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Advanced Psychometrics using Item Response Theory, the Rasch
Model, and related concepts.

We previously examined psychometrics using measures such as alpha, GLB, and related measures, to help
us look whether questions are representative and might be worthwhile using. These measures are generally
applicable to a number of measures, especially questionnaires and scales in which there is no correct answer.
When we have a set of questions that can be thought of as a knowledge test, or at least a directional scale we
are trying to use to discriminate, there are additional psychometric properties related to distinguishing people
that we might be interested in. For example, a question might be easier or more difficult, and we might
want to include both easy and difficult questions. Easy questions might help distinguish between the least
knowledgeable people and everybody else. For a Board exam or professional certification, we really only need
to discriminate the people who qualify from those who do not, so we may want to focus on questions of a
certain level of competency. Similarly, a difficult question might distinguish between the most knowledgeable
person and every one else, which we might want if we are trying to select the top student. In addition, we
might want to know whether an individual question is good at separating your tested population into two
groups, regardless of difficulty. Looking at the discriminability of items and tests can be helpful by allowing
us to design tests appropriate to their use.

For example, the quantitative GRE discriminates those with low math skills from those with better math
skills, but it might not be appropriate for predicting success in a mathematics graduate program, because
everyone who gets admitted will be in the 90th percentile or above. A high-level calculus test might be good
at this, but would NOT be useful as a measure of math achievement for elementary school children because
they would probably all fail.

A systematic approach for doing this can simply use regression modeling to try to capture different aspects of
both the test items and the people taking the test. If we think about modeling an entire test by considering
the chance of getting any item correct, we can frame a set of scored test questions as a single DV (correctness)
and a single categorical IV (question ID). Then, the intercept or additive constant for each question essentially
identifies how difficult or easy the question is. Similarly, we might also include student as a second predictor.
This is similar to how we do repeated measures models so that all observations of an individual can be linked,
but this essentially captures how some people are better on average than others. This model helps provide
understanding of whether individual questions are predictive of the whole. As an example, we will begin by
fitting a logistic regression to two parallel tests—an easy and a difficult one—given to a single group of people.

Fitting subject parameters in logistic regression

In a regression model, it is common to include participant as a predictor variable to account for overall
individual variability, and this is essentially how mixed-effects models work when you give subject a random
intercept. Suppose that you have a test with ten questions, and with individual variability across 50 individuals.
Also, let’s suppose that each question has a different difficulty.

For participant j and question i, rather than a standard linear regression, logistic regression might be better,
which models linear effects of the log-odds of a response being correct. We can think about the log-odds of
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successfully answering a question as being related to both the difficulty of the question and the ability of the
person. The simplest version of this would be to take a factor 6; related to the ability of the person and add
to it a value related to the easiness of each question. This is the same as subtracting b;—something related to
the difficulty of a question. So, a linear prediction in log-odds space would be (6; — b;)

logodds <- function(p) {
log(p/1 - p)
} ##The probability of a 'yes' for a given set of predictor values.
logit <- function(lo) {
1/(1 + exp(-lo))
} ##This is the inverse of the logodds

set.seed(1009)
numsubs <- 50
numgs <- 20
skilllevel <- rnorm(numsubs)
questiondiff <- rnorm(numgs)
combined <- outer(skilllevel, questiondiff, function(x, y) {
X-y
b
pcorrect <- logit(combined)
pcorrect.2 <- logit(combined + 2) ## An easier test with the same subjects and problems.

Now, the matrix pcorrect indicates the probability of each person answering each question correctly. We can
simulate a given experiment by comparing each probability value to a randomly chosen number uniformly
between 0 and 1

siml <- pcorrect > runif(numsubs * numgs)
sim2 <- pcorrect.2 > runif (numsubs * numgs)

Now, because this is all framed in terms of a log-odds an logistic transforms, we should be able to take the
data in siml and estimate the parameters used to create them using logistic regression. To do so, we need to
put the matrix in long format:

simdat <- data.frame(sub = factor(rep(l:numsubs, numgs)), question = factor(rep(l:numgs,
each = numsubs)), corr = as.vector(siml) + 0)

simdat.2 <- data.frame(sub = factor(rep(l:numsubs, numgs)), question = factor(rep(l:numgs,
each = numsubs)), corr as.vector(sim2) + 0)

Now, we just fit a logistic regression model. Because the baseline data had no intercept, we can re-estimate
the parameters using a no-intercept model (specify 40 in the predictors)

model <- glm(corr ~ O + sub + question, family = binomial(), data = simdat)
summary (model)

Call:
glm(formula = corr ~ O + sub + question, family = binomial(),
data = simdat)

Coefficients:

Estimate Std. Error z value Pr(>|zl)
subl 3.5041 0.7518 4.661 3.14e-06 *xx
sub2 1.1419 0.7397 1.544 0.122642
sub3 4.7411 0.9359 5.066 4.06e-07 *x*x*
sub4 0.4008 0.8128 0.493 0.621959



subb 4.7411 0.9359 5.066 4.06e-07
sub6 5.5506 1.1788 4.709 2.49e-06
sub7 4.2264 0.8377 5.045 4.53e-07
sub8 3.8329 0.7844  4.886 1.03e-06
sub9 2.2103 0.7030 3.144 0.001666
subl10 1.7097 0.7117  2.402 0.016290
subl1l 3.2141 0.7306 4.399 1.09e-05
subl2 4.2264 0.8377 5.045 4.53e-07
subl13 2.4525 0.7039  3.484 0.000494
subl4d 3.2141 0.7306 4.399 1.09e-05
sublb 3.2141 0.7306 4.399 1.09e-05
[ reached getOption("max.print") -- omitted 54
Signif. codes: O '**x*x' 0.001 '**x' 0.01 'x*'
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model2 <- glm(corr ~ O + sub + question
summary (model2)

Call:
glm(formula = corr ~ 0 + sub + question
data = simdat.2)

Coefficients:

Estimate Std. Error z value
subl 4.560 1.287 3.544
sub2 2.038 1.126 1.810
sub3 5.346 1.468 3.641
sub4 4.059 1.220 3.327
subb 21.895 2272.318 0.010
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sub6 21.895 2272.318 0.010 0.992312
sub7 21.895 2272.318 0.010 0.992312
sub8 21.895 2272.318 0.010 0.992312
sub9 5.346 1.468 3.641 0.000272 *xx
subl10 2.788 1.141 2.442 0.014599 x*
subll 4.560 1.287 3.544 0.000394 *xx
subl2 5.346 1.468 3.641 0.000272 *x**
sub13 3.672 1.186  3.098 0.001951 =
subl4 4.059 1.220 3.327 0.000878 *xx
subl1b 4.560 1.287 3.544 0.000394 *xxx

[ reached getOption("max.print") -- omitted 54 rows ]
Signif. codes: 0 '#**' 0.001 'sxx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1386.29 on 1000 degrees of freedom
Residual deviance: 555.27 on 931 degrees of freedom
AIC: 693.27

Number of Fisher Scoring iterations: 18

We have a lack of identifiability here, because for any set of parameters, I can always add a constant to all
subject parameters while subtracting it from all question parameters and obtain the same values. This can
be seen in the model coefficients, which don’t have a questionl. The performance on questionl is taken as a
baseline, and all subject and question parameters are scaled to match it. We can use sum-to-zero contrasts
and play with the intercept, and now our question coefficients will sum to 0, meaning the average difficulty
of the questions has a log-odds of 0 (50% accuracy), easy questions have a positive coefficient, and difficult
questions have a negative coefficient. Because we are fitting coefficients for each person, this does not mean
the average accuracy of a question is 50%; for a relatively easy test, person-coefficients will be positive and for
a hard test person-coefficients will be negative. Note that the subject coeflicients have a similar interpretation:
a person-coefficent of 0 means (when the item-coefficients sum to 0) means that that person is around 50%
accurate overall, even though some items are harder and others are easier.

library(ggplot2)

library(tidyverse)

contrasts(simdat$question) <- contr.sum(levels(simdat$question))
contrasts(simdat.2$question) <- contr.sum(levels(simdat.2$question))

model <- glm(corr ~ O + sub + question, family = binomial(), data = simdat)
model2 <- glm(corr ~ O + sub + question, family = binomial(), data = simdat.2)

items <- data.frame(names = names(model$coefficients[51:69]), modell = model$coefficients[51:69],
model2 = model2$coefficients[51:69])

knitr::kable(items)

names modell model2

questionl questionl 1.4387805 1.2641483
question2  question2 -1.2205912  -1.7364275




names modell model2

question3  question3 -0.7084914  -1.5774645
question4 question4 16.7194570 16.7384285
questionb  questionb -0.8126159  -1.5774645
question6  question6 -1.2205912  -1.8882096
question7  question? -0.8126159  0.0491793
question8 question8 -1.5257122  -0.2971166
question9 question9 -0.0378902 -0.2971166
question10 questionl0 -1.5257122  -1.5774645
questionll questionll -1.1192838  0.0491793
questionl2 questionl2 -0.1574964 -0.5792980
questionl3d questionld  0.3526097 -0.8211821
question14 questionl4 -0.7084914 -1.2299573
questionld questionld -3.0993342 -2.5814248
questionl6 questionl6 -1.2205912 -1.2299573
questionl7? questionl7 -1.3219110  0.0491793
questionl8 questionl8 -1.2205912 -1.2299573
question19 questionl19 -1.5257122 -1.2299573

items %>%
ggplot(aes(x = modell, y = model2)) + geom_point() + geom_abline(intercept = O,
slope = 1) + theme_bw() + ggtitle("Item parameters")
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## Person coefficients



person <- data.frame(names

= names (model$coefficients[1:50]), modell

model2 = model2$coefficients[1:50])

knitr: :kable(person)

names modell model2
subl subl 2.0653239 3.2956455
sub2 sub2 -0.2968900 0.7736769
sub3 sub3 3.3023419 4.0819608
sub4  sub4 -1.0379936 2.7946231
subb subb 3.3023419 20.6306860
sub6 sub6 4.1118608 20.6306860
sub7  sub7 2.7876581  20.6306860
sub8 sub8 2.3940758  20.6306860
sub9 sub9 0.7715201 4.0819608
subl0 sublO 0.2709648 1.5234510
subll subll 1.7752804  3.2956455
subl2 subl2 2.7876581 4.0819608
subl3 subl3 1.0136767 2.4081400
subl4 subl4 1.7752804 2.7946231
subl5 sublb 1.7752804  3.2956455
subl6 subl6 1.2576773 3.2956455
subl7 subl7 0.2709648 1.7917401
sub1l8 subl18 -0.0001059 1.5234510
sub19 subl9 0.5258563 2.4081400
sub20 sub20 1.5092340 20.6306860
sub21 sub2l 1.0136767 2.0820668
sub22 sub22 0.2709648 4.0819608
sub23 sub23 2.3940758 2.0820668
sub24 sub24 -0.0001059 1.5234510
sub25 sub25 -0.0001059 1.5234510
sub26 sub26 2.3940758 20.6306860
sub27 sub27 1.7752804  4.0819608
sub28 sub28 2.0653239 20.6306860
sub29 sub29 -0.0001059 1.7917401
sub30 sub30 2.3940758  20.6306860
sub31 sub3l 1.7752804 20.6306860
sub32 sub32 1.2576773  20.6306860
sub33 sub33 2.0653239 3.2956455
sub34 sub34 1.0136767  4.0819608
sub35 sub3b 1.7752804  3.2956455
sub36 sub36 1.5092340 1.7917401
sub37 sub37 -0.0001059 4.0819608
sub38 sub38 0.7715201 4.0819608
sub39 sub39 1.2576773 3.2956455
sub40 sub40 2.3940758  20.6306860
sub4l sub4l 1.2576773  20.6306860
sub42 sub42 1.0136767  4.0819608
sub43  sub43 1.2576773 3.2956455
sub44 sub44 0.5258563 2.7946231
sub45 sub4b -1.5647423 0.7736769
sub46 sub46 1.5092340 4.0819608

model$coefficients[1:50],



names modell model2

sub47 sub47  -0.2968900  1.7917401
sub48 sub48 -0.2968900  2.4081400
sub49 sub49  0.5258563  2.7946231
sub50 sub50  0.7715201  2.7946231

person %>
ggplot(aes(x = modell, y = model2)) + geom_point() + geom_abline(intercept = O,
slope = 1) + theme_bw() + ggtitle("Person parameters")
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Notice that when framed this way, the item parameters estimate values about the same, but the person
parameters are different for the two tests. The two regressions do not know about one another, so there is no
reason they should try to constrain the ability to be the same for each person across the two tests, but this
does raise the question of how this should be done ideally, and how we should interpret these paramaters in
the wild. We might try to force the person parameters to have an average of 0 and the items parameters to
scale to fit the difficulty of the test, which could make more sense.

So, how good is it at recovering the parameters from which we created the data? Let’s compare our estimated
parameters to our actual parameters:

library(ggplot2)
quickplot(x = model$coef[1:numsubs], y = skilllevel) + geom_point(size = 4) + xlab("Estimated Model coe:
ylab("Person Ability") + geom_label(label = 1:numsubs) + theme_bw()
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Estimated Model coefficient

cor (model$coef [1:numsubs], skilllevel)

[1] 0.8558655

This is not bad—we predict fairly well the skill level of each person based on 10 yes/no answers. How about

assessing the question difficulty. In our sum-to-zero coding, question 20 is the negative average of the other
items.

itempars <- c((model$coef [-(1:numsubs)]), -mean(model$coef[-(1:numsubs)]))
itempars2 <- c((model2$coef [-(1:numsubs)]), -mean(model2$coef[-(1:numsubs)]))

gplot(x = itempars, y = questiondiff) + geom_label(label = 1:length(questiondiff)) +
xlab("Estimated Model coefficient") + ylab("Question difficulty") + theme_bw()



Question difficulty

5 10 15
Estimated Model coefficient

O -

cor (itempars, questiondiff)

[1] -0.8104594

We could have scored each person and each question according to accuracy:

library(gridExtra)
rowMeans (siml)

[1] 0.75 0.30 0.90 0.20 0.90 0.95 0.85 0.80 0.50 0.40 0.70 0.85 0.55 0.70 0.70
[16] 0.60 0.40 0.35 0.45 0.65 0.55 0.40 0.80 0.35 0.35 0.80 0.70 0.75 0.35 0.80
[31] 0.70 0.60 0.75 0.55 0.70 0.65 0.35 0.50 0.60 0.80 0.60 0.55 0.60 0.45 0.15
[46] 0.65 0.30 0.30 0.45 0.50

colMeans(siml)

[1] 0.90 0.50 0.60 1.00 0.58 0.50 0.58 0.44 0.72 0.44 0.52 0.70 0.78 0.60 0.18
[16] 0.50 0.48 0.50 0.44 0.68

grid.arrange(qplot (rowMeans(siml), model$coef [1:numsubs], xlab = "Person accuracy",
ylab = "Person ability parameter") + theme_bw(), gplot(colMeans(siml), itempars,
xlab = "Question accuracy", ylab = "Item difficulty parameter") + theme_bw(),
ncol = 2)
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grid.arrange(qplot (rowMeans (sim2), model2$coef [1:numsubs], xlab = "Person accuracy",
ylab = "Person ability parameter") + theme_bw(), gplot(colMeans(sim2), itempars2,
xlab = "Question accuracy", ylab = "Item difficulty parameter") + theme_bw(),
ncol = 2)
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Notice that there is a fairly close mapping between the question accuracy and the difficulty. What if we look
at the two different tests and compare parameter estimates:

abilities <- data.frame(setl = model$coef[1:50], set2 = model2$coef[1:50])
cor(abilities)

setl set2
setl 1.0000000 0.5772977
set2 0.5772977 1.0000000

ggplot(abilities, aes(x = setl, y = set2)) + geom_point() + ggtitle("Person abilities") +
theme_bw ()
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Person abilities
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probdifficulty <- data.frame(setl = itempars, set2 = itempars2)
cor (probdifficulty)

setl set2
setl 1.0000000 0.9841231
set2 0.9841231 1.0000000

ggplot (probdifficulty, aes(x = setl, y = set2)) + geom_point() + ggtitle("Question difficulty") +
theme_bw ()
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We are able to extract ‘person’ related coefficients across the two tests that are reasonably well related.
Furthermore, we get high correlations for the test parameters

This analysis is essentially equivalent to what is known as the Rasch model of Item Response Theory (IRT).
The 1tm package estimates these directly from a wide data format. We might look especially at how the
Rasch model chooses to anchor difficulty parameters.

library(1tm)

pl <~ siml + O #recode TF and 1/0
p2 <- sim2 + 0O

irtl <- rasch(pl)

irt2 <- rasch(p2)

summary (irt1)

Call:
rasch(data = pl)

Model Summary:
log.Lik AIC BIC
-565.682 1173.364 1213.517

Coefficients:

value std.err =z.vals
Dffclt.Item 1 -2.6972 0.6433 -4.1927
Dffclt.Item 2 0.0009 0.3591 0.0026
Dffclt.Item 3 -0.5142 0.3703 -1.3888
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Dffclt.Item 4 -28
Dffclt.Item 5 -0
Dffclt.Item 6 0
Dffclt.Item 7 -0
Dffclt.Item 8 0
Dffclt.Item 9 -1
Dffclt.Item 10 0
Dffclt.Item 11 -0.
Dffclt.Item 12 -1
Dffclt.Item 13 -1
Dffclt.Item 14 -0
Dffclt.Item 15 1
Dffclt.Item 16 0
Dffclt.Item 17 0.
Dffclt.Item 18 0
Dffclt.Item 19 0
Dffclt.Item 20 -0
Dscrmn 0
Integration:

method: Gauss-Hermi
quadrature points:

Optimization:
Convergence: 0
max(|grad|): 0.0019
quasi-Newton: BFGS

summary (irt2)
Call:
rasch(data = p2)

Model Summary:
log.Lik AIC

-335.3924 712.7847
Coefficients:
v
Dffclt.Item 1 -3
Dffclt.Item 2 -1
Dffclt.Item 3 -1
Dffclt.Item 4 -21
Dffclt.Item 5 -1
Dffclt.Item 6 -1
Dffclt.Item 7 -2
Dffclt.Item 8 -2
Dffclt.Item 9 -2
Dffclt.Item 10 -1
Dffclt.Item 11 -2
Dffclt.Item 12 -2
Dffclt.Item 13 -2
Dffclt.Item 14 -1
Dffclt.Item 15 -0

.3941 71439.4339
.4094 0.3662
.0008 0.3591
.4095 0.3662
.3074 0.3630
.1912 0.4173
.3074 0.3630
1009 0.3595
.0699 0.4063
.5870 0.4606
.5143 0.3703
.8911 0.5009
.0010 0.3591
1027 0.3595
.0009 0.3591
.3074 0.3630
.9533 0.3968
.9356 0.1343
te

21

BIC
752.9372

alue std.err
L7372 1.0006
.3398 0.3768
.4609 0.3917
.8561 48471.2855
.4608 0.3917
.2254 0.3639
. 7467 0.6423
L4679 0.5719
L4674 0.5718
.4609 0.3917
. 7455 0.6420
.2411 0.5219
.0490 0.4842
.7281 0.4296
L7187 0.3212

.0004
.1180
.0024
.1181
. 8467
.8544
.8469
.2806
.6331
.4453
.3890
L7752
.0027
.2857
.0026
.8469
.4027
.9684

.vals
. 7349
.5559
L7292
.0005
.7291
.3676
.2763
.3151
.3151
.7291
.2766
.2938
.2320
.0226
.2373
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Dffclt.Item 16 -1.7277 0.4295 -4.0222
Dffclt.Item 17 -2.7448 0.6418 -4.2767
Dffclt.Item 18 -1.7277 0.4295 -4.0223
Dffclt.Item 19 -1.7277 0.4295 -4.0223
Dffclt.Item 20 -2.4680 0.5720 -4.3151
Dscrmn 1.2155 0.2000 6.0774
Integration:

method: Gauss-Hermite
quadrature points: 21

Optimization:

Convergence: 0

max(|grad|): 0.0053

quasi-Newton: BFGS

## this is an alternative to alpha in psych package
descript(pl)

Descriptive statistics for the 'pl' data-set

Sample:
20 items and 50 sample units; O missing values

Proportions for each level of response:
[[111]
[1] 0.1 0.9

[[21]
[1] 0.5 0.5

[[3]1]
[1] 0.4 0.6

[[41]
(11 1

[[5]1]
[1] 0.42 0.58

[[611]
[1] 0.5 0.5

[[7]1]
[1] 0.42 0.58

(ell
(1] 0.56 0.44

(ro1]
[1] 0.28 0.72

([10]]
(1] 0.56 0.44
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[[111]
[1] 0.48 0.52

[[12]1]
(1] 0.3 0.7

[[13]1]
[1] 0.22 0.78

[[14]1]
[1] 0.4 0.6

([15]]
(1] 0.82 0.18

[[16]1]
[1] 0.5 0.5

(01711
(1] 0.52 0.48

[[18]11
[1] 0.5 0.5

[[19]1]
[1] 0.56 0.44

[[20]1]
[1] 0.32 0.68

Frequencies of total scores:
0123456738910 11 12 13 14 15 16 17 18 19 20
Freg0 001103533 3 45 3 6 3 5 2 2 10

Cronbach's alpha:

value
All Items 0.7616
Excluding Item 1 0.7542
Excluding Item 2 0.7527
Excluding Item 3 0.7553
Excluding Item 4 0.7637
Excluding Item 5 0.7543
Excluding Item 6 0.7371
Excluding Item 7 0.7618
Excluding Item 8 0.7559
Excluding Item 9 0.7351
Excluding Item 10 0.7507
Excluding Item 11 0.7338
Excluding Item 12 0.7602
Excluding Item 13 0.7735
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Excluding Item 14 0.7457
Excluding Item 15 0.7504
Excluding Item 16 0.7561
Excluding Item 17 0.7468
Excluding Item 18 0.7509
Excluding Item 19 0.7498
Excluding Item 20 0.7484

Pairwise Associations:
Item i Item j p.value

1 1 8 1.000
2 1 12 1.000
3 1 13 1.000
4 1 15 1.000
5 1 18 1.000
6 1 19 1.000
7 2 4 1.000
8 2 7 1.000
9 2 13 1.000
10 2 18 1.000

Compare to our logistic regression:

plot(itempars, irtl$coef[, 1], main = "Comparison of model Item coefficients", xlab = "Logistic coeffic
ylab = "IRT coefficients")
abline(0, 1)

Comparison of model Item coefficients
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Logistic coefficients
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plot(itempars2, irt2$coef[, 1], main = "Comparison of model Item coefficients", xlab = "Logistic coeffi
ylab = "IRT coefficients")
abline(0, 1)

Comparison of model Item coefficients

15 20 25
I

IRT coefficients
10

Logistic coefficients

The item coefficients are not centered the same so their absolute values are different. These models use
person ability parameters, but do not return those coefficients so it is not easy to make a direct comparison
to the logistic, or do a person-type analysis. Instead, the focus of IRT is on the items or questions, which is
usually what you care about; you are often looking for a subset of items on a test that are especially good, or
to evaluate and remove bad items on a test.

Visualizing the Rasch Model

If you plot() the model, it will display the inferred logistic curves for all the questions
plot(irtl)
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Item Characteristic Curves
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Ability

plot(irt2)
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Item Characteristic Curves
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Notice that each curve is identical but shifted. The slope of the model is fit as a common value for all items,
with different constant offsets (i.e., intercepts) for each question.

Boundary conditions of the Rasch Model

The data/questions in this example were all created as if they obeyed IRT. Thus, the model worked fairly
well. If we have any violations of the model, the estimates can get less precise, and the small number of
respondents (50) for the questions we chose (20) would not be enough. Typically you would want more, and
the more complicated the model, the more participants.

What happens if they don’t—if we have ‘bad’ questions. One way to do this is to recode a few questions in
the opposite direction, so that the people with high ability are more likely to get it wrong

set.seed(10010)

irt2 <- rasch(sim2 + 0)

sim3 <- sim?2

sim3[, 1:5] <- (runif(5 * numsubs) < 0.5) + O
irt3 <- rasch(sim3)

summary (irt2)

Call:
rasch(data = sim2 + 0)

Model Summary:

log.Lik AIC BIC
-335.3924 712.7847 752.9372
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Coefficients:

value
Dffclt.Item 1 -3.7372
Dffclt.Item 2 -1.3398
Dffclt.Item 3 -1.4609
Dffclt.Item 4 -21.8561
Dffclt.Item 5 -1.4608
Dffclt.Item 6 -1.2254
Dffclt.Item 7 -2.7467
Dffclt.Item 8 -2.4679
Dffclt.Item 9 -2.4674
Dffclt.Item 10 -1.4609
Dffclt.Item 11 -2.7455
Dffclt.Item 12 -2.2411
Dffclt.Item 13 -2.0490
Dffclt.Item 14 -1.7281
Dffclt.Item 15 -0.7187
Dffclt.Item 16 -1.7277
Dffclt.Item 17 -2.7448
Dffclt.Item 18 -1.7277
Dffclt.Item 19 -1.7277
Dffclt.Item 20 -2.4680
Dscrmn 1.2155

Integration:
method: Gauss-Hermi
quadrature points:

Optimization:
Convergence: 0
max(|grad|): 0.0053
quasi-Newton: BFGS

summary (irt3)
Call:
rasch(data = sim3)

Model Summary:
log.Lik AIC

te
21

std.err

1
0.
0.

48471.

O OO O OO ODIODODOOOOOOoOOoOOo

BIC

-444.2396 930.4791 970.6316

value std.err

Coefficients:

Dffclt.Item 1 -0.2
Dffclt.Item 2 0.3
Dffclt.Item 3 -0.5
Dffclt.Item 4 0.2
Dffclt.Item 5 0.3
Dffclt.Item 6 -1.8
Dffclt.Item 7 -4.3
Dffclt.Item 8 -3.8
Dffclt.Item 9 -3.8
Dffclt.Item 10 -2.2

581
966
225
659
968
679
637
917
921
409

0.

Or kP, OOOOOo

4654
.4693
.4755
.4652
.4693
.6167
.1820
.0450
.0451
.6778

.0006

3768
3917
2855

.3917
.3639
.6423
.5719
.5718
.3917
.6420
.5219
.4842
.4296
.3212
.4295
.6418
.4295
.4295
.5720
.2000

.vals
.5546
.8451
.0989
.5716
.8455
.0287
.6919
.7240
.7240
.3061

.vals
.7349
.5559
L7292
.0005
L7291
.3676
.2763
.3151
.3151
.7291
.2766
.2938
.2320
.0226
.2373
.0222
L2767
.0223
.0223
.3151
.0774
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Dffclt.
Dffclt.
Dffclt.
Dffclt.
Dffclt.
Dffclt.
Dffclt.
Dffclt.
Dffclt.
Dffclt.

Dscrmn

Integration:

Item
Item
Item
Item
Item
Item
Item
Item
Item
Item

11
12
13
14
15
16
17
18
19
20

-4.3638
-3.5111
-3.1954
-2.6720
-1.0778
-2.6712
-4.3641
-2.6713
-2.6720
-3.8914

0.6761

method: Gauss-Hermite
quadrature points: 21

Optimization:
Convergence: 0O
max(|gradl): 0.0072
quasi-Newton: BFGS

O, OO, OO0 OO0~

.1820
.9459
.8705
. 7584
.5170
. 7583
.1821
.7583
. 7584
.0450
.1298

.6919
L7121
.6707
.5231
.0847
.5228
.6918
.5228
.5231
. 7240
.2080

plot((cbind(irti1$coef[, 1], irt3$coef[, 1])), main = "Item coefficients with bad questions",

xlab =
o _
(92]
o _|
(V]
o _]
(V]

4] v |

-

(7]

L o
oo
o _|
o
o _|
o

"test 2",

ylab = "test 3")

Item coefficients with bad questions

10

15 20 25

test 2

plot((cbind(irti1$coef[, 1], irt3$coef[, 1])), main = "Item coefficients with bad questions (zoomed)",
xlab = "test 2", ylab = "test 3",

ylim

= c(-5, 5))
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Item coefficients with bad questions (zoomed)
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test 2

In this case, the ‘bad’ questions all ended up with negative difficulty coefficients. If we examine the questions
using item.fit, it will test whether each question fits into the basic model. When everything was from the
model, none of the items were selected as bad. Once we made 5 items (25%) bad, in this case a bunch of
items get flagged. This includes all the items 1..5, but also 6, 7, and 9 and maybe 18. Strangely, a few bad
questions might make other questions look bad as well.

item.fit(irt2)

Item-Fit Statistics and P-values

Call:
rasch(data = sim2 + 0)

Alternative: Items do not fit the model
Ability Categories: 10

X2 Pr(>X"2)
It 1 2.4798 0.9286
It 2 13.5244 0.0603
It 3 5.2193 0.6332
It 4 0.0000 1
It 5 13.3812 0.0633
It 6 6.6327 0.4681
It 7 3.6856 0.8152
It 8 4.6883 0.6979
It 9 14.4979 0.043
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It 10 8.9407 0.2569
It 11 6.8692 0.4426
It 12 5.4804 0.6016
It 13 10.4973 0.1621
It 14 4.3378 0.7401
It 15 5.0282 0.6565
It 16 8.0741 0.3261
It 17 7.3144 0.3969
It 18 7.9045 0.3411
It 19 9.9131 0.1936
It 20 4.0405 0.7751

item.fit(irt3)

Item-Fit Statistics and P-values

Call:
rasch(data = sim3)

Alternative: Items do not fit the model
Ability Categories: 10

X"2 Pr(>X72)
It 1 3.5064 0.7431
It 2 3.8323 0.6994
It 3 2.5409 0.8639
It 4 5.8604 0.439
It 5 8.6429 0.1947
It 6 3.9761 0.6799
It 7 4.30756 0.6351
It 8 7.5153 0.2758
It 9 3.8459 0.6975
It 10 5.2996 0.506
It 11 3.0357 0.8044
It 12 7.8566  0.2488
It 13 3.3830 0.7595
It 14 6.1092 0.4111
It 15 10.6329 0.1004
It 16 3.8659 0.6948
It 17 10.7470 0.0965
It 18 2.6317 0.8534
It 19 3.6177 0.7283
It 20 2.8663 0.8254

Some of the other things we can look at to examine the fit of the model:
print (person.fit(irt2))

Person-Fit Statistics and P-values

Call:
rasch(data = sim2 + 0)

Alternative: Inconsistent response pattern under the estimated model
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It 1 It 2 It 3 It 4 It 5 It 6 It 7 It 8 It 9 It 10 It 11 It 12 It 13 It 14
1 0 0 0 1 0 1 1 0 1 1 1 1 1 1
2 1 0 0 1 0 0 0 1 1 1 1 0 0 0
3 1 0 0 1 0 0 1 1 1 0 0 0 1 0
It 15 It 16 It 17 It 18 It 19 It 20 LO Lz Pr(<Lz)
1 0 1 1 0 1 1 -12.6539 -1.0533 0.1461
2 0 1 1 0 1 1 -10.8261 0.6039 0.7271
3 0 0 1 1 1 1 -10.1098 1.0793 0.8598
[ reached 'max' / getOption("max.print") -- omitted 33 rows ]

person.fit(irt3)

Person-Fit Statistics and P-values

Call:
rasch(data = sim3)

Alternative: Inconsistent response pattern under the estimated model

It 1 It 2 It 3 It 4 It 6 It 6 It 7 It 8 It 9 It 10 It 11 It 12 It 13 It 14
1 0 0 0 0 1 1 1 1 1 0 1 0 1 0
2 0 0 0 0 1 1 1 1 1 0 1 1 1 1
3 0 0 0 1 0 0 0 1 1 1 1 0 0 0
It 15 It 16 It 17 It 18 It 19 It 20 LO Lz Pr(<Lz)
1 1 0 1 1 0 1 -12.1349 -0.6812 0.2479
2 0 0 0 1 1 1 -10.9041 -0.2671 0.3947
3 0 1 1 0 1 1 -12.9750 -0.8758 0.1906
[ reached 'max' / getOption("max.print") -- omitted 43 rows ]

Extending and Constraining IRT

Slope of the item characteristic function

In the Rasch model, all items are of the same family, and have the same slope, or steepness. If this were a
logistic regression, this would be a coefficient on an item difficulty predictor—even though item difficulty is
itself a coefficient of the model. Or it is more like a parameter on the binomial error distribution, and so maps
onto the quasi-binomial we used to estimate overdispersion. So this goes beyond what we would easily be able
to do in a simple logistic regression. For the rasch model to do this, it uses the general-purpose optim function,
which has a number of optimization methods. The ltm library uses Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method in optim, and although others are available, rasch hard-codes the method because BFGS
works fairly well.

A very steep function means that there is a sharp cut-off between who can answer it correctly and who
cannot. This is often called ‘discriminability’. A good test item typically has high discriminability, and a
good test has a set of highly-discriminable items that have different difficulty. Typically, high discriminability
will correspond to good part-whole item correlations. As a sort of ideal situation, the easiest item will be
answered correctly by everyone but the lowest-ability person, the hardest item will only be answered correctly
by the highest-ability person, and the person’s ability will directly control how many of the items they can
answer. As a rule of thumb, higher discriminability values (greater than 1.0, or better yet greater than 2.0)
are good. By default, the rasch model estimates a slope. However, the default logistic model will have a
slope of 1.0, and so this is sometimes considered a simpler model. You might do this if you have limited
data—maybe a test from a class with relatively few students, because it will hopefully make estimation more
stable.
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For example, The following is are the results of a psychology test:

dat <- read.csv("testscores.csv")

## descript(dat) ##doesn't work. Thus compute Cronbach's alpha on the data
descript(dat, chi.squared = F)

Descriptive statistics for the 'dat' data-set

Sample:
47 items and 21 sample units; O missing values

Proportions for each level of response:
$q1
1
1
$q2
0 1
0.3333 0.6667

$q3

$q4
0.8095 0.1905
$95
0.1429 0.8571
$q6
0.3333 0.6667
$q7
0.2381 0.7619
$q8
0.1429 0.8571

$q9

$q10
0.0476 0.9524

$q11
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0

1

0.619 0.381

$q12
0

1

0.381 0.619

$q13

0
0.0476
$q14
1
1
$q15
0.7619
$q16
0.0476

$q17

$q18
0.0476
$q19
0.3333
$920
0.2381

$q21

$q22
0.2857
$q23
0.2381

$q24

1

.9524

.2381

.9524

.9524

.6667

.7619

.7143

.7619
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$q25
0 1
0.6667 0.3333

$q26
1
1

$q27
0 1
0.7143 0.2857

$928
0 1
0.381 0.619

$q929
0 1
0.381 0.619

$q31
0 1
0.6667 0.3333

$q32
0 1
0.6667 0.3333

$933
0 1
0.4762 0.5238

$q34
0 1
0.0952 0.9048

$q35
0 1
0.3333 0.6667

$q36

0 1
0.619 0.381
$q37

0 1
0.3333 0.6667

$q38
0 1
0.1905 0.8095

$q39
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0 1
0.7619 0.2381

$q40
0 1
0.4762 0.5238

$q41
0 1
0.0476 0.9524

$q42
0 1
0.1429 0.8571

$q43
0 1
0.0952 0.9048

$q44
0 1
0.381 0.619

$q45
0 1
0.381 0.619

$q47
0 1
0.2381 0.7619

$q48

0 1
0.619 0.381
$q49

0 1

0.7143 0.2857

Frequencies of total scores:
012345678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Free0 000000000 O O O O OO O OOOUOOOOOO O 3
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Fre@q 0 2 3 3 2 1 1 1 0 0 1 3 0 1 0 O O O O O

Cronbach's alpha:
value

A1l Ttems 0.6291

Excluding q1 0.6294

Excluding g2 0.6504
Excluding q3 0.6294
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Excluding 94 0.6317
Excluding g5 0.6138
Excluding g6 0.5851
Excluding q7 0.6021
Excluding q8 0.6313
Excluding q9 0.6294
Excluding 910 0.6211
Excluding q11 0.6217
Excluding q12 0.6122
Excluding q13 0.6297
Excluding q14 0.6294
Excluding q15 0.6309
Excluding q16 0.6254
Excluding q17 0.6294
Excluding q18 0.6297
Excluding q19 0.5979
Excluding 920 0.6139
Excluding q21 0.6294
Excluding q22 0.6342
Excluding 923 0.6251
Excluding q24 0.6294
Excluding 925 0.6426
Excluding q26 0.6294
Excluding q27 0.6118
Excluding g28 0.5952
Excluding q29 0.6168
Excluding q31 0.6124
Excluding 932 0.6147
Excluding q33 0.6177
Excluding q34 0.6232
Excluding q35 0.6302
Excluding q36 0.6526
Excluding q37 0.6406
Excluding q38 0.6174
Excluding q39 0.6200
Excluding q40 0.6107
Excluding q41 0.6317
Excluding q42 0.6334
Excluding q43 0.6337
Excluding q44 0.6075
Excluding q45 0.6425
Excluding q47 0.6116
Excluding 948 0.6428
Excluding q49 0.6047

# force the discrimination parameter to be 1
modell <- rasch(dat, constraint = cbind(length(dat) + 1, 1))
modell

Call:
rasch(data = dat, constraint = cbind(length(dat) + 1, 1))

Coefficients:
Dffclt.ql Dffclt.q2 Dffclt.q3 Dffclt.q4 Dffclt.qb Dffclt.q6
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-25.

566

Dffclt.q7

-1
Dffclt

Dffclt

Dffclt

Dffclt

Dffclt

-1
Dffclt

.281
.ql3
-3.
.ql9
-0.
.q25
0.

188

773

762

.q32
0.
.q38
.583
.q44
-0.

762

546

-0.

773

Dffclt.q8

-1
Dffclt
-25
Dffclt
-1
Dffclt
-25
Dffclt

Dffclt
1
Dffclt
-0

Log.Lik: -430.349

# summary(modell) allow

.946
.ql4d
.566
.q20
.281
.q26
.566
.q33
-0.
.q39
.281
.q45
.545

114

model2 <- rasch(dat)

model2
Call:
rasch(data = dat)
Coefficients:
Dffclt.ql Dffclt.q2
-49.028 -1.416
Dffclt.q7 Dffclt.q8
-2.362 -3.612
Dffclt.ql3 Dffclt.ql4
-5.966 -49.028
Dffclt.ql9 Dffclt.q20
-1.417 -2.364
Dffclt.q25 Dffclt.q26
1.407 -49.028
Dffclt.q32 Dffclt.q33
1.408 -0.206
Dffclt.q38 Dffclt.q39
-2.928 2.361
Dffclt.q44 Dffclt.q4b
-0.996 -0.996
Log.Lik: -426.767
# summary(model2)
par(mfrow = c(1, 2))
plot(modell)
plot(model?2)

-25.

566

Dffclt.q9

-25.
.qlb5
1.
.q21
-25.
.q27
1.
.q34
-2.
.q40
-0.
.q47
-1.

Dffclt

Dffclt

Dffclt

Dffclt

Dffclt

Dffclt

discrimination parameter to be

566

281

566

009

425

115

281

Dffclt.q3

-49.

028

Dffclt.q9

-49.
.qlb5
2.
.q21
-49.
.q27
.862
.q34
-4.
.q40
-0.
.q47
-2.

Dffclt

Dffclt

Dffclt

1

Dffclt

Dffclt

Dffclt

028

361

028

517

201

364

1
Dffclt

Dffclt

Dffclt
-1
Dffclt
-0
Dffclt
-0
Dffclt

Dffclt
0

.591
.q10
-3.
.ql6
-3.
.q22
.016
.q28
.545
.q35
773
.q41
-3.
.q48
.531

188

188

188

Dffclt.q4

2
Dffclt
-5
Dffclt
-5
Dffclt
-1
Dffclt
-0
Dffclt
-1
Dffclt
-5
Dffclt
0

.930
.q10
.965
.ql6
.967
.q22
.869
.q28
.996
.q35
.416
.q41
.966
.q48
.984
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-1.947 -0.773
Dffclt.qll Dffclt.ql2
0.531 -0.546
Dffclt.ql7 Dffclt.ql8
-25.566 -3.188
Dffclt.q23 Dffclt.q24
-1.281 -25.566
Dffclt.q29 Dffclt.q31
-0.546 0.762
Dffclt.q936 Dffclt.q37
0.531 -0.773
Dffclt.q42 Dffclt.q43
-1.946 -2.424
Dffclt.q49 Dscrmn
1.009 1.000
estimated

Dffclt.q5 Dffclt.q6
-3.615 -1.418
Dffclt.qll Dffclt.ql2
0.984 -0.996
Dffclt.ql7 Dffclt.ql8
-49.028 -5.966
Dffclt.q23 Dffclt.q24
-2.362 -49.028
Dffclt.q29 Dffclt.q31
-0.996 1.408
Dffclt.q936 Dffclt.q37
0.984 -1.416
Dffclt.q42 Dffclt.q43
-3.612 -4.518
Dffclt.q49 Dscrmn
1.862 0.521
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Notice that several of the questions have difficulty parameters of -49.02. These are the problems that
everybody got correct. This also likely led to the error messages returned by the models. It is difficult to
estimate the difficulty of such questions, because they must be really easy. We fit two different models; one in
which has a discrimination parameter. Is it worthwhile using this extra parameter?

anova(modell, model2)

Likelihood Ratio Table

AIC BIC log.Lik LRT df p.value
modell 954.70 1003.79 -430.35
model2 949.53 999.67 -426.77 7.16 1 0.007

Results show that there is no difference between the two, despite the fact that the mean discriminability
when estimated was .5 instead of 1; however modell had lower AIC and BIC scores resulting from a higher
(less negative) log-likelihood.

Fitting individual difficulty parameters

In other cases, it is likely that different items have different discriminabilities, and you might want to use
this to help create a better simpler test. You might be able to choose 5 highly discriminable items to
replace 50 low-discriminable items, for example. The two-parameter IRT model can estimate a difficulty and
discriminibility for each item. It is fit with the ltm() function in ltm.

The 1tm function has more bells and whistles that we won’t deal with. For example, it lets you estimate
a set of latent predictors—sort of a factor analysis. We will use a single factor, which ends up being the
two-parameter model. The syntax is a bit different. You need to write a formula, and tell it how many latent
factors to estimate. We will specify a single factor by doing data~z1, but you can use two by doing data~z1 +
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z2. This model is sometimes referred to as the two-parameter logistic (TPL) model.

model3 <- 1ltm(dat ~ z1)
model3

Call:
ltm(formula = dat ~ z1)

Coefficients:

Dffclt Dscrmn
ql -2.417364e+08 0.000
q2 -7.760000e-01 0.976
q3 -2.417364e+08 0.000
q4 -2.119000e+00 -0.734
qb 1.382000e+00 -22.068
q6 6.560000e-01 .827
q7 1.803000e+00 -0.800
g8 1.352400e+01 -0.134
q9 -2.417364e+08 0.000
ql0 3.708000e+00 -0.976
qll -2.900000e-01 -4.347
ql2 -3.407000e+00 0.139
ql3 -3.773000e+00 0.874
ql4 -2.417364e+08 0.000
qlb 2.212000e+00 0.608
qlé 2.059000e+00 .676
ql7 -2.417364e+08 0.000
ql8 -1.668000e+00 21.067
ql9 2.454000e+00 -0.304
q20 2.715000e+00 -0.474
q21 -2.417364e+08 0.000
gq22 -1.178080e+02 0.008
q23 -3.029000e+00 0.385
q24 -2.417364e+08 0.000
925 -5.009000e+00 -0.136
q26 -2.417364e+08 0.000
q27 -1.051000e+00 -0.980
q28 -8.553000e+00 0.056
g29 -2.193000e+00 0.214
q31 -1.614000e+00 -0.423
q32 -2.699000e+00 -0.251
q33 3.370000e-01 -0.445
q34 1.691000e+00 -42.311
q35 4.430000e+00 -0.162
q36 1.202000e+00 0.474
q37 -2.966000e+00 0.229
q38 2.450000e+00 -0.693

[ reached getOption("max.print") -- omitted 10 rows ]

|
w
g

|
w
o

Log.Lik: -400.606
plot (model3)
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# summary (model3)

Notice that items vary in their difficulty and discriminibility, and that some are negatively discrimination. It
is sort of a mess. This is not unexpected because we have so few participants in this test—there just isn’t
enough information to reliably and stably estimate anything. Before we go on, we can look at a few things
about how well the model fits:

item.fit (model3)

Item-Fit Statistics and P-values

Call:
ltm(formula = dat ~ z1)

Alternative: Items do not fit the model
Ability Categories: 10

X2 Pr(>X~2)
ql  0.0000 1
Q2  8.1511  0.4189
93 0.0000 1
Q4  7.6834  0.465
Q5  0.1379 1
Q6  0.2621 1
qQ7  9.2744  0.3197
Q8  8.7169  0.3667
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Q@@  0.0000 1
ql0  4.8496 0.7735
qll 1.5435  0.992
ql2 3.4025 0.9066
q13  6.8417 0.5538
ql4  0.0000 1
ql5 6.0480  0.6419
ql6 9.9338  0.2697
q17  0.0000 1

ql8 133.4230 <0.0001

ql9 7.9250  0.4408
q20 6.6433  0.5756
921 0.0000 1
Q22 7.9145  0.4419
q23 11.6092 0.1695
q24  0.0000 1
q25 14.2920 0.0745
q26  0.0000 1
q27 5.5064 0.7023
Q28  9.7243  0.2849
Q29 7.9233  0.441
Q31 6.2791  0.616
Q32 6.0579  0.6407
933  6.5497  0.5859
q34  0.0000 1
Q35 9.1083  0.3332
Q36 2.4719  0.963
q37 8.9905  0.3431

Q38 7.7650 0.4568
[ reached 'max' / getOption("max.print") -- omitted 10 rows ]

This gives a ‘fit” parameter for each question. A few items, like Q18, have bad fit parameters. Looking at the
psych::alpha function, it has very low item-whole correlation.

psych: :alpha(dat)

Some items ( g2 q7 g8 ql2 q15 q18 923 q28 g29 q36 q37 q42 q44 945 ) were negatively correlated with the
probably should be reversed.
To do this, run the function again with the 'check.keys=TRUE' option

Reliability analysis
Call: psych::alpha(x = dat)

raw_alpha std.alpha G6(smc) average r S/N ase mean sd median_r
0.63 0.62 0.6 0.04 1.6 0.11 0.69 0.093 0.038

95% confidence boundaries
lower alpha upper
Feldt 0.36 0.63 0.82
Duhachek 0.41 0.63 0.85

Reliability if an item is dropped:

raw_alpha std.alpha G6(smc) average_r S/N var.r med.r
q2 0.65 0.64 0.63 0.045 1.8 0.050 0.040
q4 0.63 0.62 0.61 0.042 1.7 0.050 0.037

35



qb5 0.62 0.60 0.58 0.038 1.5 0.049 0.038
g6 0.59 0.58 0.56 0.035 1.4 0.049 0.037
q7 0.60 0.60 0.58 0.037 1.5 0.049 0.037
q8 0.63 0.63 0.61 0.042 1.7 0.050 0.040
ql0 0.62 0.61 0.60 0.039 1.6 0.050 0.038
qll 0.62 0.61 0.59 0.040 1.6 0.049 0.038
ql2 0.62 0.60 0.60 0.039 1.5 0.050 0.038
ql3 0.63 0.62 0.61 0.042 1.6 0.049 0.040
[ reached 'max' / getOption("max.print") -- omitted 29 rows ]
Item statistics
n raw.r std.r r.cor r.drop mean sd
92 21 -0.048 -0.093 -0.2498 -0.157 0.67 0.48
g4 21 0.135 0.119 0.0231 0.042 0.19 0.40
g5 21 0.375 0.410 0.3985 0.301 0.86 0.36
g6 21 0.642 0.636 0.6890 0.569 0.67 0.48
q7 21 0.496 0.450 0.4491 0.415 0.76 0.44
@8 21 0.119 0.099 -0.0027 0.037 0.86 0.36
ql0 21 0.293 0.303 0.2607 0.246 0.95 0.22
qll 21 0.287 0.280 0.2300 0.177 0.38 0.50
ql2 21 0.382 0.346 0.3159 0.279 0.62 0.50
ql3 21 0.083 0.147 0.0588 0.033 0.95 0.22
[ reached 'max' / getOption("max.print") -- omitted 29 rows ]
Non missing response frequency for each item
0 1 miss
q2 0.33 0.67 0
g4 0.81 0.19 0
g5 0.14 0.86 0
g6 0.33 0.67 0
q7 0.24 0.76 0
q8 0.14 0.86 0
ql0 0.05 0.95 0
qll 0.62 0.38 0
ql2 0.38 0.62 0
ql3 0.05 0.95 0
ql5 0.76 0.24 0
ql6é 0.05 0.95 0
ql8 0.05 0.95 0
ql9 0.33 0.67 0
q20 0.24 0.76 0
gq22 0.29 0.71 0
q23 0.24 0.76 0
g25 0.67 0.33 0
927 0.71 0.29 0
928 0.38 0.62 0
q29 0.38 0.62 0
q31 0.67 0.33 0
q32 0.67 0.33 0
933 0.48 0.52 0
934 0.10 0.90 0
[ reached getOption("max.print") -- omitted 14 rows ]

We can look at the person-parameters. These tell us how well each person is described by the model. The
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tests are like a chi-squared test. We assume that a person of a certain ability should be getting problems
easier than they are right, and more difficult than they are wrong. If this assumption is violated for a person,
that indicates they violate this model, and are somehow different from the rest of the class which determines
the model. Possibly they were cheating so they didn’t get many right but the ones they got right were the
most difficult.

person.fit(model3)

Person-Fit Statistics and P-values

Call:
ltm(formula = dat ~ z1)

Alternative: Inconsistent response pattern under the estimated model

ql 92 g3 g4 g5 g6 q7 98 q9 ql10 ql11 ql12 q13 q14 q15 ql6 ql17 q18 ql19 q20 g21
i1 101 01 0011 1 0 0 1 i o 1 1 1 1 1 1
q22 923 924 925 q26 927 928 g29 q31 g32 933 g34 q35 q36 937 938 q39 q40 g41
1 i o0 1 1 1 1 o0 OO0 o0 1 o0 1 0 1 1 O O 0 1

q42 q43 q44 q45 g47 q48 q49 LO Lz Pr(<Lz)
1 1 1 0 0 1 0 0 -22.3816 -1.7917 0.0366
[ reached 'max' / getOption("max.print") -- omitted 20 rows ]

These are not bad—most people are reasonably-well fit in the model. The margins() function looks at whether
there are particular parings of items that happen more often than by chance.

margins (model3)

Call:

ltm(formula = dat ~ z1)
Fit on the Two-Way Margins

Response: (0,0)
Item i Item j Obs Exp (0-E)"2/E

1 13 37 10.11 6.86 *xx
2 7 28 5 1.72 6.28 *xx
3 13 42 10.14 5.32 *x*xx

Response: (1,0)
Item i Item j Obs Exp (0-E)"2/E

1 7 33 2 0.37 T7.24 *xx%
30 33 1 0.15 5.04 *xx*
3 4 41 2 0.51 4,31 **x

Response: (0,1)
Item i Item j Obs Exp (0-E)"2/E

1 16 30 1 0.07 11.81 **x*
2 5 7 3 0.88 5.15 *xx
3 33 43 2 0.49 4,65 *x%x%

Response: (1,1)
Item i Item j Obs Exp (0-E)"2/E
1 30 47 5 2.20 3.55 *xx
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N

1 2.32
2 2.21

4 15 0.

2 0.7
3 39 46 7 4.0

"***' denotes a chi-squared residual greater than 3.5

For example, consider the first line. According to the model, we’d expect 0.11 people to get both 13 and 37
wrong. But the margins show 1 person got them both wrong, which would be unlikely to happen by chance.
We can check the table here:

table(dat[, 13], dat[, 37])

0 1
0 1 0
1 317

These might indicate that there are questions that are not independent and so may violate the model
assumptions. For 30 and 47, we’d expect only 2.06 people to get them both correct, but 5 did. In these
cases, the two questions might be redundant. In other cases, this could capture things like ‘leakage’, where
you learn the answer to one question based on another; or exclusive-or choices, where there are two parallel
questions with one attractive answer so that people who are guessing are likely to either get them both right
or wrong, or are likely to get only one right and the other wrong.

Multiple latent traits

The simple Itm model is essentially logistic regression, but at its core assumes your test measures a single ability
dimension. What if your test meaured multiple dimensions that differed systematically and indepedently
across people? Usually, you might do a PCA or factor analysis to examine this, but the ltm model will let
you test up to two latent traits directly. This should also remind you a bit of how MANOVA works.

As a brief example, here is how we’d do multiple latent traits.

modelda <- ltm(dat[, 1:15] ~ z1)
plot(modelda)
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Call:

1tm(formula = dat[, 1:15] ~ z1)

Coefficients:

Dffclt Dscrmn
ql -1.802629e+08 0.000
q2 9.910000e-01 -0.864
q3 -1.802629e+08 0.000
q4 5.842000e+00 0.254
g5 -1.494000e+00 1.581
q6 -6.030000e-01 28.245
q7 -8.320000e-01 2.301
g8 -9.028000e+00 0.198
q9 -1.802629e+08 0.000
ql0 -1.449000e+00 12.044
qll 3.520000e-01 27.475
ql2 1.140900e+01 -0.043
ql3 2.567000e+00 -1.604
ql4 -1.802629e+08 0.000
gql5 -1.656000e+00 -0.750

Log.Lik: -99.018
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# summary(modeld)
item.fit (model4a)
Item-Fit Statistics and P-values

Call:
ltm(formula = dat[, 1:15] ~ z1)

Alternative: Items do not fit the model
Ability Categories: 10

X2 Pr(>X"2)
ql  0.0000 1
q2 15.4790  0.0505
q3  0.0000 1

g4 13.1159 0.1079

Q5 9.8377 0.2766
g6  0.0956 1
q7 5.3522 0.7194
Q8 8.1935  0.4148
Q9  0.0000 1
ql0 1.9348  0.9829
qll 0.0621 1

ql2 13.6124 0.0924
ql3 5.87569 0.6611
ql4 0.0000 1
ql5 6.9981 0.5368

modeldb <- ltm(dat[, 1:15] ~ zl1 + z2)
model4b

Call:
ltm(formula = dat[, 1:15] ~ zl1 + z2)

Coefficients:

(Intercept) zl z2
ql 65.566 0.000 0.000
q2 1.236 -0.537 1.942
q3 65.566 0.000 0.000
q4 -121.843 105.913 59.674
a5 185.353 107.015 -142.073
q6 47.280 98.106 -39.255
q7 103.551 147.976 37.214
q8 2.165 0.775 0.896
q9 65.566 0.000 0.000
ql0 143.812 93.717 -18.639
qll -74.365 111.343 -148.643
ql2 0.523 0.274 0.552
ql3 3.472 -0.503 0.906
ql4d 65.566 0.000 0.000
ql5 -1.578 -0.019 1.505

Log.Lik: -85.347



anova(model4a, modeldb)

Likelihood Ratio Table
AIC BIC log.Lik LRT df p.value
model4a 258.04 289.37 -99.02
model4b 260.69 307.70 -85.35 27.34 15 0.026

# item. fit (model4bd)
fs <- factor.scores(model4db)
barplot (t(fs$coef), beside = T)

50 100

0
I

_ R IR . I I
|

-100

gl 92 93 g4 g5 g6 q7 98 Q9 gqll ql3 gl5

plot(fs$coef[, 2], fs$coef[, 31)
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For the z1 only model, we get a difficulty and discriminability parameter, which is like a mean and variance.
For the z1 + z2 model, we get intercept which is going to be akin to the difficulty parameter, and z1/z2
represent variance along two principle components. Here, we don’t see too much similarity across models,
but with a larger data set it is likely we would. It is also likely that zl or z2 is going to be similar to
the discriminability parameter, but not guaranteed. Here, we see z2 is somewhat correlated with the
discriminability

plot(rank(coef (modelda) [, 1]), rank(coef (modeldb) [, 1]))
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rank(coef(model4a)[, 1])

plot(coef (modelda) [, 2], coef(modeldb)[, 2])
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coef(model4a)[, 2]

plot(coef (modelda) [, 2], coef(modeldb)[, 3])

44




o o

S

o}

™ o | cowm
g o)
2 o o
© o —
g |
o
o O
o 8_

|

o

o}
O 4 o)
I [ [ [ [ [ [
0 5 10 15 20 25

coef(model4a)[, 2]

Guessing parameters: the three-parameter model

If you have questions that differ in the ability to get the question right by chance, you might want to
incorporate a guessing parameter. These are just the normal 1tm model, but bottom out at a lower level that
you either estimate or specify. This might be useful if you have a true/false test, where accuracy should be at
least 50%, especially if this is mixed with other questions like short answer or multiple choice where guessing
accuracy would be lower. In this case, you could fix the parameters based on question type. Otherwise,
you might want to estimate them directly—but you would need to be sure you had enough data to get good
estimates.

This model is called the three-parameter model (TPM). It incorporates a guessing value, if the chance of
getting an answer right is non-zero by guessing.

model9 <- tpm(dat[, 1:15], type = "latent.trait", max.guessing = 0.5)
model9

Call:
tpm(data = dat[, 1:15], type = "latent.trait", max.guessing = 0.5)

Coefficients:

Gussng Dffclt Dscrmn
ql 0.025 -4.775907e+08 0.000
q2 0.054 -9.160000e-01 0.806
q3 0.029 -4.775662e+08 0.000
q4 0.174 -1.884500e+01  -0.200
a5 0.113 1.031000e+00  -3.043
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q6 0.014 4.510000e-01 -18.446
q7 0.463 1.230000e-01 -6.073
g8 0.051 2.353800e+01 -0.074
q9 0.032 -4.775418e+08 0.000
ql0  0.048 1.513000e+00 -6.885
qll 0.000 -3.800000e-01 -22.118
ql2 0.072 -2.603000e+00 0.144
ql3 0.048 -1.916000e+00 3.428
ql4 0.036 -4.775173e+08 0.000
ql5 0.003 1.715000e+00 0.722

Log.Lik: -98.513
plot(model9)

Item Characteristic Curves
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Ability

Notice how different items bottom out at different levels.

With a small class, there are a lot of items with negative discriminability. Let’s look at how they work out,
by comparing average test score to particular answers:

par (mfrow = c(2, 2))
boxplot(dat$q5, rowMeans(dat), main = "Correct on g5", names = c("Incorrect (3)",
"correct (18)"))

boxplot(dat$q4, rowMeans(dat), main = "Correct on g4", names = c("Incorrect (1)",
"correct (20)"))

boxplot(dat$ql0, rowMeans(dat), main = "Correct on ql0", names = c("Incorrect (3)",
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"correct (18)"))

boxplot(dat$qll, rowMeans(dat), main = "Correct on qll1", names = c("Incorrect (13)",
"correct (8)"))
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We can see that for some of these, accuracy on the question is negatively correlated with accuracy on the
test. For others, there are other strange things, like very small numbers of errors that might make estimation
difficult.
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Information curves

Each questions can be transformed into an information score, which is the distribution of information implied
by the cumulative score. Also, you can plot the characteristic of the entire test:

plot(modelda)

Item Characteristic Curves
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plot(model4a, legend = T, type = "IIC", items = 1:5)
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Item Information Curves
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plot(modeld4a, type = "IIC", legend = T, item = c(1:15)[c(-11, -6, -10)])
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The height of the curve indicates where the most informative ability level for each question is. A very
discriminative question will have a sharp rise at a specific point, and you would be good at separating those
below from those above.

model5 <- ltm(dat[, c(1, 3, 5, 9, 14)] ~ z1)
modelb

Call:
ltm(formula = dat[, c(1, 3, 5, 9, 14)] ~ z1)

Coefficients:

Dffclt Dscrmn
ql -1.321958e+11 0.000
q3 -1.321958e+11 0.000
qb 1.188000e+00 -3.667
q9 -1.321958e+11 0.000
ql4 -1.321958e+11 0.000

Log.Lik: -8.612
plot(model5, legend = T, type = "IIC")
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You can specify different items, or items=0 tells you the entire test. This tells you the range of abilities that
the test or items will be good at. You can also specify a range to integrate over, to see which range the test is
best at discriminating. This can be used to understand whether the test is good at discrimating low-performers
(maybe a test for remidial instruction) on high-performers (a test for entrance into a competitive class or
program).

plot(model5, legend = T, type = "IIC", items = 0)

o1



Test Information Function
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info <- information(model5, c(-4, 4))
info

Call:
ltm(formula = dat[, c(1, 3, 5, 9, 14)] ~ z1)

Total Information = 3.67
Information in (-4, 4) = 3.67 (100%)
Based on all the items

Graded response model and partial credit model.

The ltm library provides five models, rasch, ltm, tpm, grm (graded response model-polytomous) and gpcm
(general partial credit-polytomous). These last two are appropriate for rank-order and categorical responses,
and might be useful for evaluating personality scales.

The basic assumptions of IRT is that you have a binary outcome (correct or incorrect). But it could be
interesting to do an IRT-like analysis for non-binary responses. If you have a set of likert-scale responses,
where they are all coded in the same direction, and they each independently give support for some construct,
you can use a graded response model. This might be useful for personality data, for example. Let’s consider
measures from the big five personality questionnaire we have examined in the past.

A related model in the ltm package is the graded partial credit model (gpcm). This would allow you to place
an ordinal scale on correctness, and do an IRT analysis. Maybe in a short answer response, you score full
credit for one response, and partial credit for another. We won’t cover this model here, but it has some
similarity to the GRM.
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To examine the GRM, Let’s obtain just the introversion/extraversion values, and reverse code so they are all
in the same direction. for convenience, I'll also remove any values that are NA.

bigh <- read.csv("bigfive.csv")

qtype l= C(”E", ”A”, |lc||’ ”N”, |IOII’ |IEII’ IIAII’ IICII’ IINII, IIOII’ IIEII’ "A”, "C”, ”N”,

ngn, WEM, MAM, WQH, UNM, nQe, MEM, MAM,
"E", "A", "C", "N", "O", "E", "A", "C",
valence <- c(1, -1, 1, 1, 1, -1, 1, -1, -1,
1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1,
## reverse code
for (i in 2:ncol(bigb)) {
if (valencel[i - 1] == -1) {

bigs[, il <- 6 - big5[, il
}
}
ei <- bigb[, c(T, qtype == "E")]
ei <- ei[!is.na(rowSums(ei)), ]

llcll, IINII, ||0||, ”E”, ”A", ncn’ ”N", |IOI|’
IINII, IIOII’ ”O", "A", "C”, HOH)

1,1, -1,1,1,1,1,1, -1, 1, 1, -1,
-1, -1, 1, -1, 1,1, 1, -1, 1, -1, 1)

Now, the graded response model in ltm (grm) will do a irt-like analysis, treating these as ordinal values. You
can use a constrained or unconstrained model-the constrained model fits an equal discriminability across all
questions. Because we have a lot of data, this model takes a while to fit.

gl <- grm(ei[, -1], constrained = TRUE)
gl

Call:
grm(data = ei[, -1], constrained = TRUE)
Coefficients:

Extrmtl Extrmt2 Extrmt3 Extrmt4 Dscrmn
Q1 -2.210 -0.924 -0.150 1.233 1.684
Q6 -1.531 0.123 0.838 2.007 1.684
Q11 -2.729 -1.194 -0.359 1.068 1.684
Q16 -2.853 -1.410 -0.370 1.061 1.684
Q21 -1.356 0.100 0.702 1.863 1.684
Q26 -2.003 -0.861 -0.116 1.360 1.684
Q31 -1.389 0.368 0.865 1.971 1.684
Q36 -2.579 -1.099 -0.468 0.984 1.684
Log.Lik: -105683.71
summary (gl)
Call:
grm(data = ei[, -1], constrained = TRUE)

Model Summary:
log.Lik AIC BIC
-10583.71 21233.41 21395.7

Coefficients:
$Q1

value
Extrmtl -2.210
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Extrmt2
Extrmt3
Extrmt4
Dscrmn

$Q6

Extrmt1
Extrmt2
Extrmt3
Extrmt4
Dscrmn

$Q11

Extrmt1
Extrmt2
Extrmt3
Extrmt4
Dscrmn

$Q16

Extrmt1
Extrmt2
Extrmt3
Extrmt4
Dscrmn

$Q21

Extrmt1
Extrmt2
Extrmt3
Extrmt4
Dscrmn

$Q26

Extrmt1
Extrmt2
Extrmt3
Extrmt4
Dscrmn

$Q31

Extrmt1
Extrmt2
Extrmt3
Extrmt4
Dscrmn

$Q36

-0.924
-0.150
1.233
1.684

value
-1.531
0.123
0.838
2.007
1.684

value
-2.729
-1.194
-0.359
1.068
1.684

value
-2.853
-1.410
-0.370
1.061
1.684

value
-1.356
0.100
0.702
1.863
1.684

value
-2.003
-0.861
-0.116
1.360
1.684

value
-1.389
0.368
0.865
1.971
1.684
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value
Extrmtl -2.579
Extrmt2 -1.099
Extrmt3 -0.468
Extrmt4 0.984
Dscrmn 1.684

Integration:
method: Gauss-Hermite
quadrature points: 21

Optimization:
Convergence: 0
max(|grad|): 0.0094
quasi-Newton: BFGS

We can see that each question is modeled with its own IRT-like model. There are five levels here, and four
transitions between levels, which are modeled as sort of difficulty parameters for each transition between
items.

Plotting each question gives us another look

par(mfrow = c(4, 2))
plot(gl, items = 1)
plot(gl, items = 2)
plot(gl, items = 3)
plot(gl, items = 4)
plot(gl, items = 5)
plot(gl, items = 6)
plot(gl, items = 7)
plot(gl, items = 8)
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The margins() function works here as well. We can see that there are a couple that violate the two-way
independence (ql-q21; q6-q21, etc.)

margins(gl)

Call:
grm(data = ei[, -1], constrained = TRUE)

Fit on the Two-Way Margins

Q1 Q6 Q11 Q16 Q21 Q26 Q31 Q36

Q1 - 256.82 50.38 37.85 102.57 67.00 82.91 72.89
Q6 - 44.89 50.86 124.08 73.31 44.03 37.03
Q11 - 96.73 55.00 76.17 84.33 45.93
Q16 *okok - 55.38 51.31 65.46 52.74
Q21 *xkx xokk - 53.24 74.63 29.73
Q26 - 62.84 37.69
Q31 - 34.28
Q36 -

"**%x' denotes pairs of items with lack-of-fit

Let’s fit this unconstrained:

g2 <- grm(ei[, -1], constrained = FALSE)
g2

Call:
grm(data = ei[, -1], constrained = FALSE)

Coefficients:

Extrmtl Extrmt2 Extrmt3 Extrmt4 Dscrmn
Q1 -1.927 -0.814 -0.137 1.076 2.215
Q6 -1.531 0.121 0.838 2.010 1.682
Q11 -2.916 -1.276 -0.384 1.140 1.509
Q16 -2.766 -1.370 -0.363 1.029 1.773
Q21 -1.269 0.090 0.655 1.742 1.907
Q26 -2.549 -1.088 -0.137 1.732 1.164
Q31 -1.511 0.395 0.939 2.150 1.459
Q36 -2.302 -0.988 -0.426 0.877 2.090

Log.Lik: -10539.91

summary (g2)
Call:
grm(data = eil[, -1], constrained = FALSE)
Model Summary:
log.Lik AIC BIC

-10539.91 21159.82 21356.53

Coefficients:

$Q1
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Extrmtl
Extrmt2
Extrmt3
Extrmt4
Dscrmn

$Q6

Extrmt1
Extrmt2
Extrmt3
Extrmt4
Dscrmn

$Q11

Extrmt1
Extrmt2
Extrmt3
Extrmt4
Dscrmn

$Q16

Extrmt1
Extrmt2
Extrmt3
Extrmt4
Dscrmn

$Q21

Extrmtl
Extrmt2
Extrmt3
Extrmt4
Dscrmn

$Q26

Extrmt1
Extrmt2
Extrmt3
Extrmt4
Dscrmn

$Q31

Extrmt1
Extrmt2
Extrmt3
Extrmt4
Dscrmn

value
-1.927
-0.814
-0.137
1.076
2.215

value
-1.531
0.121
0.838
2.010
1.682

value
-2.916
-1.276
-0.384
1.140
1.509

value
-2.766
-1.370
-0.363
1.029
1.773

value
-1.269
0.090
0.655
1.742
1.907

value
-2.549
-1.088
-0.137
1.732
1.164

value
-1.511
0.395
0.939
2.150
1.459
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$Q36

value
Extrmtl -2.302
Extrmt2 -0.988
Extrmt3 -0.426
Extrmt4 0.877
Dscrmn 2.090

Integration:
method: Gauss-Hermite
quadrature points: 21

Optimization:
Convergence: 0
max(|grad|): 0.0097
quasi-Newton: BFGS

par (mfrow = c(4, 2))
plot(g2, items = 1)
plot(g2, items = 2)
plot(g2, items = 3)
plot(g2, items = 4)
plot(g2, items = 5)
plot(g2, items = 6)
plot(g2, items = 7)
plot(g2, items = 8)
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For this model, we might consider the midpoint transition (extrm2) is the ‘center’ of the question. We can
see that Q36 and Q26 are low, while Q21 and Q31 are high. We might also use this to infer that a 4 on Q36
is about equivalent to a 3 on Q21.

Discussion and Conclusions about the IRT model

The basic IRT/Rasch model is ubiquitous in areas of testing and measurement. It is helpful for designing
tests that are maximally predictive using the smallest number of questions. It does not completely replace
more traditional psychometric approaches, but augments them so that you can design smaller more effective
tests, and is an important tool that both educators and researchers are typically not aware of, even if it can
be helpful.

Additional data

For practice, the resource folder includes a worked example of IRT on a crossword-puzzle experiment
(crossword.csv), and a data set quizgrades.csv with 49 students answers on 13 problems.

Additional resources

e There are special-purpose standalone software packages many people use for IRT style models. SPSS
recommends that you use an R package via their R connector.

e The mirt library estimates IRT models. It also has a companion mirtCat and ggmirt library for using
it in other contexts. (ggmirt is not in the CRAN and needs to be downloaded). A number of people
have shown how to use ggplot with mirt on various blogs. MIRT looks like it can use syntax from some
commonly IRT system, and you need to use R to program that other system via a text string, but blogs
appear to show simple ways to apply it as well.

e The irt library has objects for representing testbeds and items in a computerized adaptive testing
framework, but I’'m not sure if it can estimate parameters directly from data. It looks more useful for
driving an adaptive test or simulating tests.

e Other packages noted by Chalmers, the developer of mirt, include eRm, MCMCpack, and he notes that
mirt was the only one to include confirmatory item factor analysis methods, at least in 2012.
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