
Psychometrics: Validity and Reliability

Shane T. Mueller shanem@mtu.edu

2025-01-23

Libraries used: psych, icc, irr, multilevel, nlme

Measures of Reliability and Validity
Reliability and validity go hand-in-hand when we are thinking about measuring a psychological concept.
‘’Reliability’ ’ refers to the extent to which your measure is reproducible, and likely to give you the same
answer if you applied it twice (assuming you were able to apply it twice). ‘’Validity’ ’ refers to the extent to
which the measure suits the purpose you are using it for. Many forms of both reliability and validity have
been described, and although validity is typically a more conceptual property, both properties are established
by looking at the psychometric properties of a measure.

We will look at several ways of assessing the psychometric properties of a test. As a first example, we will
look at repeated measurement of the “trail-making” test.

Figure 1: The trailmaking test. Patients play connect-the-dots, either with a series of numbers (Form A) or a
mixed series of numbers and letters (Form B).

Test-retest, inter-rater, and inter-test reliability
If you want to know whether a test will give the same results if you measure it more than once, the simplest
way to do this is to measure it twice and look at the correlation between the measures. This is known as
test-retest reliability. Often, people will use standard correlation coefficients.

This can come in handy in several types of situations, including:

• When each person has taken the same test twice (maybe with delay)

1

mailto:shanem@mtu.edu

• When you have developed different forms of a test and want to assess whether they measure the same
thing.

• When you have two raters coding behavior and want to establish inter-rater reliability
• When you want to establish criterion validity of one measure against a second normed measure
• When you want to determine whether what you are measuring in the first five minutes of a test is the

same as what an entire 30-minute test measures.
• Comparing one measure of a construct to another measure of a construct (e.g., executive function;

spatial reasoning, etc.).
• Compare a computerized test to a paper-and-pencil test

Using the correlation coefficient
To establish reliability, the simplest approach is to compute the correlation between your two measures. If
your variables are significantly non-normal (e.g., highly-skewed), you might use a spearman (rank-order)
correlation instead of a continuous Pearson correlation. If your two measures are likely to be on different
scales (e.g., if you are comparing one existing measure of vision to a new measure of vision), this is also
appropriate, but recognize that a high correlation does not mean the two measures have the same values. For
example, if you gave a physics test twice, you might get a high correlation across test-takers, but the second
test might have higher scores.

Consider the following data set using several related measures of the trail-making test (TMT). In this
study, participants completed 9 TMT measures. The TMT involves doing a connect-the-dots test, and
compares one (Form A) that is just letters A-B-C-D, and a second (Form B) that rotates between letters and
number (A-1-B-2-. . .). First, they completed the standard Reitan paper-and-pencil test, initially Form A and
then Form B. However, along with having a different layout, these forms are also of different lengths and
complexities, which is a problem for the test—but one most people ignore (even though it is one of the most
widely used cognitive tests in existence). To help develop a better alternative, we then had participants solve
four versions of the test via computer–two each for both layouts in both letter conditions. Finally, several
additional new randomly-generated tests were completed to provide independent pure and switch scores.
We are interested in whether the different versions in either a switch or a non-switch condition have high
test-retest validity–do they measure similar things?
library(ggplot2)
library(GGally) ##GGally is a front-end to ggplot that will make the pairs plot equivalent
library(reshape2)
tmt <- read.csv("trailmaking.csv")
pairs(tmt[,-1])
ggpairs(tmt[, -1], progress = FALSE)

2

Corr:
0.498***

Corr:
0.460**

Corr:

0.433**

Corr:
0.285.

Corr:

0.206

Corr:

0.572***

Corr:
0.064

Corr:

0.175

Corr:

0.497***

Corr:
0.611***

Corr:
0.202

Corr:

0.267.

Corr:

0.505***

Corr:
0.572***

Corr:

0.566***

Corr:
0.405**

Corr:

0.416**

Corr:

0.648***

Corr:
0.485***

Corr:

0.341*

Corr:

0.488***

Corr:
0.398**

Corr:

0.401**

Corr:

0.684***

Corr:
0.459**

Corr:

0.334*

Corr:

0.438**

Corr:

0.800***

Corr:
0.286.

Corr:

0.319*

Corr:

0.530***

Corr:
0.464**

Corr:

0.452**

Corr:

0.560***

Corr:

0.748***

Corr:
0.661***

PaperA PaperB R1Num R2Num R1SW R2SW PLETTER PNUMBER PSWITCH
P

aperA
P

aperB
R

1N
um

R
2N

um
R

1S
W

R
2S

W
P

LE
T

T
E

R
P

N
U

M
B

E
R

P
S

W
IT

C
H

20304050607025 50 7510012515000175002000022500250002000025000300001500020000250003000035000400003000050000700001000015000200001000012500150001750020000 200003000040000

0.00

0.02

0.04

25

50

75

100

125

15000

17500

20000

22500

25000

20000

25000

30000

15000
20000
25000
30000
35000
40000

30000

50000

70000

10000

15000

20000

10000

12500

15000

17500

20000

20000

30000

40000

library(knitr)
knitr::kable(round(cor(tmt[, -1]), 2), caption = "Pearson Inter-correlations between different trail-making tests")

3

Table 1: Pearson Inter-correlations between different trail-making
tests

PaperA PaperB R1Num R2Num R1SW R2SW PLETTER PNUMBER PSWITCH
PaperA 1.00 0.50 0.46 0.29 0.06 0.20 0.40 0.40 0.29
PaperB 0.50 1.00 0.43 0.21 0.18 0.27 0.42 0.40 0.32
R1Num 0.46 0.43 1.00 0.57 0.50 0.50 0.65 0.68 0.53
R2Num 0.29 0.21 0.57 1.00 0.61 0.57 0.48 0.46 0.46
R1SW 0.06 0.18 0.50 0.61 1.00 0.57 0.34 0.33 0.45
R2SW 0.20 0.27 0.50 0.57 0.57 1.00 0.49 0.44 0.56
PLETTER 0.40 0.42 0.65 0.48 0.34 0.49 1.00 0.80 0.75
PNUMBER 0.40 0.40 0.68 0.46 0.33 0.44 0.80 1.00 0.66
PSWITCH 0.29 0.32 0.53 0.46 0.45 0.56 0.75 0.66 1.00

The Spearman rank-order correlation might be better because these are times, which are likely to be skewed
positive:
knitr::kable(round(cor(tmt[, -1], method = "spearman"), 2), caption = "Spearman rank-order correlations")

Table 2: Spearman rank-order correlations

PaperA PaperB R1Num R2Num R1SW R2SW PLETTER PNUMBER PSWITCH
PaperA 1.00 0.61 0.36 0.16 0.07 0.32 0.40 0.30 0.22
PaperB 0.61 1.00 0.41 0.21 0.20 0.41 0.59 0.45 0.41
R1Num 0.36 0.41 1.00 0.51 0.53 0.63 0.64 0.61 0.54
R2Num 0.16 0.21 0.51 1.00 0.64 0.62 0.46 0.42 0.50
R1SW 0.07 0.20 0.53 0.64 1.00 0.69 0.33 0.35 0.49
R2SW 0.32 0.41 0.63 0.62 0.69 1.00 0.63 0.51 0.64
PLETTER 0.40 0.59 0.64 0.46 0.33 0.63 1.00 0.77 0.70
PNUMBER 0.30 0.45 0.61 0.42 0.35 0.51 0.77 1.00 0.64
PSWITCH 0.22 0.41 0.54 0.50 0.49 0.64 0.70 0.64 1.00

Here, the rank-order Spearman correlation coefficient is a little higher (on average, about .027), but a lot
higher for the Paper A versus B (.61 versus .49). We can use these correlations to examine the extent to
which we have high positive correlations between forms.
ggplot(tmt, aes(x = PaperA, y = PaperB)) + geom_point()

4

25

50

75

100

125

20 30 40 50 60 70
PaperA

P
ap

er
B

Results show:

• Correlation of .61 between form A and B paper tests
• Low correlation between paper and computer versions of the same problem. Here, form A paper is

identical to R1Num (R = .36), and Form B paper is identical to R2SW (R = .414).
• The only correlations that start getting interesting are between computerized tests.
• Two forms of the simple PEBL Test were letter and number. Their correlation was +.8, indicating

fairly good alternative-form reliability. The correlated moderately strongly with other computerized
measures, and less well with the paper-and-pencil tests.

• Tests requiring a switch do not stand out as especially related to one another.

Intra-class Correlation Coefficients
When measures are on the same scale, you should use intraclass correlation coefficient (ICC), which was
described by Shrout and Fleiss (1979). ICC is a more general measure of reliability that can be used in a
variety of situations, including when you have multiple raters, multiple measures, or multiple targets. It is a
measure of the proportion of variance that is due to the target, and is a more general measure of reliability
than the correlation coefficient. It is also more flexible, allowing for different kinds of models (reliability of a
single measure, the average of multiple measures, the consistency of multiple measures, the reliability across
multiple raters, or combinations of these). It can also be tricky to use correctly, easy to apply incorrectly
because of these nuances.

When considering ICC, you can think about an olympic event such as gymnastics with multiple judges, or
a county fair where jams are being judged. You might have multiple targets (gymnasts/jams), multiple
measures (technical and creative), multiple judges, different judges on each event or target, etc. The particular
ICC you use will depend on the design of your study. The ICC is a measure of the proportion of variance
that is due to the target.

5

ICC is calculated based on mean square error in relevant regression/ANOVA models.

From https://stats.stackexchange.com/questions/214124/what-to-do-with-negative-icc-values-adjust-the-
test-or-interpret-it-differently

The ICC is:

(MSs − MSe)/(MSs + (k − 1)MSe + k/n(MSt − MSe))

Here, MSs is subject-related, MSt is rater-related, and MSe is error-related.

It is fairly similar to the adjusted R2 we used to evaluate regression models, and also related to effect size
measures like η2. Like adjusted R2, you can see there are adjustments for how much error you would expect
from a random unpredictive variable, which means (just like adjusted R2) ICC can be corrected down to be
negative.

Here, if MSt is smaller than MSe, and MSs is small,the denominator can become negative. A negative ICC
essentially indicates an ICC of 0, although other measures have been proposed that avoid this issue (see the
RWG measure discussed later under inter-rater reliability).

The multilevel package also includes a number of other measures of agreement as well, including the rwg
measures that avoids the negative values but is not as well developed as the ICC measures. I will provide an
example of using several rwg measures later.

There are at least 6 different ICC estimates for different designs, including having more than 2 raters. These
are available in several different libraries:

* The psych library includes ICC1, ICC2, and ICC3. * The ICC library includes ICCbareF, ICCbare (which is
more flexible), and ICCest (which provides confidence regions) for a one-way model (ICC1) * The multilevel
library which includes ICC1 and ICC2. * The irr library includes icc for oneway and twoway models, reporting
significance tests.

The different libraries generally calculate the same values, but have different ways of specifying the models,
and their help files are sometimes inconsistent with one another. This is quite a rats nest to navigate. These
different implementations are likely to handle missing data differently and require different input values, and
it is not clear which apply to which ICC models—so be careful about reading the documentation. Let’s try
to walk through the different kinds of ICC estimates.

To understand how ICC works, think about fitting an ANOVA model to your set of ratings, and computing
an R2 of the overall model. A number of effect sizes (η2, partial η2, etc.) can be calculated by finding the
proportion of variance accounted for by any argument and dividing by a sum of other variances. ICC is a
similar calculation, and the different kinds of ICC use different pooled variance sums.

To start with, let’s refer to the people producing the values as raters, and the things being rated as targets
(some refer to these as subjects). In our tmt task, we could calculate ICC by considering all the participants
as raters and the tasks as targets, or each task as a different ‘rater’ and each participant as a target. These
will tell us different things.

For an ICC-1, or one-way model, you essentially consider the targets as randomly sampled. A two-way
model (ICC-2) considers the raters random–you might have a different set of raters for each judgement. It is
impacted by differences in means (biases) between raters, so if one rater is strict and the other is lax, ICC
will be low.

To examine this, we will look at TMT scales PNUMBER and PLETTER, which have similar completion
times. We will consider each scale the result of a ‘rater’. Note that the correlation between these is .8 with a
R2 of .64, and the best-fit line has a slope of .89–close to 1.0. But there is little consistency across people–some
people have high scores on both, and others have low scores on both. If we specify the model incorrectly,
considering the participant as the rater, we are likely to get a very low number. Be careful because it is easy
to specify the model incorrectly. We will start by building a regression model predicting letter by number,
and then regression models predicting overall value by either participant code, test(rater), or both

6

https://stats.stackexchange.com/questions/214124/what-to-do-with-negative-icc-values-adjust-the-test-or-interpret-it-differently
https://stats.stackexchange.com/questions/214124/what-to-do-with-negative-icc-values-adjust-the-test-or-interpret-it-differently

library(tidyverse)
tmp <- tmt %>%

dplyr::select(Subject, PLETTER, PNUMBER)
tmplong <- tmp %>%

pivot_longer(cols = 2:3)

cor(tmp[, 2:3])ˆ2

PLETTER PNUMBER
PLETTER 1.0000000 0.6404437
PNUMBER 0.6404437 1.0000000
lm <- lm(tmt$PLETTER ~ tmt$PNUMBER)
summary(lm)

Call:
lm(formula = tmt$PLETTER ~ tmt$PNUMBER)

Residuals:
Min 1Q Median 3Q Max

-3778.9 -1208.1 -232.4 926.0 3492.1

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1798.2614 1421.0171 1.265 0.212
tmt$PNUMBER 0.8874 0.1002 8.853 2.49e-11 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1599 on 44 degrees of freedom
Multiple R-squared: 0.6404, Adjusted R-squared: 0.6323
F-statistic: 78.37 on 1 and 44 DF, p-value: 2.49e-11
lm(value ~ name, data = tmplong) |>

summary()

Call:
lm(formula = value ~ name, data = tmplong)

Residuals:
Min 1Q Median 3Q Max

-3887.5 -1872.9 -322.1 1344.4 8635.0

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 14204.0 370.1 38.376 <2e-16 ***
namePNUMBER -223.4 523.4 -0.427 0.671

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2510 on 90 degrees of freedom
Multiple R-squared: 0.002019, Adjusted R-squared: -0.009069
F-statistic: 0.1821 on 1 and 90 DF, p-value: 0.6706

7

lm(value ~ as.factor(Subject), data = tmplong) |>
summary()

Call:
lm(formula = value ~ as.factor(Subject), data = tmplong)

Residuals:
Min 1Q Median 3Q Max

-1850.2 -569.9 0.0 569.9 1850.2

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 14169.8 800.7 17.696 < 2e-16 ***
as.factor(Subject)3027 3264.5 1132.4 2.883 0.005975 **
as.factor(Subject)3028 -3222.0 1132.4 -2.845 0.006605 **
as.factor(Subject)3029 -1066.0 1132.4 -0.941 0.351449
as.factor(Subject)3030 -3479.0 1132.4 -3.072 0.003564 **
as.factor(Subject)3031 546.0 1132.4 0.482 0.631987
as.factor(Subject)3032 -2165.8 1132.4 -1.912 0.062053 .
as.factor(Subject)3033 797.5 1132.4 0.704 0.484835
as.factor(Subject)3034 -2103.8 1132.4 -1.858 0.069615 .
as.factor(Subject)3035 1638.2 1132.4 1.447 0.154771
as.factor(Subject)3036 3376.0 1132.4 2.981 0.004578 **
as.factor(Subject)3037 -2989.5 1132.4 -2.640 0.011286 *
as.factor(Subject)3038 -3551.8 1132.4 -3.136 0.002980 **
as.factor(Subject)3039 -1231.3 1132.4 -1.087 0.282585
as.factor(Subject)3040 2770.2 1132.4 2.446 0.018316 *
[reached getOption("max.print") -- omitted 31 rows]

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1132 on 46 degrees of freedom
Multiple R-squared: 0.8962, Adjusted R-squared: 0.7947
F-statistic: 8.826 on 45 and 46 DF, p-value: 7.19e-12

We can see there is a high correlation between the two values (R2 of .64). But if we were to try and predict
the overall score by subject only, the model has a much higher R2: .896. On the other hand, predicting
based on the test (PNUMBER vs. PLETTER) has an R2 close to 0, as there is knowing which test doesn’t
really help predict the time. ICC works based on this logic, although (sort of like omega and adjusted R2) it
involves adjusting this value which can give you a negative ICC in some cases.

First, we can calculate using the ICC library which is the simplest–it only will calculate the ICC1, which is
not always what we want. It requires a ‘long’ data frame where you give it the rating value and a grouping
variable specifying the fixed factor of target. Note that we have no reference to which rater (test) was
which–we only know that each participant gave two ratings.
library(ICC)
The tests are the two 'raters'
ICC::ICCest(x = Subject, y = value, data = tmplong)

$ICC
[1] 0.7964547

$LowerCI

8

[1] 0.6612699

$UpperCI
[1] 0.8817495

$N
[1] 46

$k
[1] 2

$varw
[1] 1282400

$vara
[1] 5017917
the participants are the 'raters'--normally the wrong estimate:
ICC::ICCbare(x = name, y = value, data = tmplong)

[1] -0.0181023

Here, we get an ICC of .79, but if we do the wrong ICC we get a value of -.018, corresponding to the high and
low R2 in the regression model. (The similarity of .79 ICC to the earlier correlation of .79 is a coincidence.)

The ‘wrong’ ICC is not exactly wrong, it is just saying that in terms of absolute agreement, the 46 independent
ratings were not at all consistent–something we already knew, and not really relevant to comparing the two
scales. Notice that we give the predictor we don’t care about, and ignore the one we care about for ICC1.

irr Library

The irr library is straightforward and wants a matrix with columns the raters and rows the targets. Because
it specifies a matrix, it can calculate several models We specify ‘oneway’ as the model to use to be similar to
the previous analysis.
library(irr)
irr ICC1: this takes a matrix, rows is targets and columns is raters
irr::icc(tmp[, 2:3], model = "oneway", type = "consistency")

Single Score Intraclass Correlation

Model: oneway
Type : consistency

Subjects = 46
Raters = 2
ICC(1) = 0.796

F-Test, H0: r0 = 0 ; H1: r0 > 0
F(45,46) = 8.83 , p = 7.19e-12

95%-Confidence Interval for ICC Population Values:
0.661 < ICC < 0.882

This provides the same estimate of .796 with similar confidence ranges.

There are other ICC models irr provides. Here, we can specify the two-way model, but it gives the same
estimates (although slightly different confidence intervals), probably because there is essentially no bias

9

proided by the two estimates
ICC2:
irr::icc(tmp[, 2:3], model = "twoway", type = "consistency", unit = "single")

Single Score Intraclass Correlation

Model: twoway
Type : consistency

Subjects = 46
Raters = 2

ICC(C,1) = 0.796

F-Test, H0: r0 = 0 ; H1: r0 > 0
F(45,45) = 8.81 , p = 1.13e-11

95%-Confidence Interval for ICC Population Values:
0.659 < ICC < 0.882

There is a ‘average’ ICC, which is the estimate of consistency for taking the average score–if this were a
juried show with raters who have different biases it could work out differently.
Average score
irr::icc(tmp[, 2:3], model = "twoway", type = "consistency", unit = "average")

Average Score Intraclass Correlation

Model: twoway
Type : consistency

Subjects = 46
Raters = 2

ICC(C,2) = 0.886

F-Test, H0: r0 = 0 ; H1: r0 > 0
F(45,45) = 8.81 , p = 1.13e-11

95%-Confidence Interval for ICC Population Values:
0.795 < ICC < 0.937

We can examine this with a simple fake data set.
baseline <- runif(100) * 5 ##scores 0 through 10 which rate each of 100 performances

rater1 <- round(baseline + runif(100) * 0.25 + 5) ##rater 1 gives high scores.
rater2 <- round(baseline + runif(100) * 0.25) ##rater 2 gives low scores.
rater3 <- round(baseline + runif(100) * 0.25 + 2.5) ##rater 3 gives middle scores.
ratings <- tibble(rater1, rater2, rater3)

ratings |>
arrange(rater1) |>
mutate(subject = 1:100) |>
pivot_longer(cols = rater1:rater3) |>
ggplot(aes(x = subject, y = value, group = name, color = name)) + geom_point() +
geom_line() + theme_bw()

10

0.0

2.5

5.0

7.5

10.0

0 25 50 75 100
subject

va
lu

e

name

rater1

rater2

rater3

irr::icc(ratings, model = "oneway")

Single Score Intraclass Correlation

Model: oneway
Type : consistency

Subjects = 100
Raters = 3
ICC(1) = 0.0508

F-Test, H0: r0 = 0 ; H1: r0 > 0
F(99,200) = 1.16 , p = 0.189

95%-Confidence Interval for ICC Population Values:
-0.059 < ICC < 0.178

irr::icc(ratings, model = "twoway")

Single Score Intraclass Correlation

Model: twoway
Type : consistency

Subjects = 100
Raters = 3

ICC(C,1) = 0.961

11

F-Test, H0: r0 = 0 ; H1: r0 > 0
F(99,198) = 75.4 , p = 4.95e-119

95%-Confidence Interval for ICC Population Values:
0.946 < ICC < 0.973

Notice here, because there are three raters but each rater is very consistent but different, ICC1 is low, but
ICC2 is high.

multilevel library

The multilevel library requires you to make an aov model first, then it calculates either ICC1 or ICC2 values.
library(multilevel)

multilevel ICC1
model <- aov(value ~ Subject, data = tmplong)
multilevel::ICC1(model)

[1] -0.02194134
multilevel::ICC2(model)

[1] -79.85053

The psych library

The psych library calculates them all for you, if you provide the data as a matrix. This appears the easiest to
use and most comprehensive version:
library(psych)

psych ICC (reports all ICC flavors)
psych::ICC(tmp[, 2:3])

Call: psych::ICC(x = tmp[, 2:3])

Intraclass correlation coefficients
type ICC F df1 df2 p lower bound upper bound

Single_raters_absolute ICC1 0.80 8.8 45 46 7.2e-12 0.66 0.88
Single_random_raters ICC2 0.80 8.8 45 45 1.1e-11 0.66 0.88
Single_fixed_raters ICC3 0.80 8.8 45 45 1.1e-11 0.66 0.88
Average_raters_absolute ICC1k 0.89 8.8 45 46 7.2e-12 0.80 0.94
Average_random_raters ICC2k 0.89 8.8 45 45 1.1e-11 0.80 0.94
Average_fixed_raters ICC3k 0.89 8.8 45 45 1.1e-11 0.80 0.94

Number of subjects = 46 Number of Judges = 2
See the help file for a discussion of the other 4 McGraw and Wong estimates,

If you have an application where you have a small number of raters repeatedly rating a set of targets, you
probably want ICC3. With two raters, it does not really make a difference–we get the same numbers– but
with more raters it might if you have biases that are consistent within a rater across all targets. The psych
‘average’ models and the irr ‘average’ ICC scores is the result if you consider the unit of analysis the mean of
the ratings rather than individual scores. We are usually calculating ICC to determine the consistency across
multiple raters, so these are not always useful.

ICC1 is only useful if you are concerned about the absolute agreement on a scale by two raters (or two

12

administrations of a test). If you give a test twice, you might have really high test-retest correlation but if
scores improve your ICC1 will be lower.

What if we included the two paper tests in our analysis. This would be like having four raters. Now, we will
only use the psych ICC calculation.
require(psych)
library(reshape2)
library(dplyr)

tmp <- dplyr::select(tmt, PaperA, PaperB, PLETTER, PNUMBER)
round(cor(tmp), 3)

PaperA PaperB PLETTER PNUMBER
PaperA 1.000 0.498 0.405 0.398
PaperB 0.498 1.000 0.416 0.401
PLETTER 0.405 0.416 1.000 0.800
PNUMBER 0.398 0.401 0.800 1.000
tmp %>%

pivot_longer(cols = 1:4) %>%
ggplot(aes(x = name, y = log(value))) + geom_violin(fill = "gold") + theme_bw()

4

6

8

10

PaperA PaperB PLETTER PNUMBER
name

lo
g(

va
lu

e)

psych::ICC(tmp)

Call: psych::ICC(x = tmp)

13

Intraclass correlation coefficients
type ICC F df1 df2 p lower bound

Single_raters_absolute ICC1 -0.297 0.084 45 138 1.0e+00 -0.3101
Single_random_raters ICC2 0.012 2.468 45 135 3.5e-05 -0.0025
Single_fixed_raters ICC3 0.268 2.468 45 135 3.5e-05 0.1246
Average_raters_absolute ICC1k -10.967 0.084 45 138 1.0e+00 -17.7873
Average_random_raters ICC2k 0.047 2.468 45 135 3.5e-05 -0.0101
Average_fixed_raters ICC3k 0.595 2.468 45 135 3.5e-05 0.3628

upper bound
Single_raters_absolute -0.27
Single_random_raters 0.04
Single_fixed_raters 0.44
Average_raters_absolute -6.18
Average_random_raters 0.14
Average_fixed_raters 0.76

Number of subjects = 46 Number of Judges = 4
See the help file for a discussion of the other 4 McGraw and Wong estimates,

The correlation among tests is around .4, except for pnumber/pletter which is .8. So the mean correlation is
relatively low, but also the scores are very different–by orders of magnitude. We see a negative ICC value for
the absolute ratings ICC1. This does not make sense—ICC is supposed to be a proportion of variance, and
cannot be below 0. There is a reason it is negative, for the same reasons that adjusted R2 and adjusted η2

can be negative, but we probably don’t really care about ICC1 here. These are already very different tests,
and we’d be more interested in knowing whether they show a consistent pattern once the absolute scores are
factored out. ICC2 values are also close to 0. This allows for randomly-sampled raters on each target, which
is also not the case for us. ICC3 is more appropriate–it allows biases among raters, which is sort of what we
have. The overall score is positive and less than the average correlation among component measures, but
probably representative of the difference between these measures.

Summary of ICC
For a simple test-retest design, correlation is probably OK to use, but ICC has some advantages. If you care
about absolute agreement, ICC(1) can be used, but other versions of ICC can factor out absolute ratings
values. Furthermore, if you have a pool of raters but nobody rates all targets, ICC can be used. And ICC
will give you an overall correspondence value when you have more than just two measures or raters.

The different versions of ICC also make interesting connections to other aspects of psychometrics. Note that
‘single’ ICC attempts to estimate the consistency of a single measurement event, based on multiple measures.
Sometimes, the pooled measure is the critical outcome–you might have noisy individual measures but have
enough of them that the average score is more robust. Here, the reliability of a single rater is less interesting,
and instead you want to measure the reliability of the average of the whole set. This average ICC calculation
goes by another name–Cronbach’s α, which is used as a measure of a scale’s ‘internal consistency’. Rather
than thinking about these as multiple independent raters, we think about it as multiple questions on a scale.

Single-measure single-group measures of consistency
Many of the same measures of reliability can be used for inter-rater reliability, although some measures have
been proposed that are specific to different response types. We earlier briefly introduced the RWG measure
as an alternative to ICC, which is available as part of the multilevel package (James, L. R., Demaree, R.
G., & Wolf, G. (1984). Estimating within-group interrater reliability with and without response bias. Journal
of Applied Psychology, 69(1), 85–98.).

The multilevel library includes a number of related inter-rater agreement measures for different situations.
The abstract provides a very clear statement of how these might be used, assessing agreement among a single
group of judges in regard to a single target: “For example, the group of judges could be editorial consultants,

14

members of an assessment center, or members of a team. The single target could be a manuscript, a lower
level manager, or a team. The variable on which the target is judged could be overall publishability in the
case of the manuscript, managerial potential for the lower level manager, or a team cooperativeness for the
team.”

The RWG measure is mostly a measure of consistency within a single measurement: it does not consider
multiple judgments across the same individuals. Its logic is that if we estimate the total potential variability
(specified in the ranvar argument), and we look at the observed variability across a group of ratings, the
difference between these is the consistency, which is called rwg. The rwg function defaults to assuming you
have a 1 to 5 scale with a uniform distribution, which produced a variance of 2. The variance for a uniform
rv with A options is $(Aˆ2-1)/12. This can be calculated directly for your own scale, but we can estimate it
via simulation as well:
(5ˆ2 - 1)/12

[1] 2
var(sample(1:5, 1e+05, replace = T))

[1] 1.99632

Suppose you were using a 1 to 10 scale (it is 8.25)
(10ˆ2 - 1)/12

[1] 8.25
var(sample(1:10, 1e+07, replace = T))

[1] 8.251633

The rwg function lets you calculate multiple rwg scores simultaneously, giving a ‘group’ variable and an x
variable for scores. We really only need one group thoug. Here is an example with strong consistency:
library(multilevel)
rwg(x = c(3, 3, 3, 4, 3), grpid = c(1, 1, 1, 1, 1))

grpid rwg gsize
1 1 0.9 5

Here we have several groups doing ratings on different targets, and the groups have different sizes:
group <- c(1, 1, 1, 1, 1, 2, 2, 2, 3, 3)
values <- c(1, 3, 5, 3, 5, 2, 2, 1, 4, 4)
rwg(x = values, grpid = group)

grpid rwg gsize
1 1 0.0000000 5
2 2 0.8333333 3
3 3 1.0000000 2

Here, the first group has no consistency, the second has .83, and the third has 1.0.

Multi-item measures of group consistency.
For RGW, we don’t worry about who is doing the ratings, and concern ourselves with a single measure. If we
have multiple measures we are taking (i.e., ratings on multiple dimensions), we can make a similar calculation,
and this becomes a measure akin to ICC1, with the advantage that rwg.j cannot go below 0. The multilevel
package has two functions for this: rwg.j and rwg.lindell.j. rwg.lindell.j uses a similar calculation but adjusts
the score so that it is less likely to increase as the number of items being judged increase. Both works with
multiple simultaneous ‘groupid’ calculations, but we will look at a single group rating first. Suppose a panel

15

of judges were rating 4 different gymnasts on a 1 to 5 scale. Here each judge is a row and each gymnast is a
column:
data <- rbind(Russia = c(4, 3, 1, 5), USA = c(5, 3, 5, 5), Japan = c(4, 4, 4, 4))
colnames(data) <- c("A1", "A2", "A3", "A4")
rwg.j(x = data, grpid = rep(1, 3))

grpid rwg.j gsize
1 1 0.6666667 3
rwg.j.lindell(x = data, grpid = rep(1, 3))

grpid rwg.lindell gsize
1 1 0.3333333 3

This shows reasonable consistency of .666 or .33 for the lindell score. If instead we have a much bigger
variability across contestants, but the same variability within each participant, we get the same scores:
data <- rbind(Russia = c(4, 1, 1, 3), USA = c(5, 1, 5, 3), Japan = c(4, 2, 4, 2))
colnames(data) <- c("A1", "A2", "A3", "A4")
rwg.j(x = data, grpid = rep(1, 3))

grpid rwg.j gsize
1 1 0.6666667 3
rwg.j.lindell(x = data, grpid = rep(1, 3))

grpid rwg.lindell gsize
1 1 0.3333333 3

Measuring Internal Consistency
When your measurement method has multiple items–a single set of materials, test-retest validity is difficult to
establish because you might get carryover effects. People can learn the materials and be impacted later. Or,
for personality-type questionnaires, people may remember their answers and be more consistent than they
really should be. Nevertheless, for a scale–a set of questions intended to all measure a coherent construct,
we’d like to get a measure of how well they go together, and indirectly a measure of reliability.

There are a number of measures of so-called “Internal consistency”, the most popular among these is
Cronbach’s α, which is analogous to the ‘average’ ICC scores. These are sometimes discussed as measuring
the average of all possible split-half correlations, but that definition is confusing, because it is not clear
whether you are splitting questions and comparing it over people, or splitting people and comparing it over
questions. The coefficient α can be thought of as a measure you would get by dividing your questions into
two groups and computing a correlation between them, then repeating this for all possible splits of two
groups, adjusted for the total number of items you are measuring. Alternately, as described earlier, it is an
adjustment to ICC estimating ICC for the entire set of questions instead of just one.

It is important to recognize that the statistics of consistency make the assumption that there is a single factor
underlying the measure, and produce a statistic based on this assumption. Thus, they do not provide strong
evidence in favor of a single factor structure when the values are high, but rather measure the consistency
based on the assumption that there is a single factor. There are thus ways the statistics can be ‘fooled’. For
example, α goes up as the number of items on the scale go up. In fact, when argueing for researchers to
use the Greatest Lower Bound statistic, Sijtsma (2009) argues: “The only reason to report alpha is that
top journals tend to accept articles that use statistical methods that have been around for a long time such
as alpha. Reporting alpha in addition to a greater lower bound may be a good strategy to introduce and
promote a better reliability estimation practice.’ ’ It is a good practice to compute a PCA on your data
and identify how much variance the first factor accounts for. As a rule of thumb, if the first factor does not
account for half of the variance (or ideally more), and if the first factor is multiple times higher than the next

16

largest factor (at least 3x), you probably don’t have a single factor in your items and should try to pick out
the subscale you care about.

To examine some alternatives, let’s load a data set using an intelligence/reasoning task similar to Raven’s
progressive matrices. These are thought to be a good measure of fluid intelligence. In this data set, we can’t
take the results too seriously, because we have fewer people recorded than items on the test. In general, a
serious analysis like this should have several hundred observations for a set of 20-50 questions.
library(psych)
library(dplyr)
library(reshape2)
dat.raw <- read.csv("reasoning-dat.csv", header = F)

dat.long <- transmute(dat.raw, sub = V1, prob = V13, correct = V24)
dat <- dcast(dat.long, sub ~ prob, value.var = "correct")
items <- dat[, -1]

Several of the items were correct by everybody, which can cause trouble. These are not predictive of anything.
So let’s get rid of them:
items2 <- items[, colMeans(items) < 1]
head(items2)

A1B3 A2C3 A3 A3B5C4 A3B5E4 A3C5D4 A3C5E4 A3D5E4 A4B3D5 B1E2 B2 B2C5 B3 B4
1 0 0 1 0 0 0 0 0 0 0 1 0 1 0
2 1 1 1 0 0 1 0 1 0 1 1 1 1 1

B4D5E3 B4E3 B5 B5C4D3 B5C4E3 B5D4 C1E4 C2 C3 C3D2 C4 C5 D1E5 D3 D4 D5 E2 E3
1 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0
2 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1

E4 E5
1 0 0
2 1 1
[reached 'max' / getOption("max.print") -- omitted 4 rows]

Notice that the measures here are all 0 or 1–whether they got the score correct or not. This will necessarily
limit the predictability of any single question.

Now, lets do a PCA to see if we have a single factor. We will look at this in more detail below.
evals <- (eigen(cor(items2))$values)
round(evals/sum(evals), 3)

[1] 0.284 0.146 0.108 0.084 0.073 0.061 0.052 0.049 0.038 0.037 0.026 0.023
[13] 0.013 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
[25] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

To start out with this is not promising, because the first factor is only 28% of the variance. This is not too
surprising because the Raven’s test contains multiple subscales that have different kiids of difficulty. The first
factor is twice as big as the second though, which at least shows a sharp drop-off. Note also that we have
relatively few participants(fewer than items), so we could easily get into trouble. We will proceed, but may
worry that we have multiple independent factors involved.

Mean or median correlation
One value to consider is the mean or median inter-item correlation.
library(ggplot2)
item.cor <- cor(items2, use = "pairwise.complete")
cor.values <- item.cor[upper.tri(item.cor)]

17

qplot(cor.values, bins = 50) + annotate(geom = "text", x = 0.5, y = 50, label = paste("Mean:",
round(mean(cor.values), 3))) + annotate(geom = "text", x = 0.5, y = 55, label = paste("Median:",
round(median(cor.values), 3))) + xlab("Pairwise correlation")

Mean: 0.174

Median: 0.185

0

20

40

60

−0.5 0.0 0.5 1.0
Pairwise correlation

mean(cor.values)

[1] 0.17364
median(cor.values)

[1] 0.1846372

This shows that there is fairly weak relationships between items. Many pairs are negatively correlated,
and both the mean and median correlations are around .18. On an individual basis, this is not great, but
sometimes this as good as we get with single items. Also, see that there are some pairs of items that have a
perfect correlation. In our case, this is most likely caused by the small number of participants, but it could
also indicate redundancy and might cause problems for some of our methods. In practice, it could also mean
that you have asked the same question twice, and one of them could be removed.

Item-total correlation
Another simple measure is to compute the correlation between each item and the total score for each person.
In addition to the its ease of interpretation, it can also be used to select variables for inclusion or removal.
library(ggplot2)
library(dplyr)

Make item total, subtracting out the item score.

18

itemTotal <- matrix(rep(rowSums(items2), ncol(items2)), ncol = ncol(items2)) - items2

item.cor2 <- diag(cor(items2, itemTotal, use = "pairwise.complete"))
qplot(item.cor2, bins = 20) + annotate(geom = "text", x = 0.5, y = 50, label = paste("Mean:",

round(mean(item.cor2), 3))) + annotate(geom = "text", x = 0.5, y = 55, label = paste("Median:",
round(median(item.cor2), 3))) + xlab("Pairwise correlation") + ggtitle("Item-total correlation.")

Mean: 0.389

Median: 0.399

0

20

40

0.0 0.2 0.4 0.6
Pairwise correlation

Item−total correlation.

mean(item.cor2)

[1] 0.3888878
median(item.cor2)

[1] 0.3989331

This shows how the distribution of scores on each single item correlates (across people) with the total. A
high value here means that the question is very representative of the entire set. Possible, it means that you
could replace the entire set with that one question, or a small number of questions that are representative of
the entire set.

The results here are a bit more reassuring. On average, the correlation between any one item and the total is
about 0.4. What’s more, there are a few near 0, and some that are negative, which may indicate that we have
“bad” items that we shouldn’t be using. (In this case, it is more likely to stem from the fact that we have a
very low number of observations/participants.) Also, about ten questions have item-total correlations around
0.6. Maybe we could make an abbreviated test with just ten questions that is as good as the 40-item test.

19

Table 3: Typical interpretations of Cronbach’s α
Cronbach’s α Internal consistency
α ≥ 0.9 Excellent (High-Stakes testing)
0.7 ≤ α < 0.9 Good (Low-Stakes testing)
0.6 ≤ α < 0.7 Acceptable
0.5 ≤ α < 0.6 Poor
α < 0.5 Unacceptable

Cronbach’s α

These previous measures are simple heuristics, but several measures have been developed to give a single
measure about the coherence of a set of items. The most famous of these is Cronbach’s α (alpha), which is
appropriate for continuous (or at least ordinal)-scale measures, including response time, Likert-style questions,
and the like.

Many functions related to psychometrics are available within the psych package. Other packages including α
include psy (which also has ICC and a kappa), the fmsb library, the psychometric package, and probably
others.

The psych package has a function called alpha, which completes computes α and a more complete reliability
analysis, including some of the measures above.
library(psych)
psych::alpha(items2)

Some items (A3 B2 B5C4D3 C3 D3 D5) were negatively correlated with the first principal component and
probably should be reversed.
To do this, run the function again with the 'check.keys=TRUE' option

Reliability analysis
Call: psych::alpha(x = items2)

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.86 0.88 0.85 0.17 7.1 0.049 0.68 0.17 0.18

95% confidence boundaries
lower alpha upper

Feldt 0.74 0.86 0.94
Duhachek 0.76 0.86 0.96

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N var.r med.r

A1B3 0.85 0.87 0.84 0.17 6.6 0.078 0.18
A2C3 0.85 0.87 0.84 0.16 6.5 0.080 0.17
A3 0.87 0.88 0.86 0.19 7.5 0.082 0.21
A3B5C4 0.86 0.87 0.85 0.17 6.9 0.087 0.19
A3B5E4 0.86 0.87 0.85 0.17 6.9 0.086 0.18
A3C5D4 0.85 0.87 0.84 0.17 6.6 0.085 0.17
A3C5E4 0.87 0.88 0.86 0.18 7.4 0.083 0.19
A3D5E4 0.85 0.87 0.84 0.17 6.7 0.085 0.17
A4B3D5 0.85 0.87 0.85 0.17 6.8 0.085 0.17
B1E2 0.86 0.87 0.85 0.17 6.9 0.083 0.18
[reached 'max' / getOption("max.print") -- omitted 24 rows]

20

Item statistics
n raw.r std.r r.cor r.drop mean sd

A1B3 15 0.658 0.725 0.713 0.6326 0.933 0.26
A2C3 15 0.726 0.781 0.775 0.6959 0.867 0.35
A3 15 0.064 0.044 -0.024 -0.0059 0.800 0.41
A3B5C4 15 0.465 0.446 0.411 0.4297 0.067 0.26
A3B5E4 15 0.442 0.436 0.401 0.3922 0.133 0.35
A3C5D4 15 0.706 0.666 0.650 0.6583 0.400 0.51
A3C5E4 15 0.106 0.109 0.046 0.0188 0.467 0.52
A3D5E4 15 0.629 0.609 0.588 0.5730 0.600 0.51
A4B3D5 15 0.610 0.564 0.540 0.5519 0.400 0.51
B1E2 15 0.451 0.497 0.467 0.4018 0.867 0.35
[reached 'max' / getOption("max.print") -- omitted 24 rows]

Non missing response frequency for each item
0 1 miss

A1B3 0.07 0.93 0
A2C3 0.13 0.87 0
A3 0.20 0.80 0
A3B5C4 0.93 0.07 0
A3B5E4 0.87 0.13 0
A3C5D4 0.60 0.40 0
A3C5E4 0.53 0.47 0
A3D5E4 0.40 0.60 0
A4B3D5 0.60 0.40 0
B1E2 0.13 0.87 0
B2 0.07 0.93 0
B2C5 0.07 0.93 0
B3 0.07 0.93 0
B4 0.27 0.73 0
B4D5E3 0.60 0.40 0
B4E3 0.20 0.80 0
B5 0.60 0.40 0
B5C4D3 0.53 0.47 0
B5C4E3 0.73 0.27 0
B5D4 0.60 0.40 0
C1E4 0.20 0.80 0
C2 0.07 0.93 0
C3 0.13 0.87 0
C3D2 0.33 0.67 0
C4 0.27 0.73 0
[reached getOption("max.print") -- omitted 9 rows]

If you run this with warnings, it will note things like individual items negatively correlated with the total.
The results show several results. The ‘raw alpha’ is based on covariances, and the ‘std.alpha’ is based on the
correlations. These could differ if you incorporate measures that have very different scales, but should be
fairly close if you have all of the same types of questions. These scores turn out to be very good for–actually
close to the “excellent’ ’ criterion of 0.9. Along with this, it reports G6 –an abbreviation for Guttman’s
Lambda (λ). Guttman’s Lambda estimates the amount of variance in each item that can be accounted for by
linear regression of all other items. The next column (average_r) computes the average inter-item correlation.
This is just an average of the off-diagonals of the correlation matrix. Here, this value is around 0.2. If this
were really high, we would need a lot fewer items; because it is relatively low, this means that different
questions are not completely predictive of anything else. The final column is a measure of signal-to-noise
ratio, which you can read more on in the psych::alpha documentation.

21

Dropout statistics

Next, it looks at whether any specific items were especially influential, by examining these values if the item
were dropped. It shows each of the overall stats for each individual item. These are all make a fairly small
change, mostly. This can be accessed directly using alpha(data)$alpha.drop

Item Statistics

Finally, “Item statistics’ ’ are shown, which can be accessed directly as alpha(data)$item.stats. These include
n, raw.r, std.r, r.cor, r.drop, mean a sd. From the psych help file:

• n number of complete cases for the item
• raw.r The correlation of each item with the total score, not corrected for item overlap.
• std.r The correlation of each item with the total score (not corrected for item overlap) if the items were

all standardized
• r.cor Item whole correlation corrected for item overlap and scale reliability
• r.drop Item whole correlation for this item against the scale without this item

Here, we can start thinking about which items are really useful, and which are not, at least to the extent
that they intend to measure a common factor. For example, B5C4D3- is actually negatively correlated with
the total. This may indicate a good reason to remove the item from the test. However, if there are several
factors, it might be a valuable index of another construct.

Examining Eigenfactors and Principle Components (PCA)
Earlier, we stated that α does not test whether you have a single construct, but rather assumes you do.
To be confident in our analysis, we’d like to confirm that all the items fit together. The correlations are
somewhat reassuring; but there were a lot of pairwise correlations that were negative and close to 0, which
would happen if we had independent factors. To the extent that a specific set of questions are similar, you
would expect them to all be correlated with one another. Principle Components analysis attempts to project
the correlational structure onto a set of independent vectors using eigen decomposotion. This is related more
generally to factor analysis, which will be covered later, and similar questions could be asked in a different
way via clustering methods, but the typical approach used by researchers is eigen decomposition, also referred
to as principal components analysis.

To the extent that a set of questions coheres, it should be well accounted for by a single factor. PCA identifies
a proportion of variance accounted for, and if the proportion of variance for the first dimension is high and,
as a rule of thumb, more than 3 times larger than the next, you might argue that the items show a strong
coherence.

For a multi-attribute scale (i.e., personality big five) you’d expect multiple factors, but if you isolate just one
dimension, you would hope that they can be explained by a single strong factor. We can do a simple factor
analysis by doing eigen decomposition of the correlation matrix like this:
cor2 <- cor(items2)
e <- eigen(cor2)
vals <- data.frame(index = 1:length(e$values), values = e$values)
vals$prop <- cumsum(vals$values/sum(vals$values)) #Proportion explained
ggplot(vals, aes(x = index, y = values)) + geom_bar(stat = "identity") + ggtitle("Scree plot of Eigenvalues")

22

0.0

2.5

5.0

7.5

10.0

0 10 20 30
index

va
lu

es
Scree plot of Eigenvalues

ggplot(vals, aes(x = index, y = prop)) + geom_bar(stat = "identity") + ggtitle("Scree plot of Eigenvalues") +
ylab("Cumulative Proportion of variance explained")

23

0.00

0.25

0.50

0.75

1.00

0 10 20 30
index

C
um

ul
at

iv
e

P
ro

po
rt

io
n

of
 v

ar
ia

nc
e

ex
pl

ai
ne

d
Scree plot of Eigenvalues

Looking at the ‘scree’ plot, this shows the proportion of variance accounted for by the most to least important
dimension. The first dimension is about twice as great as the next, after which it trails off, so this is
modestly-strong evidence for a single factor. A basic rule of thumb is that factors with eigenvalues greater
than 1.0 are important, suggesting that there are 4-5 factors. The second figure shows cumulative proportion
of variance explained (the sum of the eigenvalues is the total variance in the correlation matrix). Here, the
results are again not compelling–only 28% of the variance is explained by one factor. These all point to there
being multiple constructs that these measures are indexing.

Perhaps we can narrow down the questions to identify a single factor. Looking at the loadings on the first
factor, we might look to eliminate values close to 0. It looks like questions 3, 7, 11, 18,23,26,28, and 30 are
all relatively small (say less than .07 from 0). What happens if we select just the most strongly associated
questions:
(1:34)[abs(e$vectors[, 1]) < 0.07]

[1] 3 7 11 18 23 26 28 30
items3 <- items2[, abs(e$vectors[, 1]) > 0.07]
e2 <- eigen(cor(items3))

vals <- data.frame(index = 1:length(e2$values), values = e2$values)
vals$prop <- cumsum(vals$values/sum(vals$values)) #Proportion explained

ggplot(vals, aes(x = index, y = values)) + geom_bar(stat = "identity") + ggtitle("Scree plot of Eigenvalues")

24

0.0

2.5

5.0

7.5

10.0

0 10 20
index

va
lu

es
Scree plot of Eigenvalues

vec1 <- data.frame(index = 1:nrow(e2$vectors), value = e2$vectors[, 1])
ggplot(vec1, aes(x = index, y = value)) + geom_bar(stat = "identity") + ggtitle("Loadings on first eigenvector")

25

−0.2

−0.1

0.0

0 10 20
index

va
lu

e
Loadings on first eigenvector

ggplot(vals, aes(x = index, y = prop)) + geom_bar(stat = "identity") + ggtitle("Cumulative Scree plot of Eigenvalues") +
ylab("Cumulative Proportion of variance explained")

26

0.00

0.25

0.50

0.75

1.00

0 10 20
index

C
um

ul
at

iv
e

P
ro

po
rt

io
n

of
 v

ar
ia

nc
e

ex
pl

ai
ne

d
Cumulative Scree plot of Eigenvalues

Let’s see what happens when we do the alpha:
alpha(items3)

Reliability analysis
Call: alpha(x = items3)

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.9 0.92 0.91 0.3 11 0.037 0.66 0.22 0.27

95% confidence boundaries
lower alpha upper

Feldt 0.81 0.9 0.96
Duhachek 0.83 0.9 0.97

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N var.r med.r

A1B3 0.89 0.91 0.91 0.29 10.0 0.065 0.24
A2C3 0.89 0.91 0.91 0.28 9.9 0.068 0.22
A3B5C4 0.90 0.92 0.92 0.31 11.1 0.072 0.29
A3B5E4 0.90 0.92 0.92 0.31 11.0 0.072 0.30
A3C5D4 0.90 0.91 0.92 0.30 10.6 0.072 0.27
A3D5E4 0.90 0.91 0.92 0.30 10.5 0.073 0.24
A4B3D5 0.90 0.91 0.92 0.30 10.6 0.073 0.27
B1E2 0.90 0.91 0.92 0.30 10.6 0.070 0.27
B2C5 0.89 0.91 0.91 0.29 10.0 0.065 0.24

27

B3 0.90 0.92 0.92 0.31 11.1 0.066 0.29
[reached 'max' / getOption("max.print") -- omitted 16 rows]

Item statistics
n raw.r std.r r.cor r.drop mean sd

A1B3 15 0.75 0.79 0.76 0.73 0.933 0.26
A2C3 15 0.81 0.85 0.82 0.79 0.867 0.35
A3B5C4 15 0.38 0.36 0.31 0.34 0.067 0.26
A3B5E4 15 0.41 0.40 0.38 0.36 0.133 0.35
A3C5D4 15 0.61 0.56 0.52 0.55 0.400 0.51
A3D5E4 15 0.61 0.59 0.58 0.55 0.600 0.51
A4B3D5 15 0.61 0.57 0.54 0.55 0.400 0.51
B1E2 15 0.52 0.56 0.56 0.48 0.867 0.35
B2C5 15 0.75 0.79 0.76 0.73 0.933 0.26
B3 15 0.36 0.36 0.31 0.32 0.933 0.26
[reached 'max' / getOption("max.print") -- omitted 16 rows]

Non missing response frequency for each item
0 1 miss

A1B3 0.07 0.93 0
A2C3 0.13 0.87 0
A3B5C4 0.93 0.07 0
A3B5E4 0.87 0.13 0
A3C5D4 0.60 0.40 0
A3D5E4 0.40 0.60 0
A4B3D5 0.60 0.40 0
B1E2 0.13 0.87 0
B2C5 0.07 0.93 0
B3 0.07 0.93 0
B4 0.27 0.73 0
B4D5E3 0.60 0.40 0
B4E3 0.20 0.80 0
B5 0.60 0.40 0
B5C4E3 0.73 0.27 0
B5D4 0.60 0.40 0
C1E4 0.20 0.80 0
C2 0.07 0.93 0
C3D2 0.33 0.67 0
C4 0.27 0.73 0
D1E5 0.40 0.60 0
D4 0.13 0.87 0
E2 0.07 0.93 0
E3 0.07 0.93 0
E4 0.07 0.93 0
[reached getOption("max.print") -- omitted 1 row]

Now, alpha went up, as did all the measures of consistency. This is still weak evidence for a single factor,
but also remember we are basing this on a small sample size, and before making any decisions we’d want to
collect a lot more data.

Alternate measures of consistency
As discussed before (see Sijtsma, 2009), modern statisticians suggest that α is fairly useless, and should
only be used hand-in-hand with other better measures, including one called glb (greatest lower bound). the
psych package provides several alternative measures. Note that for some of these, we don’t have enough

28

observations to do a complete analysis. First, running glb(items3) will compute a set of measures (guttman,
tenbarg, glb, and glb.fa).
plot.new() ##there is some bug which requires this.

g <- glb(items3)

g$beta #worst split-half reliability

[1] 0.6250765
g$alpha.pc #estimate of alpha

[1] 0.8951595
g$glb.max #best alpha

[1] 0.9422672
g$glb.IC #greatest lower bound using ICLUST clustering

[1] 0.9047976
g$glb.Km #greatest lower bound using Kmeans clustering

[1] 0.8137413
g$glb.Fa #greatest lower bound using factor analysis

[1] 0.9422672

29

g$r.smc #squared multiple correlation

[1] 0.9144583
g$tenberge #the first value is alpha

$mu0
[1] 0.9167904

$mu1
[1] 0.9286011

$mu2
[1] 0.929218

$mu3
[1] 0.9292724

Now, the beta score shows us that possibly our coherence is .47. This converges with our examination of the
factors–there might be more than one reasonable factor in the data set.

As a brief test, what happen when our data have two very strong factors in them? Suppose we have 10 items
from each of two factors
set.seed(102)
base1 <- rnorm(10) * 3
base2 <- rnorm(10) * 3
people1 <- rnorm(50)
people2 <- rnorm(50)

cor(base1, base2)

[1] -0.1387837

These are slightly negatively correlated.
noise <- 0.5

set1 <- outer(people1, base1, "+") + matrix(rnorm(500, sd = noise), nrow = 50)
set2 <- outer(people2, base2, "+") + matrix(rnorm(500, sd = noise), nrow = 50)

data <- as.data.frame(cbind(set1, set2))
image(cor(data))

30

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

e <- eigen(cor(data))
e$values

[1] 10.02706648 6.93182253 0.41403628 0.34552463 0.30053502 0.27505086
[7] 0.25045743 0.22005759 0.19291691 0.17907262 0.14719890 0.13298576

[13] 0.11112113 0.09858208 0.09272425 0.08485916 0.05798296 0.05511698
[19] 0.04466288 0.03822552
alpha(data)

Reliability analysis
Call: alpha(x = data)

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.95 0.95 0.99 0.47 18 0.013 0.92 0.81 0.26

95% confidence boundaries
lower alpha upper

Feldt 0.92 0.95 0.97
Duhachek 0.92 0.95 0.97

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r

V1 0.94 0.94 0.99 0.47 17 0.014 0.12 0.25
V2 0.94 0.94 0.99 0.47 17 0.014 0.12 0.25
V3 0.94 0.94 0.99 0.47 17 0.014 0.12 0.26

31

V4 0.94 0.95 0.99 0.48 17 0.014 0.11 0.26
V5 0.94 0.94 0.99 0.47 17 0.014 0.12 0.25
V6 0.94 0.95 0.99 0.47 17 0.014 0.11 0.26
V7 0.94 0.94 0.99 0.47 17 0.014 0.12 0.26
V8 0.94 0.95 0.99 0.48 17 0.013 0.11 0.26
V9 0.94 0.95 0.99 0.48 17 0.013 0.12 0.26
[reached 'max' / getOption("max.print") -- omitted 11 rows]

Item statistics
n raw.r std.r r.cor r.drop mean sd

V1 50 0.75 0.74 0.73 0.71 0.83 1.2
V2 50 0.76 0.75 0.74 0.72 2.65 1.2
V3 50 0.74 0.72 0.72 0.70 -3.91 1.2
V4 50 0.70 0.69 0.68 0.66 6.21 1.2
V5 50 0.78 0.77 0.77 0.75 3.92 1.2
V6 50 0.70 0.69 0.69 0.67 3.95 1.1
V7 50 0.76 0.75 0.74 0.73 2.92 1.2
V8 50 0.70 0.68 0.68 0.65 1.01 1.2
V9 50 0.69 0.68 0.67 0.65 1.84 1.1
V10 50 0.73 0.71 0.71 0.69 6.07 1.2
[reached 'max' / getOption("max.print") -- omitted 10 rows]

glb(data)

Call: glb(r = data)

Estimates of the Greatest Lower Bound for reliability, based on factor and cluster models
GLB estimated from factor based communalities = 0.98 with 2 factors.
Use glb.fa to see more details

Various estimates based upon splitting the scale into two (see keys for the various splits)
Beta = 0.31
Beta fa 0.31 This is an estimate of the worst split half reliability
Kmeans clusters for best split 0.31
Cluster based estimates
glb.IC = 0.97
glb.max 0.97 Is the maximum of these estimates
alpha-PC = 0.9 An estimate of alpha based on eignvalues

TenBerge bounds
mu0 = 0.95 mu1 = 0.96 mu2 = 0.96 mu3 = 0.96

estimated greatest lower bound based upon splitHalf = 0.96

Use short = FALSE to see the various ways of splitting the scale
glb(set1)

Call: glb(r = set1)

Estimates of the Greatest Lower Bound for reliability, based on factor and cluster models
GLB estimated from factor based communalities = 0.99 with 5 factors.
Use glb.fa to see more details

Various estimates based upon splitting the scale into two (see keys for the various splits)
Beta = 0.97

32

Beta fa NaN This is an estimate of the worst split half reliability
Kmeans clusters for best split 0.99
Cluster based estimates
glb.IC = 0.98
glb.max 0.99 Is the maximum of these estimates
alpha-PC = 0.88 An estimate of alpha based on eignvalues

TenBerge bounds
mu0 = 0.98 mu1 = 0.98 mu2 = 0.98 mu3 = 0.98

estimated greatest lower bound based upon splitHalf = 0.98

Use short = FALSE to see the various ways of splitting the scale

Now, we can see that when we don’t have a single factor, we can still get high coefficient alpha, but some of
the other measures produced by glb will fail.

Specifying reverse coded elements
Many times, a scale will involve multiple questions, with some reverse coded. That is, a high score on one
question (e.g., How much do you like pancakes?) is correlated with a low score on another question (e.g,
How much do you hate pancakes?). These are referred to as ‘reverse key’, and the The psych::alpha and glb
functions have different ways of handling these.

• psych::alpha will check whether the items are all positively related and give a message if not

psych::alpha(data)
Warning message:
In psych::alpha(dimC) :

Some items were negatively correlated with the total scale and probably
should be reversed.
To do this, run the function again with the 'check.keys=TRUE' option

• psych::alpha will let you specify the names of the variable to reverse code using the keys argument

psych::alpha(data,key=c("q1","q3"))

• psych::alpha will also accept a vector of column indices:

psych::alpha(data,key=c(1,3))

• psych::alpha will use its best guess of coding if you use check.keys=T

psych::alpha(data,check.keys=T)

• psych::glb will not check automatically and assume that the items are all positive, but provides a $keys
output that will help identify different groups

$keys
IC1 IC2 ICr1 ICr2 K1 K2 F1 F2 f1 f2

Q3 1 0 0 1 0 1 0 1 1 0
Q8 0 1 0 1 0 1 1 0 0 1
Q13 1 0 1 0 1 0 1 0 1 0
Q18 0 1 1 0 0 1 1 0 0 1
Q23 0 1 1 0 1 0 0 1 0 1
Q28 1 0 1 0 1 0 0 1 1 0
Q33 1 0 1 0 0 1 1 0 1 0
Q38 1 0 1 0 0 1 1 0 1 0
Q43 0 1 1 0 1 0 0 1 0 1

• psych:splitHalf will accept the check.keys=T argument, which will automatically recode

33

psych::splitHalf(dimC,check.keys=T)
Split half reliabilities
Call: psych::splitHalf(r = dimC, check.keys = T)

Maximum split half reliability (lambda 4) = 0.82
Guttman lambda 6 = 0.77
Average split half reliability = 0.75
Guttman lambda 3 (alpha) = 0.77
Minimum split half reliability (beta) = 0.62
Average interitem r = 0.27 with median = 0.26Warning message:
In psych::splitHalf(dimC, check.keys = T) :

Some items were negatively correlated with total scale and were automatically reversed.

• psych::glb will not check automatically and assume that the items are all positive, but provides a $keys
output that will help identify different groups

$keys
IC1 IC2 ICr1 ICr2 K1 K2 F1 F2 f1 f2

Q3 1 0 0 1 0 1 0 1 1 0
Q8 0 1 0 1 0 1 1 0 0 1
Q13 1 0 1 0 1 0 1 0 1 0
Q18 0 1 1 0 0 1 1 0 0 1
Q23 0 1 1 0 1 0 0 1 0 1
Q28 1 0 1 0 1 0 0 1 1 0
Q33 1 0 1 0 0 1 1 0 1 0
Q38 1 0 1 0 0 1 1 0 1 0
Q43 0 1 1 0 1 0 0 1 0 1

• psych:splitHalf will accept the check.keys=T argument, which will automatically recode and give a
warning:

psych::splitHalf(dimC,check.keys=T)
Split half reliabilities
Call: psych::splitHalf(r = dimC, check.keys = T)

Maximum split half reliability (lambda 4) = 0.82
Guttman lambda 6 = 0.77
Average split half reliability = 0.75
Guttman lambda 3 (alpha) = 0.77
Minimum split half reliability (beta) = 0.62
Average interitem r = 0.27 with median = 0.26Warning message:
In psych::splitHalf(dimC, check.keys = T) :

Some items were negatively correlated with total scale and were automatically reversed.

• psych::glb will accept a coding vector that is -1/1/0, which differs from psych::alpha:

glb(data,key=c(-1,1,-1,1,1,1))

You can use a -1/1 vector in psych::alpha with a coding like this:

psych::alpha(data,key=(1:6)[-1 == c(-1,1,-1,1,1,1)])

Exercise.
Load the ability data set from the psych package, and compute coefficient alpha and the other alternative
measures.

#try this for more help:
help(ability)

34

Split-half Reliability and correlation
There are two sensible ways in which you might compute a split-half correlation: splitting your items into
two bins and correlating across the participants, and splitting participants into two bins and correlating
across items. When people discuss split-half reliability, they typically referring to the process of splitting
your test into two sub-tests (usually randomly) and finding the correlation. Splitting your participants into
two groups and computing the correlation could be used as a way to bootstrap confidence intervals of your
correlation coefficient, especially when you are unsure of whether you satisfy assumptions of the tests of
statistical inference. Furthermore, if you collect enough data (millions of subjects), you’d expect essentially
the same values when splitting your participants into groups. Typically, split-half approaches refer to splitting
your items or questions into two groups.

Split-half correlation: splitting questions or items
Oftentimes, there is a natural way to split your questions into two equivalent sub-tests, either for some specific
reason (first versus second half) or at random. The rationale for this is often to establish a sort of test-retest
reliability within one sample. Some of the psychometric methods will do this for us automatically.

Finally, we can compute reliabilities for split-half comparisons. The splitHalf function will find all split-half
comparisons–dividing the test into two sub-tests, computing means, and correlating results. For small numbers
of items, it does all possible splits. For more items (> 16), it will sample from the possible splits. Remember
that this is sort of what Cronbach’s α is supposed to be computing anyway. Let’s look at split-half for the
first 7 questions. Note that it cannot split 7 evenly, but will instead form all possible splits into two groups
and calculate the correlation and range of the two halves and report them. When you have 17 or more items,
it samples from the possible splits.
s <- splitHalf(items3[, 1:7])
s

Split half reliabilities
Call: splitHalf(r = items3[, 1:7])

Maximum split half reliability (lambda 4) = 0.89
Guttman lambda 6 = 0.84
Average split half reliability = 0.77
Guttman lambda 3 (alpha) = 0.79
Guttman lambda 2 = 0.8
Minimum split half reliability (beta) = 0.57
Average interitem r = 0.35 with median = 0.33

Here, not that the measures for this subset are typically very good (.76+). The beta value–which is the
worst-case scenario–is the worst correspondence that was found, and is still somewhat reasonable. What if we
had taken 10 items instead?
splitHalf(items3[, 1:10])

Split half reliabilities
Call: splitHalf(r = items3[, 1:10])

Maximum split half reliability (lambda 4) = 0.96
Guttman lambda 6 = 0.83
Average split half reliability = 0.82
Guttman lambda 3 (alpha) = 0.82
Guttman lambda 2 = 0.84
Minimum split half reliability (beta) = 0.54
Average interitem r = 0.31 with median = 0.32

35

Notice the the average gets better, but the worst case actually goes down a bit–having more pairings gives
more opportunities for a bad correspondence.

You can learn more about the specific statistics reported here using the R documentation–the psych package
has very good references and explanations.

Look at the two-factor data set:
plot.new() ##there is some bug which requires this.

glb(data)

Call: glb(r = data)

Estimates of the Greatest Lower Bound for reliability, based on factor and cluster models
GLB estimated from factor based communalities = 0.98 with 2 factors.
Use glb.fa to see more details

Various estimates based upon splitting the scale into two (see keys for the various splits)
Beta = 0.31
Beta fa 0.31 This is an estimate of the worst split half reliability
Kmeans clusters for best split 0.31
Cluster based estimates
glb.IC = 0.97
glb.max 0.97 Is the maximum of these estimates
alpha-PC = 0.9 An estimate of alpha based on eignvalues

TenBerge bounds
mu0 = 0.95 mu1 = 0.96 mu2 = 0.96 mu3 = 0.96

36

estimated greatest lower bound based upon splitHalf = 0.96

Use short = FALSE to see the various ways of splitting the scale

The omega (ω) model
Although the glb functions are designed to get around one of the limitation of Cronbach’s α, it is not without
critics. McDonald (1999) proposed using omega (ω) to help determine whether their scale is primarily a
single factor/latent variable. Omega can be estimated in a number of ways, including one way via PCA and
other ways via structural equation modeling or confirmatory factor analysis. The basic concept here is that
you want to establish that your items on a scale all load onto a single factor, and that this factor accounts for
an important proportion of variance. Essentially, if we conduct a PCA and all questions load strongly onto a
single factor and that factor accounts for much of the variance, that is ad hoc evidence for a strong factor
structure. McDonald’s ωh (hierarchical omega) formalizes this, as a measure of the general factor saturation
of a test, and Revelle et al. (2005), the developer of the psych library, has suggested that ωh is better than
Cronbach’s α or another similar measure Revelle’s β (which is worst-case split-half reliability and reported by
glb). The psych library help on omega provides detailed references and discussion, which you will probably
need to dig deeper into if you plan on using omega, because there are many options for running and fitting
the models and interpreting them can be tricky. Here, omegah reports a overall BIC score and 2 factors
produces the smallest (most negative) one, so we will look at that further:
Total omega. In our case, the output is basically the same as omegah
omega(data, nfactors = 2)

Omega

F1*

F2*

g

V6
V3
V7
V5
V8
V1
V4
V10
V2
V9
V15
V17
V16
V11
V14
V18
V19
V12
V13
V20

0.90.90.80.80.80.80.80.80.80.8

0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8

0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4

Omega
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip,

37

digits = digits, title = title, sl = sl, labels = labels,
plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option,
covar = covar)

Alpha: 0.95
G.6: 0.99
Omega Hierarchical: 0.3
Omega H asymptotic: 0.31
Omega Total 0.98

Schmid Leiman Factor loadings greater than 0.2
g F1* F2* h2 u2 p2

V1 0.40 0.83 0.85 0.15 0.19
V2 0.41 0.80 0.81 0.19 0.21
V3 0.40 0.85 0.88 0.12 0.18
V4 0.37 0.83 0.83 0.17 0.17
V5 0.42 0.84 0.89 0.11 0.20
V6 0.38 0.86 0.89 0.11 0.16
V7 0.41 0.84 0.88 0.12 0.19
V8 0.37 0.83 0.83 0.17 0.17
V9 0.37 0.80 0.77 0.23 0.17
V10 0.39 0.83 0.83 0.17 0.18
V11 0.37 0.83 0.83 0.17 0.16
V12 0.35 0.79 0.76 0.24 0.16
[reached 'max' / getOption("max.print") -- omitted 8 rows]

With Sums of squares of:
g F1* F2*

3.0 6.9 6.7

general/max 0.44 max/min = 1.04
mean percent general = 0.18 with sd = 0.02 and cv of 0.09
Explained Common Variance of the general factor = 0.18

The degrees of freedom are 151 and the fit is 3.54
The number of observations was 50 with Chi Square = 142.12 with prob < 0.69
The root mean square of the residuals is 0.02
The df corrected root mean square of the residuals is 0.02
RMSEA index = 0 and the 10 % confidence intervals are 0 0.055
BIC = -448.59

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 170 and the fit is 24.43
The number of observations was 50 with Chi Square = 997.57 with prob < 3.7e-117
The root mean square of the residuals is 0.47
The df corrected root mean square of the residuals is 0.5

RMSEA index = 0.311 and the 10 % confidence intervals are 0.296 0.334
BIC = 332.52

Measures of factor score adequacy
g F1* F2*

Correlation of scores with factors 0.55 0.91 0.91
Multiple R square of scores with factors 0.30 0.83 0.83
Minimum correlation of factor score estimates -0.39 0.66 0.66

38

Total, General and Subset omega for each subset
g F1* F2*

Omega total for total scores and subscales 0.98 0.98 0.98
Omega general for total scores and subscales 0.30 0.18 0.18
Omega group for total scores and subscales 0.68 0.80 0.80
omegah(data, nfactors = 2)

Omega

F1*

F2*

g

V6
V3
V7
V5
V8
V1
V4
V10
V2
V9
V15
V17
V16
V11
V14
V18
V19
V12
V13
V20

0.90.90.80.80.80.80.80.80.80.8

0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8

0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4

Omega
Call: omegah(m = data, nfactors = 2)
Alpha: 0.95
G.6: 0.99
Omega Hierarchical: 0.3
Omega H asymptotic: 0.31
Omega Total 0.98

Schmid Leiman Factor loadings greater than 0.2
g F1* F2* h2 u2 p2

V1 0.40 0.83 0.85 0.15 0.19
V2 0.41 0.80 0.81 0.19 0.21
V3 0.40 0.85 0.88 0.12 0.18
V4 0.37 0.83 0.83 0.17 0.17
V5 0.42 0.84 0.89 0.11 0.20
V6 0.38 0.86 0.89 0.11 0.16
V7 0.41 0.84 0.88 0.12 0.19
V8 0.37 0.83 0.83 0.17 0.17

39

V9 0.37 0.80 0.77 0.23 0.17
V10 0.39 0.83 0.83 0.17 0.18
V11 0.37 0.83 0.83 0.17 0.16
V12 0.35 0.79 0.76 0.24 0.16
[reached 'max' / getOption("max.print") -- omitted 8 rows]

With Sums of squares of:
g F1* F2*

3.0 6.9 6.7

general/max 0.44 max/min = 1.04
mean percent general = 0.18 with sd = 0.02 and cv of 0.09
Explained Common Variance of the general factor = 0.18

The degrees of freedom are 151 and the fit is 3.54
The number of observations was 50 with Chi Square = 142.12 with prob < 0.69
The root mean square of the residuals is 0.02
The df corrected root mean square of the residuals is 0.02
RMSEA index = 0 and the 10 % confidence intervals are 0 0.055
BIC = -448.59

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 170 and the fit is 24.43
The number of observations was 50 with Chi Square = 997.57 with prob < 3.7e-117
The root mean square of the residuals is 0.47
The df corrected root mean square of the residuals is 0.5

RMSEA index = 0.311 and the 10 % confidence intervals are 0.296 0.334
BIC = 332.52

Measures of factor score adequacy
g F1* F2*

Correlation of scores with factors 0.55 0.91 0.91
Multiple R square of scores with factors 0.30 0.83 0.83
Minimum correlation of factor score estimates -0.39 0.66 0.66

Total, General and Subset omega for each subset
g F1* F2*

Omega total for total scores and subscales 0.98 0.98 0.98
Omega general for total scores and subscales 0.30 0.18 0.18
Omega group for total scores and subscales 0.68 0.80 0.80

For this data set, the omega model shows reasonably strong loading onto a common variance factor g, but also
strong loadings of individual questions onto two additional factors. It provides a chi-squared test comparing
to a general factor-only group and this is highly significant, indicating the additional factors involving a
subgroup of questions are important. If instead we ran omegah on just the first 10 questions, let’s see what
we find:
omegah(data[, 1:10], nfactors = 3)

40

Omega

F1*

F2*

F3*

g

V8

V1

V3

V7

V10

V9

V2

V6

V5

V4

0.2

0.2

0.4

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

Omega
Call: omegah(m = data[, 1:10], nfactors = 3)
Alpha: 0.98
G.6: 0.98
Omega Hierarchical: 0.97
Omega H asymptotic: 0.98
Omega Total 0.99

Schmid Leiman Factor loadings greater than 0.2
g F1* F2* F3* h2 u2 p2

V1 0.90 0.23 0.20 0.90 0.10 0.89
V2 0.89 0.80 0.20 0.99
V3 0.93 0.90 0.10 0.95
V4 0.90 0.83 0.17 0.97
V5 0.93 0.88 0.12 0.98
V6 0.92 0.35 0.97 0.03 0.87
V7 0.93 0.90 0.10 0.97
V8 0.93 0.87 0.13 0.99
V9 0.88 0.79 0.21 0.98
V10 0.92 0.86 0.14 0.98

With Sums of squares of:
g F1* F2* F3*

8.34 0.02 0.15 0.20

general/max 41.1 max/min = 9.44

41

mean percent general = 0.96 with sd = 0.04 and cv of 0.04
Explained Common Variance of the general factor = 0.96

The degrees of freedom are 18 and the fit is 0.22
The number of observations was 50 with Chi Square = 9.27 with prob < 0.95
The root mean square of the residuals is 0.01
The df corrected root mean square of the residuals is 0.01
RMSEA index = 0 and the 10 % confidence intervals are 0 0
BIC = -61.15

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 35 and the fit is 0.71
The number of observations was 50 with Chi Square = 31.24 with prob < 0.65
The root mean square of the residuals is 0.02
The df corrected root mean square of the residuals is 0.03

RMSEA index = 0 and the 10 % confidence intervals are 0 0.087
BIC = -105.68

Measures of factor score adequacy
g F1* F2* F3*

Correlation of scores with factors 0.99 0.13 0.72 0.83
Multiple R square of scores with factors 0.97 0.02 0.52 0.69
Minimum correlation of factor score estimates 0.95 -0.97 0.03 0.39

Total, General and Subset omega for each subset
g F1* F2* F3*

Omega total for total scores and subscales 0.99 0.86 0.97 0.96
Omega general for total scores and subscales 0.97 0.86 0.96 0.92
Omega group for total scores and subscales 0.01 0.00 0.01 0.04

Now, the initial BIC score is best for the single factor solution (-110), and that model is not worse than the
model with multiple factors. This suggests our first-ten questions fit together well.

Brown-Spearman Prophecy Formula
Typically, the split-half correlation is thought to be biased to under-estimate the true relationship between
the two halves. People will sometimes apply the Brown-Spearman prediction formula, which estimates the
expected reliability of a test if its length is changed. So, if you have a small test having reliability ρ, then if
you were to increase the length of the test by factor N , the new test would have reliability ρ∗.

ρ∗ = Nρ

1 + (N − 1)ρ (1)

For a split-half correlation, you would estimate this as

ρ∗ = 2ρ

1 + ρ
(2)

‘

If you complete a split-half correlation of .5, you could adjust this to be (2 × .5)/(1 + .5) = 1/1.5 = .6666.
However, especially for small tests and small subject populations, this seems rash, because you probably
don’t have a very good estimate of the correlation. We can look at this via simulation:

42

set.seed(100)
logit <- function(x) {

1/(1 + 1/exp(x))
}

simulate <- function(numsubs, numitems) {

submeans <- rnorm(numsubs, sd = 10)
itemmeans <- rnorm(numitems, sd = 5)

simdat1 <- (logit(outer(submeans, itemmeans)) > matrix(runif(numsubs * numitems),
nrow = numsubs, ncol = numitems)) + 0

simdat2 <- (logit(outer(submeans, itemmeans)) > matrix(runif(numsubs * numitems),
nrow = numsubs, ncol = numitems)) + 0

realcor <- cor(rowSums(simdat1), rowSums(simdat2))
halfcor <- cor(rowSums(simdat1[, 2 * 1:floor(numitems/2)]), rowSums(simdat1[,

2 * 1:floor(numitems/2) - 1]))
adjusted
adjusted <- (2 * halfcor)/(1 + halfcor)
c(realcor, halfcor, adjusted)

}
newvals <- matrix(0, nrow = 100, ncol = 3)
for (i in 1:100) {

newvals[i,] <- simulate(1000, 20)
}
colMeans(newvals, na.rm = T)

[1] 0.6518145 0.0422957 -2.7434579
newvals[newvals[, 2] < 0, 2] <- NA
newvals[newvals[, 3] < 0, 3] <- NA

cor(newvals, use = "pairwise.complete")

[,1] [,2] [,3]
[1,] 1.0000000 0.7379033 0.7481689
[2,] 0.7379033 1.0000000 0.9907501
[3,] 0.7481689 0.9907501 1.0000000
head(newvals)

[,1] [,2] [,3]
[1,] 0.19215909 NA NA
[2,] 0.19242084 NA NA
[3,] 0.82532920 NA NA
[4,] 0.18154840 NA NA
[5,] 0.20179081 0.008037462 0.01594675
[6,] 0.08867742 0.112542949 0.20231659
tmp <- as.data.frame(newvals)
ggpairs(tmp)

43

Corr:

0.738***

Corr:

0.748***

Corr:

0.991***

V1 V2 V3
V

1
V

2
V

3

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

1.5

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

ggplot(tmp, aes(x = V1, y = V3)) + geom_point() + geom_abline(intercept = 0, slope = 1) +
ggtitle("") + ylab("Estimated reliability") + xlab("True reliability")

44

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
True reliability

E
st

im
at

ed
 r

el
ia

bi
lit

y

Here, the first number indicates the true reliability of the test, built into the simulation. The second number
is the estimate for the split-half, and the third number is the adjusted value. If we ignore the cases where
the split-half is negative (which happens fairly often), there is a reasonable correlation between the actual
estimate of test-retest and the split-half. Even for 1000 participants, in this case.

Categorical Agreement
Cohen’s κ (kappa): agreement of two raters
When you have several nominally-coded sets of scores, correlations won’t work anymore. Instead, we use need
another measure of agreement. The standard measure is Cohen’s κ. This is most useful for comparing two
specific data sets of categorical responses. The psych library can compute κ using the cohen.kappa function.
courtesy
http://stackoverflow.com/questions/19233365/how-to-create-a-marimekko-mosaic-plot-in-ggplot2
see library(ggmosiac) for an alternative that integrates better with ggplot2

makeplot_mosaic <- function(data, x, y, ...) {
xvar <- deparse(substitute(x))
yvar <- deparse(substitute(y))
mydata <- data[c(xvar, yvar)]
mytable <- table(mydata)
widths <- c(0, cumsum(apply(mytable, 1, sum)))
heights <- apply(mytable, 1, function(x) {

c(0, cumsum(x/sum(x)))
})

45

alldata <- data.frame()
allnames <- data.frame()
for (i in 1:nrow(mytable)) {

for (j in 1:ncol(mytable)) {
alldata <- rbind(alldata, c(widths[i], widths[i + 1], heights[j, i],

heights[j + 1, i]))
}

}
colnames(alldata) <- c("xmin", "xmax", "ymin", "ymax")

alldata[[xvar]] <- rep(dimnames(mytable)[[1]], rep(ncol(mytable), nrow(mytable)))
alldata[[yvar]] <- rep(dimnames(mytable)[[2]], nrow(mytable))

ggplot(alldata, aes(xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax)) + geom_rect(color = "black",
aes_string(fill = yvar)) + xlab(paste(xvar, "(count)")) + ylab(paste(yvar,
"(proportion)"))

}
library(psych)
What if we have high agreement:
a <- sample(1:5, 100, replace = T)
b <- a

cohen.kappa(cbind(a, b))

Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha = alpha, levels = levels)

Cohen Kappa and Weighted Kappa correlation coefficients and confidence boundaries
lower estimate upper

unweighted kappa 1 1 1
weighted kappa 1 1 1

Number of subjects = 100
replace 10 elements from b
b[sample(1:100, 10)] <- sample(1:5, 10, replace = T)
table(a, b)

b
a 1 2 3 4 5

1 9 1 0 0 0
2 0 15 1 0 1
3 0 1 25 1 0
4 1 0 1 23 0
5 0 0 1 0 20

tmp <- data.frame(a = a, b = b)
makeplot_mosaic(tmp, a, b)

46

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
a (count)

b
(p

ro
po

rt
io

n)

b

1

2

3

4

5

cohen.kappa(cbind(a, b))

Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha = alpha, levels = levels)

Cohen Kappa and Weighted Kappa correlation coefficients and confidence boundaries
lower estimate upper

unweighted kappa 0.83 0.90 0.97
weighted kappa 0.83 0.91 1.00

Number of subjects = 100

What if we add more noise:
a <- sample(1:5, 100, replace = T)
b <- a
replace 50 elements from b
b[sample(1:100, 50)] <- sample(1:5, 50, replace = T)
table(a, b)

b
a 1 2 3 4 5

1 17 1 5 1 2
2 2 11 2 4 2
3 0 3 10 0 0
4 0 3 2 15 0
5 3 1 0 4 12

47

mosaicplot(table(a,b),col=1:5)

tmp <- data.frame(a = a, b = b)
makeplot_mosaic(tmp, a, b)

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
a (count)

b
(p

ro
po

rt
io

n)

b

1

2

3

4

5

cohen.kappa(cbind(a, b))

Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha = alpha, levels = levels)

Cohen Kappa and Weighted Kappa correlation coefficients and confidence boundaries
lower estimate upper

unweighted kappa 0.45 0.56 0.68
weighted kappa 0.40 0.57 0.75

Number of subjects = 100

Sometimes, you might determine that some categories are more similar than others. Thus, you may want to
score partial agreement. A weighted version of κ permits this. So, suppose that our five categories represent
ways of coding a video for signs of boredom

1. rolling eyes
2. yawning
3. falling asleep
4. checking email on phone
5. texting on phone

Here, 2 and 3 are sort of similar, as are 4 and 5. Two people coding video might mistake these for one another,
and it might be reasonable. So, we can use a weighted κ

48

a <- sample(1:5, 100, replace = T)
b <- a
b[sample(1:100, 10)] <- sample(1:5, 10, replace = T)

replace 50 elements from b
b45 <- b == 4 | b == 5
b[b45] <- sample(4:5, sum(b45), replace = T)
b23 <- b == 2 | b == 3
b[b23] <- sample(2:3, sum(b23), replace = T)

weights <- matrix(c(0, 1, 1, 1, 1, 1, 0, 0.5, 1, 1, 1, 0.5, 0, 1, 1, 1, 1, 1, 0,
0.5, 1, 1, 1, 0.5, 0), nrow = 5, ncol = 5)

table(a, b)

b
a 1 2 3 4 5

1 19 0 0 0 0
2 1 4 12 0 0
3 0 9 10 1 0
4 2 0 1 11 13
5 1 0 0 8 8

tmp <- data.frame(a = a, b = b)
makeplot_mosaic(tmp, a, b)

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
a (count)

b
(p

ro
po

rt
io

n)

b

1

2

3

4

5

cohen.kappa(cbind(a, b))

49

Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha = alpha, levels = levels)

Cohen Kappa and Weighted Kappa correlation coefficients and confidence boundaries
lower estimate upper

unweighted kappa 0.28 0.4 0.52
weighted kappa 0.70 0.8 0.90

Number of subjects = 100
cohen.kappa(cbind(a, b), weights)

Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha = alpha, levels = levels)

Cohen Kappa and Weighted Kappa correlation coefficients and confidence boundaries
lower estimate upper

unweighted kappa 0.28 0.40 0.52
weighted kappa 0.34 0.63 0.91

Number of subjects = 100

Notice how the first value (unweighted) κ does not change when we add weights, but the second weighted κ
does change. By default, the weighted version assumes the off-diagonals are ‘’quadratically’ weighted, meaning
that the farther apart the ratnigs are, the worse the penalty. This would be appropriate for likert-style ratings,
but not for categorical ratings. For numerical/ordinal scales, the documentation claims κ is similar to ICC.

Fleiss’s and Light’s κ (kappa): agreement of multiple raters
The irr library includes kappa2 to calculate Cohen’s kappa, but also includes two functions to compute
multiple rater categorical agreement: Light’s κ and Fleiss’s κ. If we have a third rater c, whose rating is
often the same as a or b’s rating, the data would look like this:
c <- sample(1:5, size = 100, replace = TRUE)
c[1:40] <- b[1:40]
c[41:80] <- a[41:80]

kappam.light(cbind(a, b, c))

Light's Kappa for m Raters

Subjects = 100
Raters = 3
Kappa = 0.507

z = NaN
p-value = NaN

print("---------------")

[1] "---------------"
kappam.fleiss(cbind(a, b, c))

Fleiss' Kappa for m Raters

Subjects = 100
Raters = 3
Kappa = 0.506

50

z = 17.4
p-value = 0

These show high agreement across three raters.

Exercise.
Have two people rate the following words into emotional categories: happy, sad, excited, bored, disgusted
(HSEBD)

• horse
• potato
• dog
• umbrella
• coffee
• tennis
• butter
• unicorn
• eggs
• books
• rectangle
• twitter
• water
• soup
• crows
• Canada
• tomato
• nachos
• gravy
• chair

Compute kappa on your pairwise ratings.

51

	Measures of Reliability and Validity
	Test-retest, inter-rater, and inter-test reliability
	Using the correlation coefficient
	Intra-class Correlation Coefficients
	irr Library
	multilevel library
	The psych library

	Summary of ICC
	Single-measure single-group measures of consistency
	Multi-item measures of group consistency.

	Measuring Internal Consistency
	Mean or median correlation
	Item-total correlation
	Cronbach's \alpha
	Dropout statistics
	Item Statistics

	Examining Eigenfactors and Principle Components (PCA)
	Alternate measures of consistency
	Specifying reverse coded elements
	Exercise.

	Split-half Reliability and correlation
	Split-half correlation: splitting questions or items
	The omega (\omega) model
	Brown-Spearman Prophecy Formula

	Categorical Agreement
	Cohen's \kappa (kappa): agreement of two raters
	Fleiss's and Light's \kappa (kappa): agreement of multiple raters
	Exercise.

