
tidyverse libraries in fact. We will tend to use the |> version, but older versions of R or special applications
may require magrittr. The operator basically replaces nested function calls. The following two ways of
applying f1 and f2 are equivalent:
library(magrittr)

f1 <- function(x) {
abs(x)

}
f2 <- function(x) {

sqrt(x)
}

a <- f1(-33.2)
b <- f2(a)

f2(f1(-33.2))

[1] 5.761944
(-33.2) %>%

f1 %>%
f2

[1] 5.761944
## Without magrittr--requires ()
(-33.2) |>

f1() |>
f2()

[1] 5.761944

Here, these seem about equivalent in complexity of writing, but when you have 5 or 6 operations, having
to either make intermediate variables or make sure all your parentheses are properly matched can get a bit
tedious.

You can specify other arguments of a multi-argument function by using . to denote the piped-in value. Here,
we round 10 random values to 3 decimal places:
## magrittr lets you specify the first argument of a function with a dot
rnorm(10) %>%

round(., 3)

[1] 1.336 0.206 -0.903 -0.600 1.002 -1.743 -1.456 1.445 0.198 -0.426
# rnorm(10) |> round(.,3) ##This won't work

## Piping automatically replaces the first argument and any other arguments are
## bound to later slots
set.seed(100)
rnorm(10) |>

round(3)

2



[1] -0.502 0.132 -0.079 0.887 0.117 0.319 -0.582 0.715 -0.825 -0.360
## standard |> works the same here:
set.seed(100)
rnorm(10) |>

round(3)

[1] -0.502 0.132 -0.079 0.887 0.117 0.319 -0.582 0.715 -0.825 -0.360
## put the argument into the second slot:
sample(1:5, replace = T, size = 10) %>%

round(runif(10), .)

[1] 0.54000 0.71100 0.53830 0.74900 0.42010 0.17142 0.77000 0.90000 0.54900
[10] 0.27770

Finally, R can have its assignment arrow go in either direction, like below, which makes a pipe stream make
more sense:
runif(100) %>%

sd %>%
sqrt %>%
log -> value

value <- runif(100) %>%
sd %>%
sqrt %>%
log #Notice no parens are needed when using magrittr pipes.

value

[1] -0.6216435

Exercise 1

Rewrite the following code using piping:
set.seed(100)
dat.A <- sample(1:10, 100, replace = T)
dat.B <- table(dat.A)
sd <- sd(dat.B)

These are fairly simple examples but not that much of an improvement over just using functions. However, it
can transform how you use the libraries in tidyverse for data management, because it allows you to create
data processing ‘pipelines’. We will see this in the next section.

Overview of dplyr
The following creates a couple data sets for use in these examples:
dat0 <- as_tibble(data.frame(sub = c(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4), question = c("a",

"b", "c", "a", "b", "c", "a", "b", "c", "a", "b", "c"), dv = c(5, 3, 1, 2, 3,
6, 4, 2, 3, 1, 3, 5)))

dat <- tibble(sub = sample(letters, 100, replace = T), cond = sample(c("A", "B",
"C"), 100, replace = T), group = sample(1:10, 100, replace = T), dv1 = runif(100) *
5)

The dplyr library implements a number of functions that are available in one form or another within R, but
may be difficult to use, inconsistent, or slow.

3



The dplyr library does not create side-effects. That is, it always makes a copy of your original data and
returns it, rather than altering the form of your original data. Consequently, you need to usually assign the
outcome to a new variable. Sometimes, it is acceptable to assign it to its old name, as in the following:
library(dplyr)
data <- dat
dplyr::filter(data, sub == "b") ##this just returns the data for use, but does not save

# A tibble: 1 x 4
sub cond group dv1
<chr> <chr> <int> <dbl>

1 b B 10 2.90
data2 <- filter(data, sub == "b") ## re-assign to data

head(data)

# A tibble: 6 x 4
sub cond group dv1
<chr> <chr> <int> <dbl>

1 f C 3 3.32
2 p B 1 4.40
3 z B 4 4.56
4 f A 9 1.95
5 x B 2 4.33
6 k B 8 2.57
dim(data)

[1] 100 4
dim(data2)

[1] 1 4

Notice how data2 is only 3 rows long. However, this is often not the best practice, because it means that
the data variable depends on whether you have run some code or not. You can use magrittr pipes here
alternately:
data %>%

filter(sub == "b")

# A tibble: 1 x 4
sub cond group dv1
<chr> <chr> <int> <dbl>

1 b B 10 2.90
data |>

filter(sub == "b") -> data3 ##use a pipe, then assign to data at the end

data3

# A tibble: 1 x 4
sub cond group dv1
<chr> <chr> <int> <dbl>

1 b B 10 2.90

In this version, data doesn’t get overwritten and you can use this expression directly within another function,
or pipe it to later processing steps or graphing. Note that the <- assignment symbol can be reversed as ->
and assigned to a variable name at the end of the pipeline.

4



dplyr operations on rows
slice and filter

The following use dplyr to rearrange and filter rows of a data frame. filter picks out rows based on a
boolean vector of the same size (number of rows)
head((dat$sub == "b")) ##shows the first 6 elements of the boolean

[1] FALSE FALSE FALSE FALSE FALSE FALSE
filter(dat, sub == "b") ##use filter to pick out just the sub == 'b' rows

# A tibble: 1 x 4
sub cond group dv1
<chr> <chr> <int> <dbl>

1 b B 10 2.90

Similarly, slice allows you to do this based on the row index (number)
dat |>

slice(1) ##first row

# A tibble: 1 x 4
sub cond group dv1
<chr> <chr> <int> <dbl>

1 f C 3 3.32
slice(dat, 2:10) ##9 rows after the first

# A tibble: 9 x 4
sub cond group dv1
<chr> <chr> <int> <dbl>

1 p B 1 4.40
2 z B 4 4.56
3 f A 9 1.95
4 x B 2 4.33
5 k B 8 2.57
6 s C 5 3.71
7 d C 3 4.80
8 q A 5 2.85
9 j C 3 1.56
dat |>

slice(1:20 * 2) ##even rows 2..40

# A tibble: 20 x 4
sub cond group dv1
<chr> <chr> <int> <dbl>

1 p B 1 4.40
2 f A 9 1.95
3 k B 8 2.57
4 d C 3 4.80
5 j C 3 1.56
6 r B 2 2.25
7 m C 7 2.37
8 e B 5 0.536
9 d C 2 2.11

10 i C 10 3.08

5



11 n C 1 3.41
12 u C 5 4.46
13 i C 5 4.69
14 p C 4 4.86
15 h B 4 1.19
16 e C 6 3.74
17 r A 9 4.66
18 g A 6 1.56
19 q A 8 1.04
20 b B 10 2.90
slice(dat, -1)

# A tibble: 99 x 4
sub cond group dv1
<chr> <chr> <int> <dbl>

1 p B 1 4.40
2 z B 4 4.56
3 f A 9 1.95
4 x B 2 4.33
5 k B 8 2.57
6 s C 5 3.71
7 d C 3 4.80
8 q A 5 2.85
9 j C 3 1.56

10 n B 10 3.72
# i 89 more rows

There are several versions of slice for particular common tasks. These include:

• slice_head and slice_tail for the first or last n rows
• slice_min and slice_max for the rows with the minimum or maximum value of a variable
• slice_sample for a random sample of rows

dat |>
slice_head() ## show the first rows

# A tibble: 1 x 4
sub cond group dv1
<chr> <chr> <int> <dbl>

1 f C 3 3.32
dat |>

slice_tail(n = 3) ## show the last 3 rows

# A tibble: 3 x 4
sub cond group dv1
<chr> <chr> <int> <dbl>

1 g B 9 1.83
2 j A 5 0.395
3 e C 8 1.03
dat |>

slice_min(dv1, n = 2) ## show the two rows with the smallest dv1

# A tibble: 2 x 4
sub cond group dv1
<chr> <chr> <int> <dbl>

6



1 j A 7 0.148
2 d B 5 0.159
dat |>

slice_max(dv1, n = 3) ## show the two rows with the largest dv1

# A tibble: 3 x 4
sub cond group dv1
<chr> <chr> <int> <dbl>

1 p A 1 4.97
2 p C 4 4.86
3 w C 8 4.82
dat |>

slice_sample(n = 5) ## show 5 random rows

# A tibble: 5 x 4
sub cond group dv1
<chr> <chr> <int> <dbl>

1 e B 5 0.536
2 r A 6 3.87
3 g B 8 3.29
4 n A 6 3.23
5 s C 5 3.71

arrange()

The arrange function reorders the rows by the levels of a specific factor
arrange(dat, sub)

# A tibble: 100 x 4
sub cond group dv1
<chr> <chr> <int> <dbl>

1 a C 5 0.671
2 a B 4 3.96
3 a C 10 1.29
4 b B 10 2.90
5 d C 3 4.80
6 d C 2 2.11
7 d B 9 4.00
8 d B 5 0.159
9 d C 10 2.76

10 e B 5 0.536
# i 90 more rows
arrange(dat, sub, group)

# A tibble: 100 x 4
sub cond group dv1
<chr> <chr> <int> <dbl>

1 a B 4 3.96
2 a C 5 0.671
3 a C 10 1.29
4 b B 10 2.90
5 d C 2 2.11

7



6 d C 3 4.80
7 d B 5 0.159
8 d B 9 4.00
9 d C 10 2.76

10 e A 1 4.66
# i 90 more rows
dat |>

arrange(sub, cond) |>
filter(dv1 > 1)

# A tibble: 84 x 4
sub cond group dv1
<chr> <chr> <int> <dbl>

1 a B 4 3.96
2 a C 10 1.29
3 b B 10 2.90
4 d B 9 4.00
5 d C 3 4.80
6 d C 2 2.11
7 d C 10 2.76
8 e A 1 4.66
9 e A 8 2.48

10 e B 6 4.44
# i 74 more rows

distinct()
• The distinct function finds distinct combinations of values (typically IVs). This is similar to doing a

table, or identifying the levels of a factor.
dat2 <- data.frame(a = sample(1:10, 20, replace = T), b = sample(c(100, 200, 300),

20, replace = T))
distinct(dat2)

a b
1 2 200
2 10 300
3 6 100
4 8 100
5 3 200
6 9 300
7 4 200
8 3 100
9 5 100
10 8 200
11 10 200
12 9 100
13 1 100
14 9 200
15 2 100
16 6 200

You can also specify specific variables you wish to use:

8



distinct(dat, sub)

# A tibble: 25 x 1
sub
<chr>

1 f
2 p
3 z
4 x
5 k
6 s
7 d
8 q
9 j

10 n
# i 15 more rows

Retain all columns of distinct data:

here, we use the strange-looking hidden argument .keep_all=T to retain all the columns
distinct(dat, sub)

# A tibble: 25 x 1
sub
<chr>

1 f
2 p
3 z
4 x
5 k
6 s
7 d
8 q
9 j

10 n
# i 15 more rows
distinct(dat, sub, .keep_all = T)

# A tibble: 25 x 4
sub cond group dv1
<chr> <chr> <int> <dbl>

1 f C 3 3.32
2 p B 1 4.40
3 z B 4 4.56
4 x B 2 4.33
5 k B 8 2.57
6 s C 5 3.71
7 d C 3 4.80
8 q A 5 2.85
9 j C 3 1.56

10 n B 10 3.72
# i 15 more rows
## distinct pairs of columns:
dat |>

9



distinct(cond, sub)

# A tibble: 53 x 2
cond sub
<chr> <chr>

1 C f
2 B p
3 B z
4 A f
5 B x
6 B k
7 C s
8 C d
9 A q

10 C j
# i 43 more rows

dplyr operations on columns
select()

• The select function picks out columns by name
select(dat0, sub, dv)

# A tibble: 12 x 2
sub dv

<dbl> <dbl>
1 1 5
2 1 3
3 1 1
4 2 2
5 2 3
6 2 6
7 3 4
8 3 2
9 3 3

10 4 1
11 4 3
12 4 5
select(dat0, sub:dv)

# A tibble: 12 x 3
sub question dv

<dbl> <chr> <dbl>
1 1 a 5
2 1 b 3
3 1 c 1
4 2 a 2
5 2 b 3
6 2 c 6
7 3 a 4
8 3 b 2
9 3 c 3

10 4 a 1

10



11 4 b 3
12 4 c 5
select(dat0, -question)

# A tibble: 12 x 2
sub dv

<dbl> <dbl>
1 1 5
2 1 3
3 1 1
4 2 2
5 2 3
6 2 6
7 3 4
8 3 2
9 3 3

10 4 1
11 4 3
12 4 5
# piping example: filter sub 4 and select just dv value.
dat0 |>

filter(sub == 4) |>
select(dv)

# A tibble: 3 x 1
dv

<dbl>
1 1
2 3
3 5

There are a lot of matching functions that can be used within select:
# select columns that start with s
dat0 |>

select(starts_with("s"))

# A tibble: 12 x 1
sub

<dbl>
1 1
2 1
3 1
4 2
5 2
6 2
7 3
8 3
9 3

10 4
11 4
12 4

This function can be very handy for situations like survey data where you have dozens or hundreds of
columns/variables. You may be interested in just a few of these, and select will pick these out.

11



rename()
• The rename function renames columns.

rename(dat0, participant = sub) |>
head()

# A tibble: 6 x 3
participant question dv

<dbl> <chr> <dbl>
1 1 a 5
2 1 b 3
3 1 c 1
4 2 a 2
5 2 b 3
6 2 c 6
dat0 |>

rename(participant2 = sub) |>
head()

# A tibble: 6 x 3
participant2 question dv

<dbl> <chr> <dbl>
1 1 a 5
2 1 b 3
3 1 c 1
4 2 a 2
5 2 b 3
6 2 c 6

The related rename_with function allows you to rename columns based on a function. Here, we add a prefix
each variable with a ‘V’ and transform to capital letters:
dat0 |>

rename_with(function(x) {
paste("V", toupper(x), sep = "")

}) |>
slice_head()

# A tibble: 1 x 3
VSUB VQUESTION VDV

<dbl> <chr> <dbl>
1 1 a 5

other dplyr column functions

Less used but handy functions include:

• glimpse(): gives a quick overview of the data frame, showing the first few rows and the data types of
each column.

• pull(): extracts a single column as a vector.
• relocate(): changes the order of columns

dat0 |>
glimpse()

12



Rows: 12
Columns: 3
$ sub <dbl> 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4
$ question <chr> "a", "b", "c", "a", "b", "c", "a", "b", "c", "a", "b", "c"
$ dv <dbl> 5, 3, 1, 2, 3, 6, 4, 2, 3, 1, 3, 5
dat0 |>

pull(sub)

[1] 1 1 1 2 2 2 3 3 3 4 4 4
## This is basically the same as select:
dat0 |>

relocate(question, sub, dv) |>
slice_head()

# A tibble: 1 x 3
question sub dv
<chr> <dbl> <dbl>

1 a 1 5
## Without using all the variable names, it is different than select:
dat0 |>

relocate(question, sub) |>
slice_head()

# A tibble: 1 x 3
question sub dv
<chr> <dbl> <dbl>

1 a 1 5
dat0 |>

select(question, sub) |>
slice_head()

# A tibble: 1 x 2
question sub
<chr> <dbl>

1 a 1

Exercise 2:

rewrite the following old-style examples with dplyr functions and pipes where appropriate.
dat[dat$cond == "C", ]

# A tibble: 40 x 4
sub cond group dv1
<chr> <chr> <int> <dbl>

1 f C 3 3.32
2 s C 5 3.71
3 d C 3 4.80
4 j C 3 1.56
5 m C 7 2.37
6 j C 3 3.21
7 d C 2 2.11
8 i C 10 3.08
9 n C 1 3.41

13



10 u C 5 4.46
# i 30 more rows
dat[dat$dv1 > 2.5, ]

# A tibble: 51 x 4
sub cond group dv1
<chr> <chr> <int> <dbl>

1 f C 3 3.32
2 p B 1 4.40
3 z B 4 4.56
4 x B 2 4.33
5 k B 8 2.57
6 s C 5 3.71
7 d C 3 4.80
8 q A 5 2.85
9 n B 10 3.72

10 l B 1 3.70
# i 41 more rows
dat[1:10, ]

# A tibble: 10 x 4
sub cond group dv1
<chr> <chr> <int> <dbl>

1 f C 3 3.32
2 p B 1 4.40
3 z B 4 4.56
4 f A 9 1.95
5 x B 2 4.33
6 k B 8 2.57
7 s C 5 3.71
8 d C 3 4.80
9 q A 5 2.85

10 j C 3 1.56
dat[, 2:3]

# A tibble: 100 x 2
cond group
<chr> <int>

1 C 3
2 B 1
3 B 4
4 A 9
5 B 2
6 B 8
7 C 5
8 C 3
9 A 5

10 C 3
# i 90 more rows
dat[, c(3, 1, 2)]

# A tibble: 100 x 3
group sub cond

14



<int> <chr> <chr>
1 3 f C
2 1 p B
3 4 z B
4 9 f A
5 2 x B
6 8 k B
7 5 s C
8 3 d C
9 5 q A

10 3 j C
# i 90 more rows
datx <- dat
colnames(datx) <- c("participant", "condition", "counterbalance", "score")

dat0[dat0$question == "a", ]

# A tibble: 4 x 3
sub question dv

<dbl> <chr> <dbl>
1 1 a 5
2 2 a 2
3 3 a 4
4 4 a 1
dat0[order(dat0$question), ]

# A tibble: 12 x 3
sub question dv

<dbl> <chr> <dbl>
1 1 a 5
2 2 a 2
3 3 a 4
4 4 a 1
5 1 b 3
6 2 b 3
7 3 b 2
8 4 b 3
9 1 c 1

10 2 c 6
11 3 c 3
12 4 c 5

dplyr Recoding functions
mutate() and transmute()

The mutate function is a workhorse that you use frequently to do calculation and recoding in a dplyr pipeline.
It adds a column that is a function of other columns. transmute does the same thing, but returns only the
new variable. This can be really useful for creating summarized data, composite values of ratings scales, and
the like.
## reverse code a scale
dat1 <- mutate(dat0, newdv = 6 - dv)

15



## alternative using pipes:
dat0 |>

mutate(newdv = 6 - dv) -> dat1 ##rewrites new data set to dat1

dat0 |>
mutate(dv3 = dv * 2) #does not add to dat0

# A tibble: 12 x 4
sub question dv dv3

<dbl> <chr> <dbl> <dbl>
1 1 a 5 10
2 1 b 3 6
3 1 c 1 2
4 2 a 2 4
5 2 b 3 6
6 2 c 6 12
7 3 a 4 8
8 3 b 2 4
9 3 c 3 6

10 4 a 1 2
11 4 b 3 6
12 4 c 5 10

More complex mutations are possible:
dat1$newdv2 = dat1$dv * dat1$newdv
mutate(dat1, newdv3 = dv * newdv)

# A tibble: 12 x 6
sub question dv newdv newdv2 newdv3

<dbl> <chr> <dbl> <dbl> <dbl> <dbl>
1 1 a 5 1 5 5
2 1 b 3 3 9 9
3 1 c 1 5 5 5
4 2 a 2 4 8 8
5 2 b 3 3 9 9
6 2 c 6 0 0 0
7 3 a 4 2 8 8
8 3 b 2 4 8 8
9 3 c 3 3 9 9

10 4 a 1 5 5 5
11 4 b 3 3 9 9
12 4 c 5 1 5 5
dat1[1:5, ]

# A tibble: 5 x 5
sub question dv newdv newdv2

<dbl> <chr> <dbl> <dbl> <dbl>
1 1 a 5 1 5
2 1 b 3 3 9
3 1 c 1 5 5
4 2 a 2 4 8
5 2 b 3 3 9

Notice that like all the tidyverse functions, there is no side effect on the input–newdv3 doesn’t get added do

16



dat1 unless you do it explicitly.

Transmute returns only the new variable, which can be handy if you want to do a set of separate analysis
and add them to an existing data set.
transmute(dat1, newdv2 = dv * newdv)

# A tibble: 12 x 1
newdv2
<dbl>

1 5
2 9
3 5
4 8
5 9
6 0
7 8
8 8
9 9

10 5
11 9
12 5
dat1$newdv3 <- dat1 |>

transmute(newdv2 = dv * newdv)

Using mutate to recode categorical values
Generally, if you want to recode the levels of a variable, you would use a mutate and reassign the new variable
name to the original using code within the mutate to do the recoding. There are a few options, including
ifelse(), recode(), which, case_when, and some others. Let’s say we want to capitalize question variable.
Here are a few approaches:

Recode using toupper

Because we are just capitalizing, we can just use toupper. This is not a general approach, but it works here:
dat1 |>

mutate(questionUC = toupper(question)) |>
head()

# A tibble: 6 x 7
sub question dv newdv newdv2 newdv3$newdv2 questionUC

<dbl> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 1 a 5 1 5 5 A
2 1 b 3 3 9 9 B
3 1 c 1 5 5 5 C
4 2 a 2 4 8 8 A
5 2 b 3 3 9 9 B
6 2 c 6 0 0 0 C

Recode using ifelse

The ifelse function is useful for recoding into a binary set, but we can nest two to recode our three levels:
dat1 |>

mutate(question = ifelse(question == "a", "A", ifelse(question == "b", "B", "C"))) |>
head()

17



# A tibble: 6 x 6
sub question dv newdv newdv2 newdv3$newdv2

<dbl> <chr> <dbl> <dbl> <dbl> <dbl>
1 1 A 5 1 5 5
2 1 B 3 3 9 9
3 1 C 1 5 5 5
4 2 A 2 4 8 8
5 2 B 3 3 9 9
6 2 C 6 0 0 0

Recode using case_when

Within mutate, case_when can be used to recode based on a testing a boolean on the left of ~ and providing
the recoded value on the right. The tests question=='a' can be anything, so you can do arbitrary tests of
multiple different expressions there. This is fine, but you have to write a test for each case, so it is a bit
complicated if you are just doing recoding.
dat1 |>

mutate(question = case_when(question == "a" ~ "A", question == "b" ~ "B", question ==
"c" ~ "C"))

# A tibble: 12 x 6
sub question dv newdv newdv2 newdv3$newdv2

<dbl> <chr> <dbl> <dbl> <dbl> <dbl>
1 1 A 5 1 5 5
2 1 B 3 3 9 9
3 1 C 1 5 5 5
4 2 A 2 4 8 8
5 2 B 3 3 9 9
6 2 C 6 0 0 0
7 3 A 4 2 8 8
8 3 B 2 4 8 8
9 3 C 3 3 9 9

10 4 A 1 5 5 5
11 4 B 3 3 9 9
12 4 C 5 1 5 5

Recode using switch

Using switch can means avoiding writing multiple tests. However, you need to preface it with ‘rowwise’ for
it to work:
dat1 |>

rowwise() |>
mutate(question = switch((question), a = "A", b = "B", c = "C"))

# A tibble: 12 x 6
# Rowwise:

sub question dv newdv newdv2 newdv3$newdv2
<dbl> <chr> <dbl> <dbl> <dbl> <dbl>

1 1 A 5 1 5 5
2 1 B 3 3 9 9
3 1 C 1 5 5 5
4 2 A 2 4 8 8
5 2 B 3 3 9 9
6 2 C 6 0 0 0

18



7 3 A 4 2 8 8
8 3 B 2 4 8 8
9 3 C 3 3 9 9

10 4 A 1 5 5 5
11 4 B 3 3 9 9
12 4 C 5 1 5 5

An advantage of switch is that you could put a complex expression within the first argument of switch, giving
you a lot of flexibility. By default, the N+1th argument of switch will be selected based on what the first
argument computes to, but you can also use it like above to pick out particular mappings. Here, we could
recode dv to be ‘odd’/‘even’. The argument dv %% 2+1 turns into either 1 or 2, and that picks out the ‘even’
and ‘odd’ labels.
dat1 |>

rowwise() |>
mutate(odd = switch((dv%%2 + 1), "even", "odd")) |>
select(sub, question, dv, odd)

# A tibble: 12 x 4
# Rowwise:

sub question dv odd
<dbl> <chr> <dbl> <chr>

1 1 a 5 odd
2 1 b 3 odd
3 1 c 1 odd
4 2 a 2 even
5 2 b 3 odd
6 2 c 6 even
7 3 a 4 even
8 3 b 2 even
9 3 c 3 odd

10 4 a 1 odd
11 4 b 3 odd
12 4 c 5 odd

Recode using recode()

Probably the most natural approach is to use the recode function within dplyr. Be careful though—the car
library also has a recode function but it won’t work the same way, and if you have loaded car this might fail
unless you specify the dplyr one specifically. Here, the new value goes on the right and the old value goes on
the left. The kind of quotes you use don’t really matter:
dat1 |>

mutate(question = dplyr::recode(question, a = "A", b = "B", c = "C"))

# A tibble: 12 x 6
sub question dv newdv newdv2 newdv3$newdv2

<dbl> <chr> <dbl> <dbl> <dbl> <dbl>
1 1 A 5 1 5 5
2 1 B 3 3 9 9
3 1 C 1 5 5 5
4 2 A 2 4 8 8
5 2 B 3 3 9 9
6 2 C 6 0 0 0
7 3 A 4 2 8 8
8 3 B 2 4 8 8

19



9 3 C 3 3 9 9
10 4 A 1 5 5 5
11 4 B 3 3 9 9
12 4 C 5 1 5 5

Exercise 2

For dat1, in a single pipeline: * select just sub, question, and newdv2 * remove subject 2 * recode question
to be “Arsenic” if it is “a”, “Borox” if it is “b”, and “Carbon” if it is “c” * rename the variables to be
“participant”, “element”, and “happiness” * compute a new variable dvnormed that is the new dv variable
minus 5.

Merging and joining
dplyr has a lot of functions to merge data frames, and these are especially useful when you may not have an
exact match between the levels (so you cant just do a cbind)
A <- data.frame(sub = c("A", "B", "C", "E"), data1 = 1:4)
B <- data.frame(sub = c("A", "B", "D", "F"), data2 = 11:14)

• left_join(A,B) Joins everything into A that is in B
left_join(A, B, by = "sub")

sub data1 data2
1 A 1 11
2 B 2 12
3 C 3 NA
4 E 4 NA

• right_join(A,B)
right_join(A, B, by = "sub")

sub data1 data2
1 A 1 11
2 B 2 12
3 D NA 13
4 F NA 14

• inner_join(A,B)
inner_join(A, B, by = "sub")

sub data1 data2
1 A 1 11
2 B 2 12

• full_join(A,B) adds all data, incorporating NAs when one or the other are missing.
full_join(A, B, by = "sub")

sub data1 data2
1 A 1 11
2 B 2 12
3 C 3 NA
4 E 4 NA
5 D NA 13
6 F NA 14

20



• semi_join picks out just the first argument for variables where both exist; anti_join picks out the
first argument for those where the second doesn’t exist. These can be useful for imputing data and the
like–you can choose the values for which the other value is missing.

semi_join(A, B, by = "sub")

sub data1
1 A 1
2 B 2
anti_join(A, B, by = "sub")

sub data1
1 C 3
2 E 4

Combining data frames row-wise
The bind_rows acts like rbind, stacking two data frames on top of one another.
## This doesn't make any sense, but it works:
bind_rows(left_join(A, B, by = "sub"), right_join(A, B, by = "sub"))

sub data1 data2
1 A 1 11
2 B 2 12
3 C 3 NA
4 E 4 NA
5 A 1 11
6 B 2 12
7 D NA 13
8 F NA 14

dplyr functions to aggregation and and calculation:
summarize or summarise

The summarize function is a replacement for aggregate, but very flexible and powerful. Because it fits into a
pipeline, it is also useful for ggplot, to aggregate down from raw data to cell means in one step.

The summarize function is a bit difficult to use at first, because the separation into groups is done prior to
piping to summarize, with a grouping function. But when you get accustomed to it, it can be easier to use
than aggregate and sometimes simpler because it is easier to create multiple new variables or a single variable
with multiple input variables.

We will start with a simple summarize, which does no aggregation. Without a group_by function, using
summarize is basically like mutate, but it does not keep the variables we don’t specify.
dat1 |>

summarize(mean = mean(as.numeric(dv)), sd = sd(as.numeric(dv)), total = mean(dv +
newdv))

# A tibble: 1 x 3
mean sd total

<dbl> <dbl> <dbl>
1 3.17 1.59 6

The above can use pipes as well, which is more typical:

21



dat1 |>
summarize(mean = mean(as.numeric(dv)), sd = sd(as.numeric(dv)), total = mean(dv +

newdv))

# A tibble: 1 x 3
mean sd total

<dbl> <dbl> <dbl>
1 3.17 1.59 6

Sometimes, we want to calculate a value for each condition/group/etc, and just embed it back in the full
data. We can add normal variables into a summarize too:
dat1 |>

summarize(sub = sub, question = question, dv = dv, absdv = sqrt(abs(dv)), mean = mean(as.numeric(dv)),
sd = sd(as.numeric(dv)), total = mean(dv + newdv)) -> newdat1

newdat1[1:10, ]

# A tibble: 10 x 7
sub question dv absdv mean sd total

<dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 a 5 2.24 3.17 1.59 6
2 1 b 3 1.73 3.17 1.59 6
3 1 c 1 1 3.17 1.59 6
4 2 a 2 1.41 3.17 1.59 6
5 2 b 3 1.73 3.17 1.59 6
6 2 c 6 2.45 3.17 1.59 6
7 3 a 4 2 3.17 1.59 6
8 3 b 2 1.41 3.17 1.59 6
9 3 c 3 1.73 3.17 1.59 6

10 4 a 1 1 3.17 1.59 6

Notice that this no longer works like mutate, because the functions get applied to the whole data column–not
to each observation. This is probably a bit inefficient, because it is calculating the mean and sd for every row
of the data. But this lets us create z-scores easily, but in our case all the means and sd values are the same
because we are using the summarized values of the entire data set.
newdat1$z <- (newdat1$dv - newdat1$mean)/newdat1$sd

Notice we can create two DVs in one command, but it applies it to the entire data set, which is simpler than
adding a bunch of variables one at a time like we would have to for the z value above.

Summarize by groups–a modern analog to aggregate.

Suppose we want to organize by participant code subcode and calculate values on each group. This is the
same thing we use aggregate for, and the same thing pivot tables do in spreadsheets. The group_by function
creates a special data structure of tibbles that separates a tibble into separate groups behind the scenes. You
might not even be able to see it, but the tibble now contains property that says “Groups: sub [4]”.
dat1

# A tibble: 12 x 6
sub question dv newdv newdv2 newdv3$newdv2

<dbl> <chr> <dbl> <dbl> <dbl> <dbl>
1 1 a 5 1 5 5
2 1 b 3 3 9 9
3 1 c 1 5 5 5
4 2 a 2 4 8 8

22



5 2 b 3 3 9 9
6 2 c 6 0 0 0
7 3 a 4 2 8 8
8 3 b 2 4 8 8
9 3 c 3 3 9 9

10 4 a 1 5 5 5
11 4 b 3 3 9 9
12 4 c 5 1 5 5
dat1 |>

group_by(sub)

# A tibble: 12 x 6
# Groups: sub [4]

sub question dv newdv newdv2 newdv3$newdv2
<dbl> <chr> <dbl> <dbl> <dbl> <dbl>

1 1 a 5 1 5 5
2 1 b 3 3 9 9
3 1 c 1 5 5 5
4 2 a 2 4 8 8
5 2 b 3 3 9 9
6 2 c 6 0 0 0
7 3 a 4 2 8 8
8 3 b 2 4 8 8
9 3 c 3 3 9 9

10 4 a 1 5 5 5
11 4 b 3 3 9 9
12 4 c 5 1 5 5

Now, we can just compose these together within the pipeline. I will aggregate age by the q3 answer (language)
dat1 |>

group_by(sub) |>
summarize(mean = mean(as.numeric(dv)), sd = sd(as.numeric(dv)))

# A tibble: 4 x 3
sub mean sd

<dbl> <dbl> <dbl>
1 1 3 2
2 2 3.67 2.08
3 3 3 1
4 4 3 2

Calculating z-scores for each participant
We can use group_by + summarize to calculate means and standard deviations in each group. If we want
z-scores for each group, we need to pipe this to mutate to make a function on this new data frame:
dat1 |>

group_by(sub) |>
summarize(sub = sub, dv = dv, mean = mean(as.numeric(dv)), sd = sd(as.numeric(dv))) |>
mutate(zdv = (dv - mean)/sd) ##Compute a z-score

# A tibble: 12 x 5
# Groups: sub [4]

sub dv mean sd zdv
<dbl> <dbl> <dbl> <dbl> <dbl>

23



1 1 5 3 2 1
2 1 3 3 2 0
3 1 1 3 2 -1
4 2 2 3.67 2.08 -0.801
5 2 3 3.67 2.08 -0.320
6 2 6 3.67 2.08 1.12
7 3 4 3 1 1
8 3 2 3 1 -1
9 3 3 3 1 0

10 4 1 3 2 -1
11 4 3 3 2 0
12 4 5 3 2 1

group_by can take multiple variables. Note that if you want to do counts, in aggregate we usually did
length(), but dplyr provides the more expressive n() function, which does not get applied to any particular
data value:
dat1 |>

group_by(sub) |>
summarize(mean = mean(as.numeric(dv)), N = n())

# A tibble: 4 x 3
sub mean N

<dbl> <dbl> <int>
1 1 3 3
2 2 3.67 3
3 3 3 3
4 4 3 3

These can become vary powerful when you include filtering and selection before and after a summarize
operation, and the pipeline makes this a bit easier to manage the syntax for.

Aggregating with a function returning multiple values with reframe

In some cases (like the z-score calculation), the summarize function returns a warning that its use is depracated
when returning more than 1 row per group, and suggests using reframe() instead. In many cases, this warning
can be ignored. But if we have a number of related new statistics calculated on the same grouping, we can
use reframe to add all the variables (which summarize cannot do.)
dostats <- function(x) {

mu <- mean(x)
sd <- sd(x)
z <- (mu)/sd
n <- length(x)
se <- sd/sqrt(n)

data.frame(mu, sd, z, n, se)
}
dat1 |>

group_by(sub) |>
reframe(dostats(dv))

# A tibble: 4 x 6
sub mu sd z n se

<dbl> <dbl> <dbl> <dbl> <int> <dbl>
1 1 3 2 1.5 3 1.15
2 2 3.67 2.08 1.76 3 1.20

24



3 3 3 1 3 3 0.577
4 4 3 2 1.5 3 1.15

Other dplyr capabilities
This unit is not intended to completely cover all the capabilities of dplyr, but rather the ones you are likely to
use frequently and will benefit from knowing off the top of your head. There are many additional functions
and helper functions that support more complex data management, and that work seamlessly with the
functions you are likely to use most often like mutate, select, filter, and summarize. There are a number of
functions that support connecting to databases, ways of dealing with multiple columns at once when recoding
or summarizing.

Advanced exercises
Suppose every other item was reverse coded. We can specify a column that identifies this coding:
dat0$coding <- rep(c(-1, 1), 6)

Now, to recode, we can use using mutate and filter. Note that for a 5-point scale, reverse coding involves just
subtracting the value from 6. The simplest way to do this is to divide the data into two groups using filter,
create a new variable separately in each one, and then re-join using bind_rows. Finally, I can re-order them
using arrange.
d1 <- mutate(filter(dat0, coding == 1), newdv = dv)
d2 <- mutate(filter(dat0, coding == -1), newdv = 6 - dv)
dat0b <- bind_rows(d1, d2)
arrange(dat0b, sub, question)

# A tibble: 12 x 5
sub question dv coding newdv

<dbl> <chr> <dbl> <dbl> <dbl>
1 1 a 5 -1 1
2 1 b 3 1 3
3 1 c 1 -1 5
4 2 a 2 1 2
5 2 b 3 -1 3
6 2 c 6 1 6
7 3 a 4 -1 2
8 3 b 2 1 2
9 3 c 3 -1 3

10 4 a 1 1 1
11 4 b 3 -1 3
12 4 c 5 1 5

You could recode using a single mutate command along with ifelse:
dat0 |>

mutate(newdv = ifelse(coding == 1, dv, 6 - dv))

# A tibble: 12 x 5
sub question dv coding newdv

<dbl> <chr> <dbl> <dbl> <dbl>
1 1 a 5 -1 1
2 1 b 3 1 3
3 1 c 1 -1 5
4 2 a 2 1 2
5 2 b 3 -1 3

25



6 2 c 6 1 6
7 3 a 4 -1 2
8 3 b 2 1 2
9 3 c 3 -1 3

10 4 a 1 1 1
11 4 b 3 -1 3
12 4 c 5 1 5

Big five coding
Load the data set using the big five personality questionnaire.

• The Q1..Q44 are the personality questions. Some are reverse coded, so that the proper coding is 6-X
instead of X.

• The questions alternate between 5 factors, but at the end they are a bit off.
• Some of them are reverse coded.

big5 <- read.csv("bigfive.csv")
qtype <- c("E", "A", "C", "N", "O", "E", "A", "C", "N", "O", "E", "A", "C", "N",

"O", "E", "A", "C", "N", "O", "E", "A", "C", "N", "O", "E", "A", "C", "N", "O",
"E", "A", "C", "N", "O", "E", "A", "C", "N", "O", "O", "A", "C", "O")

valence <- c(1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1,
1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1)

Exercise 3:
Use the above data and dplyr to recode the responses by valence, and then select out each of five personality
variables as sums of the proper dimension.

Reshaping data
One common task in data programming is to change the shape of your data table. The two common forms
are called ‘wide’ and ‘long’. In wide format, each row is a single observation, and each column is a variable.
In long format, each row is a single observation, and each column is a variable. The long format is often
called ‘tidy’ data, and each DV is tagged (often redundantly) with each piece of information we have about
it. For example, consider the following data:

sub stage question answer
1 pre "age" 23
1 pre "color" "blue"
1 pre "height" 5'10"
1 test1 Q1 3
1 test1 Q2 1
1 test1 Q3 5
1 test1 Q4 3
1 post P1 "yes"
1 post P2 "no"
2 pre "age" 21
2 pre "color" "orange"
2 pre "height" 5'7"
2 test1 Q1 4
2 test1 Q2 2
2 test1 Q3 5
2 test1 Q4 2

26



2 post P1 "no"
2 post P2 "no"

Here, we have asked each participant nine questions. In wide format, it would look like this:

sub age color height Q1 Q2 Q3 Q4 P1 P2
1 23 blue 5'10" 3 1 5 3 yes no
2 21 orange 5'7" 4 2 5 2 no no

It is a bit ironic, but the long format is sometimes called ‘tidy’ while the second format is not (maybe ‘messy’).
These contain the same information, but many libraries (especially those in the tidyverse) expect long data
format, and so it is useful to be able to convert between the two. Without software to do this, you will be
painstakingly cutting, pasting, and sorting in excel, which is time-consuming and error-prone.

There have been several libraries that help do this. The following gives instructions for using the (older)
reshape2 library. The tidyr library is its successor, and can also be used (different function names, different
arguments) for doing much of the same thing. Some examples of similar reorganization is covered below.

The reshape2 library
Load the library and a survey for examples:
library(reshape2)
dat2 <- read.csv("pooled-survey.csv")
head(dat2)

subcode question timestamp type time answer
1 207 1 Fri Oct 24 14:27:59 2014 inst 88803
2 207 2 Fri Oct 24 14:28:04 2014 short 5172 20
3 207 3 Fri Oct 24 14:28:11 2014 short 6582 english
4 207 4 Fri Oct 24 14:28:29 2014 short 18461 na
5 207 5 Fri Oct 24 14:28:49 2014 multi 19452 1
6 201 1 Mon Oct 20 17:55:59 2014 inst 29450

Notice that here, we have five questions of different types in a survey, across a bunch of respondents. This is
‘long’ format (what Wickham calls ‘tidy’). What if we want “wide”? We can use dcast to reorganize into a
data frame (d= data frame):
dat3 <- dcast(dat2, subcode ~ question, value.var = "answer")
head(dat3)

subcode 1 2 3 4 5
1 101 20 english na 1
2 102 19 english <NA> 1
3 103 20 English <NA> 1
4 104 18 English <NA> 1
5 201 19 english <NA> 1
6 202 19 english na 1

This is good, but the variable names are a bit inconvenient.
colnames(dat3) <- c("subcode", "q1", "q2", "q3", "q4", "q5")
dat3$q1 <- "Missing" ##all the data are empty so we will fill it in

or, use acast for a vector/matrix. This is not appropriate in this case:
acast(dat2, subcode ~ question, value.var = "answer") |>

head()

1 2 3 4 5

27



101 "" "20" "english" "na" "1"
102 "" "19" "english" NA "1"
103 "" "20" "English" NA "1"
104 "" "18" "English" NA "1"
201 "" "19" "english" NA "1"
202 "" "19" "english" "na" "1"

What if we want a table of timestamps for each question–maybe to look at how long each one took? Specify
this as value.var.
dcast(dat2, subcode ~ question, value.var = "timestamp") |>

head()

subcode 1 2
1 101 Fri Oct 24 11:28:24 2014 Fri Oct 24 11:28:33 2014
2 102 Fri Oct 24 13:03:34 2014 Fri Oct 24 13:03:41 2014
3 103 Fri Nov 07 09:53:40 2014 Fri Nov 07 09:54:06 2014
4 104 Fri Nov 07 12:59:11 2014 Fri Nov 07 12:59:23 2014
5 201 Mon Oct 20 17:55:59 2014 Mon Oct 20 17:56:05 2014
6 202 Thu Oct 23 15:58:06 2014 Thu Oct 23 15:58:13 2014

3 4 5
1 Fri Oct 24 11:28:40 2014 Fri Oct 24 11:28:54 2014 Fri Oct 24 11:28:57 2014
2 Fri Oct 24 13:03:45 2014 Fri Oct 24 13:03:54 2014 Fri Oct 24 13:03:57 2014
3 Fri Nov 07 09:54:18 2014 Fri Nov 07 09:54:26 2014 Fri Nov 07 09:54:30 2014
4 Fri Nov 07 12:59:31 2014 Fri Nov 07 12:59:37 2014 Fri Nov 07 12:59:41 2014
5 Mon Oct 20 17:56:12 2014 Mon Oct 20 17:56:19 2014 Mon Oct 20 17:56:22 2014
6 Thu Oct 23 15:58:19 2014 Thu Oct 23 15:58:26 2014 Thu Oct 23 15:58:32 2014

Now, do the same for time:
dcast(dat2, subcode ~ question, value.var = "time") |>

head()

subcode 1 2 3 4 5
1 101 32764 9226 6762 13743 3104
2 102 20689 7266 4396 8204 2891
3 103 38236 25939 12205 7573 4403
4 104 45862 12164 7875 5612 4136
5 201 29450 5183 7235 6557 3187
6 202 74307 6757 6266 7033 5502

Using melt to re-form wide data frames

The *cast function take long (tidy) format and make data frames based on a category label. We can do the
opposite too, a process referred to as ‘melting’ (in tidyr, you can use ‘gather’). Before, question was used as
the label.

So let’s try to use melt to create a long data frame that looks like dat1. Try just using melt():
melt(dat3) |>

head()

q1 q2 q3 q4 q5 variable value
1 Missing 20 english na 1 subcode 101
2 Missing 19 english <NA> 1 subcode 102
3 Missing 20 English <NA> 1 subcode 103
4 Missing 18 English <NA> 1 subcode 104

28



5 Missing 19 english <NA> 1 subcode 201
6 Missing 19 english na 1 subcode 202

It didn’t quite work right. It uses q1..q5 as id variables, because they are non-numeric. We’d like q1..q5 to
appear as an entry in a single column, and subcode should be the id variable. We can specify id.vars directly,
which actually works:
melt(dat3, id.vars = c("subcode")) |>

head()

subcode variable value
1 101 q1 Missing
2 102 q1 Missing
3 103 q1 Missing
4 104 q1 Missing
5 201 q1 Missing
6 202 q1 Missing

This magically works, but it is a bit puzzling why. It uses only subcode as the id variable.

id.vars specify the variables you want to keep and not split on. These appear several times in the new data .
Notice that value.name names the value that the matrix is being unfolded to.

we can name the response like this:
melt(dat3, id.vars = c("subcode"), value.name = "response", variable.name = "Question") |>

head()

subcode Question response
1 101 q1 Missing
2 102 q1 Missing
3 103 q1 Missing
4 104 q1 Missing
5 201 q1 Missing
6 202 q1 Missing

Notice that q1 was empty, so we can specify just the measure variables we care about:
dat3 |>

melt(id.vars = c("subcode"), measure.vars = c("q2", "q4", "q5"), value.name = "response",
variable.name = "Question") |>

head()

subcode Question response
1 101 q2 20
2 102 q2 19
3 103 q2 20
4 104 q2 18
5 201 q2 19
6 202 q2 19

Using tidyr

The tidyr library replaces melt and cast with gather and spread, and more recently replaces gather and
spread with pivot_wider and pivot_longer.

For gather, you specify the key and value names, and then a selection of columns to ‘gather’.

29



Using gather and pivot_longer

library(tidyr)
gather(dat3, key = "question", value = "answer", q1, q2, q3, q4, q5) |>

head()

subcode question answer
1 101 q1 Missing
2 102 q1 Missing
3 103 q1 Missing
4 104 q1 Missing
5 201 q1 Missing
6 202 q1 Missing
gather(dat3, key = "question", value = "answer", q2:q5) |>

head() #only q1 to q5

subcode q1 question answer
1 101 Missing q2 20
2 102 Missing q2 19
3 103 Missing q2 20
4 104 Missing q2 18
5 201 Missing q2 19
6 202 Missing q2 19
d3 <- gather(dat3, key = "question", value = "answer", -subcode, -q3)
head(d3)

subcode q3 question answer
1 101 english q1 Missing
2 102 english q1 Missing
3 103 English q1 Missing
4 104 English q1 Missing
5 201 english q1 Missing
6 202 english q1 Missing
d3 |>

arrange(subcode, question)

subcode q3 question answer
1 101 english q1 Missing
2 101 english q2 20
3 101 english q4 na
4 101 english q5 1
5 102 english q1 Missing
6 102 english q2 19
7 102 english q4 <NA>
8 102 english q5 1
9 103 English q1 Missing
10 103 English q2 20
11 103 English q4 <NA>
12 103 English q5 1
13 104 English q1 Missing
14 104 English q2 18
15 104 English q4 <NA>
16 104 English q5 1
17 201 english q1 Missing

30



18 201 english q2 19
[ reached 'max' / getOption("max.print") -- omitted 78 rows ]

Notice that anything excluded from the columns you want to gather is replicated on each row–in these
cases subcode, q5, and q3. Thus, it attempts to include all the original data in one form or another. The
parameterization of pivot_longer is similar, but slightly different. Most importantly, the variables you want
to gather are specified in a c() vector, and key becomes names_to and value becomes values_to. Here are
the same operations. Notice that the outcome data are organized in a different order, so you might want to
pipe this into a an arrange function.
pivot_longer(dat3, names_to = "question", values_to = "answer", cols = c(q1, q2,

q3, q4, q5)) |>
head()

# A tibble: 6 x 3
subcode question answer

<int> <chr> <chr>
1 101 q1 Missing
2 101 q2 20
3 101 q3 english
4 101 q4 na
5 101 q5 1
6 102 q1 Missing
pivot_longer(dat3, names_to = "question", values_to = "answer", cols = q1:q4) |>

head() #only q1 to q4; q5 gets put in the ID variables

# A tibble: 6 x 4
subcode q5 question answer

<int> <chr> <chr> <chr>
1 101 1 q1 Missing
2 101 1 q2 20
3 101 1 q3 english
4 101 1 q4 na
5 102 1 q1 Missing
6 102 1 q2 19
pivot_longer(dat3, names_to = "question", values_to = "answer", cols = c(-subcode,

-q1)) |>
head()

# A tibble: 6 x 4
subcode q1 question answer

<int> <chr> <chr> <chr>
1 101 Missing q2 20
2 101 Missing q3 english
3 101 Missing q4 na
4 101 Missing q5 1
5 102 Missing q2 19
6 102 Missing q3 english

Using spread or pivot_wider

Spread reverses the gathering.
d3 |>

spread(question, answer) |>
head()

31



subcode q3 q1 q2 q4 q5
1 101 english Missing 20 na 1
2 102 english Missing 19 <NA> 1
3 103 English Missing 20 <NA> 1
4 104 English Missing 18 <NA> 1
5 201 english Missing 19 <NA> 1
6 202 english Missing 19 na 1

Similarly, spread has been replaced with pivot_wider
d3 |>

pivot_wider(names_from = question, values_from = answer)

# A tibble: 24 x 6
subcode q3 q1 q2 q4 q5

<int> <chr> <chr> <chr> <chr> <chr>
1 101 english Missing 20 na 1
2 102 english Missing 19 <NA> 1
3 103 English Missing 20 <NA> 1
4 104 English Missing 18 <NA> 1
5 201 english Missing 19 <NA> 1
6 202 english Missing 19 na 1
7 203 english Missing 19 na 1
8 204 English Missing 20 <NA> 1
9 206 english Missing 19 <NA> 1

10 207 english Missing 20 na 1
# i 14 more rows

Each of these functions have a number of additional arguments, including sorting variables, ways of creating
new variable names, and how to deal with missing values.

Exercise 3:

• Using the big5 data set, add a unique subject code to each row. Then, use “melt’ ’ to create a data
frame that has the following columns: subject code, gender, question and answer.

big5 <- read.csv("bigfive.csv")
qtype <- c("E", "A", "C", "N", "O", "E", "A", "C", "N", "O", "E", "A", "C", "N",

"O", "E", "A", "C", "N", "O", "E", "A", "C", "N", "O", "E", "A", "C", "N", "O",
"E", "A", "C", "N", "O", "E", "A", "C", "N", "O", "O", "A", "C", "O")

valence <- c(1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1,
1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1)

varnames <- colnames(big5)[2:45]

## first, recode the negative codings.
answers <- select(big5, contains("Q"))

## mutate the columns with -1 valence:
recoded <- answers %>%

mutate_if(valence == -1, function(x) {
6 - x

})

melted <- melt(mutate(recoded, sub = 1:nrow(recoded)), id.vars = c("sub"))

arrange(melted, sub, variable)

32



sub variable value
1 1 Q1 3
2 1 Q2 2
3 1 Q3 4
4 1 Q4 2
5 1 Q5 3
6 1 Q6 2
7 1 Q7 5
8 1 Q8 2
9 1 Q9 1
10 1 Q10 5
11 1 Q11 3
12 1 Q12 4
13 1 Q13 2
14 1 Q14 4
15 1 Q15 4
16 1 Q16 2
17 1 Q17 5
18 1 Q18 2
19 1 Q19 1
20 1 Q20 4
21 1 Q21 4
22 1 Q22 5
23 1 Q23 3
24 1 Q24 1
25 1 Q25 4
[ reached 'max' / getOption("max.print") -- omitted 5563 rows ]

In-class exercises
Look at the ‘student performance’ data set, which has five variables. https://www.kaggle.com/datasets/stea
lthtechnologies/predict-student-performance-dataset

The data are available here https://www.kaggle.com/datasets/stealthtechnologies/predict-student-
performance-dataset?select=data.csv

We may not be able to download the data from kaggle directly, but once you download it, use ONLY tidyverse
functions and a pipeline to do the following:

1. read it into a tibble
2. look at the tibble using a pipeline
3. make a new variable to bin SES into 5 levels
4. remove the middle level of SES from the data set
5. remove anyone with fewer than 1.0 study hours
6. select grades and SES variables
7. summarize to show the mean, SD, and N of grades by SES
8. do the same for attendance
9. Make a wide data frame out each of these, making SES the column variable, and rows indicating mean,

sd, and N for grades. Do the same for attendance.
10. Bind the two table together row-wise. Be sure to add a column that indicates whether the data are for

grades or attendance.
11. Make a long data frame out of this, with SES as the id variable, and the other variables as the measure

variables. This should look like a little like the original data set.

33

https://www.kaggle.com/datasets/stealthtechnologies/predict-student-performance-dataset
https://www.kaggle.com/datasets/stealthtechnologies/predict-student-performance-dataset
https://www.kaggle.com/datasets/stealthtechnologies/predict-student-performance-dataset?select=data.csv
https://www.kaggle.com/datasets/stealthtechnologies/predict-student-performance-dataset?select=data.csv


Exercise Solutions

Exercise 1:
Rewrite the following code using piping:
# set.seed(100) dat.A <- sample(1:10,100,replace=T) dat.B <- table(dat.A) sd <-
# sd(dat.B)

sample(1:10, 100, replace = T) |>
table() |>
sd()

[1] 4.2947

Exercise 2
Rewrite the following old-style examples with dplyr functions and pipes where appropriate.
# dat[dat$cond=='C',]

dat |>
filter(cond == "C") |>
head()

# A tibble: 6 x 4
sub cond group dv1
<chr> <chr> <int> <dbl>

1 f C 3 3.32
2 s C 5 3.71
3 d C 3 4.80
4 j C 3 1.56
5 m C 7 2.37
6 j C 3 3.21
# dat[dat$dv1>2.5,]
dat |>

filter(dv1 > 2.5) |>
head()

# A tibble: 6 x 4
sub cond group dv1
<chr> <chr> <int> <dbl>

1 f C 3 3.32
2 p B 1 4.40
3 z B 4 4.56
4 x B 2 4.33
5 k B 8 2.57
6 s C 5 3.71
# dat[1:10,]
dat |>

slice(1:10) |>
head()

# A tibble: 6 x 4
sub cond group dv1

34



<chr> <chr> <int> <dbl>
1 f C 3 3.32
2 p B 1 4.40
3 z B 4 4.56
4 f A 9 1.95
5 x B 2 4.33
6 k B 8 2.57
# dat[,2:3]
dat |>

select(2:3) |>
head()

# A tibble: 6 x 2
cond group
<chr> <int>

1 C 3
2 B 1
3 B 4
4 A 9
5 B 2
6 B 8
# dat[,c(3,1,2)]
dat |>

select(3, 1, 2) |>
head()

# A tibble: 6 x 3
group sub cond
<int> <chr> <chr>

1 3 f C
2 1 p B
3 4 z B
4 9 f A
5 2 x B
6 8 k B
# datx <- dat colnames(datx) <-
# c('participant','condition','counterbalance','score')

dat |>
rename(participant = sub, condition = cond, counterbalance = group, score = dv1)

# A tibble: 100 x 4
participant condition counterbalance score
<chr> <chr> <int> <dbl>

1 f C 3 3.32
2 p B 1 4.40
3 z B 4 4.56
4 f A 9 1.95
5 x B 2 4.33
6 k B 8 2.57
7 s C 5 3.71
8 d C 3 4.80
9 q A 5 2.85

35



10 j C 3 1.56
# i 90 more rows
# dat0[dat0$question=='a',]
dat0 |>

filter(question == "a") |>
head()

# A tibble: 4 x 4
sub question dv coding

<dbl> <chr> <dbl> <dbl>
1 1 a 5 -1
2 2 a 2 1
3 3 a 4 -1
4 4 a 1 1
# dat0[order(dat0$question),]
dat0 |>

arrange(question) |>
head()

# A tibble: 6 x 4
sub question dv coding

<dbl> <chr> <dbl> <dbl>
1 1 a 5 -1
2 2 a 2 1
3 3 a 4 -1
4 4 a 1 1
5 1 b 3 1
6 2 b 3 -1

Exercise 3:

dat1 |>
select(sub, question, newdv2) |>
filter(sub != 2) |>
mutate(question = dplyr::recode(question, a = "Arsenic", b = "Borox", c = "Carbon")) |>
rename(participant = sub, element = question, happiness = newdv2) |>
mutate(dvnormed = happiness - 5)

# A tibble: 9 x 4
participant element happiness dvnormed

<dbl> <chr> <dbl> <dbl>
1 1 Arsenic 5 0
2 1 Borox 9 4
3 1 Carbon 5 0
4 3 Arsenic 8 3
5 3 Borox 8 3
6 3 Carbon 9 4
7 4 Arsenic 5 0
8 4 Borox 9 4
9 4 Carbon 5 0

36



Exercise 4.

big5 <- read.csv("bigfive.csv")
qtype <- c("E", "A", "C", "N", "O", "E", "A", "C", "N", "O", "E", "A", "C", "N",

"O", "E", "A", "C", "N", "O", "E", "A", "C", "N", "O", "E", "A", "C", "N", "O",
"E", "A", "C", "N", "O", "E", "A", "C", "N", "O", "O", "A", "C", "O")

valence <- c(1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1,
1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1)

varnames <- colnames(big5)[2:45]

## first, recode the negative codings.
answers <- select(big5, contains("Q"))

## mutate the columns with -1 valence:
recoded <- answers %>%

mutate_if(valence == -1, function(x) {
6 - x

})

## check this. For negative valence, 2 becomes 4 etc.
bind_rows(recoded[1, ], answers[1, ])

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21
1 3 2 4 2 3 2 5 2 1 5 3 4 2 4 4 2 5 2 1 4 4

Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30 Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39 Q40
1 5 3 1 4 4 2 3 4 2 1 3 5 2 1 3 3 2 3 1

Q41 Q42 Q43 Q44
1 2 2 2 4
[ reached 'max' / getOption("max.print") -- omitted 1 rows ]

## create composite subsets
b5.e <- select(recoded, one_of(varnames[qtype == "E"]))
b5.a <- select(recoded, one_of(varnames[qtype == "A"]))
b5.c <- select(recoded, one_of(varnames[qtype == "C"]))
b5.n <- select(recoded, one_of(varnames[qtype == "N"]))
b5.o <- select(recoded, one_of(varnames[qtype == "O"]))

composites1 <- data.frame(e = rowMeans(b5.e, na.rm = T), a = rowMeans(b5.a, na.rm = T),
c = rowMeans(b5.c, na.rm = T), n = rowMeans(b5.n, na.rm = T), o = rowMeans(b5.o,

na.rm = T))

37


	Data Management Libraries
	plyr and dplyr
	reshape, reshape2 and tidyr
	Magrittr and forward-piping

	Forward-piping
	Exercise 1

	Overview of dplyr
	dplyr operations on rows
	slice and filter
	arrange()

	distinct()
	dplyr operations on columns
	select()

	rename()
	other dplyr column functions
	Exercise 2:

	dplyr Recoding functions
	mutate() and transmute()

	Using mutate to recode categorical values
	Recode using toupper
	Recode using ifelse
	Recode using case_when
	Recode using switch
	Recode using recode()
	Exercise 2

	Merging and joining
	Combining data frames row-wise
	dplyr functions to aggregation and and calculation:
	summarize or summarise
	Summarize by groups–a modern analog to aggregate.

	Calculating z-scores for each participant
	Aggregating with a function returning multiple values with reframe

	Other dplyr capabilities
	Advanced exercises

	Big five coding
	Exercise 3:

	Reshaping data
	The reshape2 library
	Using melt to re-form wide data frames

	Using tidyr
	Using gather and pivot_longer
	Using spread or pivot_wider
	Exercise 3:


	In-class exercises
	Exercise Solutions
	Exercise 1:
	Exercise 2
	Exercise 3:
	Exercise 4.


