Shadow/Puppet Synthesis: A Stepwise Method for the Design of Self-Stabilization

Alex Klinkhamer and Ali Ebenenasir

Abstract—This paper presents a novel two-step method for automated design of self-stabilization. The first step enables the specification of legitimate states and an intuitive (but imprecise) specification of the desired functional behaviors in the set of legitimate states (hence the term “shadow”). After creating the shadow specifications, we systematically introduce the main variables and the topology of the desired self-stabilizing system. Subsequently, we devise a parallel and complete backtracking search towards finding a self-stabilizing solution that implements a precise version of the shadow behaviors, and guarantees recovery to legitimate states from any state. To the best of our knowledge, the shadow/puppet synthesis is the first sound and complete method that exploits parallelism and randomization along with the expansion of the state space towards generating self-stabilizing systems that cannot be synthesized with existing methods. We have validated the proposed method by creating both a sequential and a parallel implementation in the context of a software tool, called Protocon. Moreover, we have used Protocon to automatically design three new self-stabilizing protocols that we conjecture to require the minimal number of states per process to achieve stabilization (when processes are deterministic): 2-state maximal matching on bidirectional rings, 5-state token passing on unidirectional rings, and 3-state token passing on bidirectional chains.

Index Terms—Self-stabilization, distributed computing, program synthesis

1 INTRODUCTION

Self-stabilization is an important property of today’s distributed systems as it ensures convergence in the presence of transient faults (e.g., loss of coordination and bad initialization). That is, from any state/configuration, a Self-Stabilizing (SS) system recovers to a set of legitimate states (a.k.a. invariant) in a finite number of steps. Moreover, starting from its invariant, the executions of an SS system remain in the invariant; i.e., closure. Design and verification of convergence are difficult tasks [1], [2], [3] in part due to the requirements of (i) recovery from any state; (ii) recovery under distribution constraints, where processes can read only the state of their neighboring processes (a.k.a. their locality), and (iii) the non-interference of convergence with closure. One approach to facilitate the development of SS systems is to separate the concerns of closure and convergence for the designer; i.e., separate functional concerns from self-stabilization. Moreover, automating the design steps could potentially decrease development costs. However, there are two important impediments before such a two-step design method. First, for some protocols (e.g., token passing systems like Dijkstra’s 4-state chain [1] and Gouda’s 3-bit ring [4]) specifying the functional behaviors (in the absence of faults) amounts to specifying their self-stabilizing version! That is, the actions enabled in the invariant (a.k.a. closure actions) also provide convergence from illegitimate states. Second, existing automated methods are either incomplete [5], [6], [7], [8] or complete [9] but require exact specification of legitimate states using formal logics (e.g., temporal logic), which are difficult to use by mainstream engineers. This paper presents a novel method where we address these challenges.

Most existing methods for the design of self-stabilization are either manual [1], [2], [10], [11], [12], [13], [14] or rely on heuristics [5], [6], [7], [8] that may fail to generate a solution for some systems. For example, Awerbuch et al. [10] present a method based on distributed snapshot and reset for locally correctable systems; systems in which the correction of the locality of each process results in global recovery to invariant. Gouda and Mularti [11] divide the state space into a set of supersets of the legitimate states, called convergence stairs, where for each stair closure and convergence to a lower-level stair are guaranteed. Stomp [12] provides a method based on ranking functions for design and verification of self-stabilization. Gouda [2] presents a theory for design and composition of self-stabilizing systems. Demirbas and Arora [15] present a method for stabilization-preserving refinement of abstract designs using wrappers at the specification and implementation levels. Nesterenkol and Tixeuil [16] define the notion of ideal stabilization where all states are considered legitimate, and show how ideal stabilization can facilitate the design and composition of some stabilizing systems. Methods for algorithmic design of convergence [5], [6], [7], [8] are mainly based on sound heuristics that search through the state space of a non-stabilizing system in order to synthesize recovery actions while ensuring non-interference with closure. However, these heuristics may fail to find a solution while there exists one; i.e., they are sound but incomplete. The approach in [9], [17] is sound and complete, but it employs constraint solvers as a blackbox. By contrast, the shadow/puppet synthesis relies on a backtracking algorithm that is customized...
for the synthesis of self-stabilization and can be micromanaged towards providing better efficiency (evident by our experimental results). Moreover, to increase the likelihood of finding a solution, we exploit parallelism and randomization in our backtracking algorithm. Bounded synthesis [18] allows for a systematic state space expansion, but it does not consider all states as potential initial states.

This paper proposes a two-step method for automated design of self-stabilization where we enable designers to deal with the concerns of closure and convergence separately, and provide a method for state space expansion. The underlying philosophy behind our work is that the constraints that the synthesis algorithm must follow (e.g., read restrictions due to distribution) should not be imposed on designers. Specifically, the proposed approach includes two layers (see Fig. 1): (1) intuitive specification of an invariant and functional behaviors in the absence of faults (i.e., closure behaviors/actions), called the shadow specification, and (2) automated synthesis of a self-stabilizing system that implements a precise characterization of the shadow behavior in the invariant and enables convergence to the specified invariant in terms of some superposed variables, called the puppet system. This shadow/puppet synthesis is inspired by the way a puppeteer wishes to tell a story via shadows of puppets on a screen. A puppet itself can be more intricate than the shadow it casts. To make our desired shadow (functional behavior), we therefore rely on a clever puppeteer (the computer) to construct a puppet (synthesized protocol).

The algorithmic design of the puppet actions is based on a backtracking search. The backtracking search is conducted in a parallel fashion amongst a fixed number of threads that simultaneously search for an SS solution in the space of all acceptable actions. When a thread finds a combination of design choices (i.e., actions) that would result in the failure of the search (aka a conflict), it shares this information with other threads, thereby improving resource utilization.

Contributions. The contributions of this work are multi-fold. First, we devise a two-step design method that separates the concerns of closure and convergence for the designer, and enables designers to intuitively specify functional behaviors and systematically include computational redundancy. Second, we propose a parallel and complete backtracking search that finds an SS solution if one exists. If a solution does not exist in the current state space of the program, then designers can include additional puppet variables or alternatively increase the domain size of the existing puppet variables and rerun the backtracking search. Third, we present three different implementations of the proposed method as a software toolset, called Protocon (http://asd.cs.mtu.edu/projects/protocon/), where we provide a sequential implementation and two parallel implementations; one multi-threaded and the other an MPI-based implementation. We also demonstrate the power of the proposed method by synthesizing several new network protocols that all existing heuristics fail to synthesize. These case studies include 2-state maximal matching on bidirectional rings, 5-state token passing on unidirectional rings, and 3-state token passing on bidirectional chains. In [19], [20], we perform detailed serial and parallel benchmarks for simpler systems such as coloring on Kautz graphs [21] which can represent a P2P network topology, the 3-bit token ring of Gouda and Haddix [4], ring orientation, and leader election on a ring.

Organization. Section 2 provides a motivating example for shadow/puppet synthesis. Section 3 introduces the basic concepts of protocols, closure and convergence. Section 4 formally states the problem of designing self-stabilization. Section 5 presents the backtracking algorithm. Section 6 provides an overview of our case studies. Section 7 discusses related work. Finally, Section 8 makes concluding remarks and presents future/ongoing work.

2 Motivating Example

In order to illustrate the proposed approach, we discuss the design of the well-known token passing protocol in a unidirectional ring (proposed by Dijkstra [1]) using shadow/puppet synthesis. Token passing in a unidirectional ring includes the following requirements: (1) in the absence of faults, there is exactly one token in the ring (i.e., legitimate states or invariant) and the token is circulated along the ring, and (2) if there are multiple tokens in the ring (due to the occurrence of faults), then the protocol will eventually reach a configuration where exactly one token exists thereafter. Dijkstra [1] formulated this protocol as follows: each process has a variable \(x \) with a finite domain of at least \(N \) values, where \(N \) is the number of processes in the ring. Each process \(P_i \) (\(0 \leq i < N \)) can read and write its own variable \(x_i \), and can also read \(x_{i-1} \), where addition and subtraction are modulo \(N \). The following actions guarantee both closure and convergence: (\(x_{i-1} = x_0 \rightarrow x_0 = x_0 + 1 \)) of \(P_i \) and (\(x_{i-1} \neq x_i \rightarrow x_i = x_{i-1} \)) of each other \(P_i \) (\(1 \leq i < N \)). Each action has a guard condition (placed before \(\rightarrow \)) and a statement (placed after \(\rightarrow \)) that is executed atomically if the guard evaluates to true. Process \(P_0 \) has the token iff (if and only if) \(x_{N-1} = x_0 \), and any other \(P_i \) (\(1 \leq i < N \)) has the token iff \(x_{i-1} \neq x_i \).

Research problem. Now, imagine that we did not have Dijkstra’s solution and we would like to design a self-stabilizing protocol that meets the aforementioned requirements. We are faced with two options: (1) do what Dijkstra did; that is, in a single step design a protocol that circulates the unique token in legitimate states and ensures convergence to legitimate states if there are multiple tokens, or (2) assume no faults occur and design a system that ensures the existence of a unique token in the absence of faults, and then devise actions that ensure convergence without

![Fig. 1. The proposed shadow/puppet synthesis method.](image-url)
interfering with closure actions. It is not hard to see that the first option seems more difficult since we have to simultaneously tackle two problems. However, the challenge of the second option is that specifying the behaviors in the absence of faults in terms of protocol variables could be a daunting task for some protocols. For example, these actions capture the closure actions of Dijkstra’s token passing protocol:

\[x_{N-1} = x_0 \rightarrow x_0 = x_0 + 1 \text{ of } P_0 \text{ and } x_{i-1} = x_i + 1 \rightarrow x_i = x_{i-1} \text{ of each other } P_i \text{ (} 1 \leq i < N \text{).} \]

Observe that the design of these actions is not straightforward. For some protocols (e.g., Gouda’s constant space 3-bit token passing [4]), it is even impossible to separate the closure actions from convergence actions (since closure actions provide convergence). Next, we illustrate the proposed approach (Fig. 1) in the context of Dijkstra’s token passing protocol.

Layer 1 - Step 1: Specify legitimate states. Based on the first layer of the proposed approach in Fig. 1, designers should first specify functional behaviors. This layer includes two steps: the specification of (i) legitimate states, and (ii) the actions that may be executed in legitimate states. First, we consider a shadow Boolean variable tok; for each process \(P_i \) indicating whether \(P_i \) has the token. Thus, the set of legitimate states is simply specified as: \(I = \{ \exists i : i \in \mathbb{Z}_N : (\text{tok}_i = 1) \} \) capturing the configurations where there is a unique token in the ring. The quantifier \(\exists \) means there exists a unique value of \(i \).

Layer 1 - Step 2: Specify shadow actions. To express that each \(P_i \) should possess the token to \(P_{i+1} \), designers simply write the intuitive action (\(\text{tok}_i = 1 \rightarrow \text{tok}_{i+1} = 0 \); \(\text{tok}_{i+1} = 1 \)). Notice that \(P_i \) explicitly changes the state of \(P_{i+1} \), thereby violating the read/write restrictions of the locality of \(P_i \) specified on \(x \) variables in Dijkstra’s protocol. The fundamental idea behind shadow/puppet synthesis is that such restrictions must not tie the hands of designers in expressing what they want. We believe that specifying actions is easier for mainstream engineers compared with methods that use temporal logic specifications [22].

Layer 2 - Step 1: Superpose puppet variables. After specifying the shadow variables and actions, designers should augment the shadow specification with the puppet variables (which in the case of token ring includes the \(x \) variables) along with the corresponding read/write restrictions for processes. The domain of puppet variables and their read/write restrictions can respectively be obtained from the system requirement and topology.

Layer 2 - Step 2: Automated design using a parallel backtracking search algorithm. This step is fully automated where designers benefit from the proposed parallel backtracking algorithm (called the synthesis algorithm) to find a solution that is self-stabilizing to the specified legitimate states. We have developed three implementations of this algorithm, namely a centralized version, a multi-threaded version and an MPI-based distributed version. The synthesis algorithm is not allowed to read shadow variables since the shadow variables/actions provide only an outline of what is required to guide the synthesis algorithm. As such, the guards of the actions of the synthesized protocol will only be specified in terms of puppet variables.

Layer 2 - Step 3: Existence of a Solution. If the backtracking algorithm fails to find a solution, then designers should expand the state space by either increasing the domain of puppet variables or introducing additional puppet variables. This can be achieved by jumping to Step 1 of Layer 2 and repeating the steps of Layer 2.

3 Preliminaries

In this section, we present the formal definitions of protocols and self-stabilization. Protocols are defined in terms of their set of variables, their actions and their processes. The definitions in this section are adapted from [1], [2], [13], [23]. For ease of presentation, we use a simplified version of Dijkstra’s token ring protocol [1] as a running example.

Protocols. A protocol \(P \) comprises \(N \) processes \(\{ P_0, \ldots, P_{N-1} \} \) that communicate in a shared memory model under the constraints of an underlying network topology \(T_p \). Each process \(P_i \), where \(i \in \mathbb{Z}_N \) and \(\mathbb{Z}_N \) denotes values modulo \(N \), has a set of local variables \(V_i \) that it can read and write, and a set of actions (a.k.a. guarded commands) \([24]\) as defined in Section 2. Thus, we have \(V_p = \cup_{i=0}^{N-1} V_i \). The domain of variables in \(V_i \) is non-empty and finite. \(T_p \) specifies what \(P_i \)’s neighboring processes are and which one of their variables \(P_i \) can read; i.e., \(P_i \)’s locality. A local state of \(P_i \) is a unique snapshot of its locality and a global state of the protocol \(P \) is a unique valuation of variables in \(V_p \). The state space of \(P \), denoted \(S_p \), is the set of all global states of \(P \) and \(|S_p| \) denotes the size of \(S_p \). A state predicate is any subset of \(S_p \) specified as a Boolean expression over \(V_p \). We say a state predicate \(X \) holds in a state \(s \) (respectively, \(s \in X \)) iff \(X \) evaluates to true at \(s \). A transition \(t \) is an ordered pair of global states, denoted \((s_0, s_1)\), where \(s_0 \) is the source and \(s_1 \) is the target state of \(t \). A valid transition of \(P \) must belong to some action of some process. The set of actions of \(P \) represent the set of all transitions of \(P \), denoted \(\Delta \). The set of transitions of the protocol \(P \), denoted \(\delta_p \), is the union of the sets of transitions of its processes. A deadlock state is a state with no outgoing transitions. An action \(\text{grd} \rightarrow \text{stmt} \) is enabled in a state \(s \) iff \(\text{grd} \) holds at \(s \). A process \(P_i \) is enabled in \(s \) iff there exists an action of \(P_i \) that is enabled at \(s \).

Example: (Token Ring (TR)). For simplicity, consider a three-process (i.e., \(N = 3 \)) version of Dijkstra’s Token Ring (TR) protocol represented in Section 2 (adapted from [1]). Each process \(P_i \) (\(0 \leq i \leq 2 \)) includes an integer variable \(x \), with a domain \(\{0, 1, 2\} \). Each \(P_i \) can read and write \(x_i \) and can read \(x_{i-1} \) (where \(x_{0-1} = x_2 \) when \(i = 0 \)). The actions of processes are as specified in Section 2. The state predicate \(I_{TR} \) captures the set of states in which only one token exists, where \(I_{TR} \) is

\[
(x_0 = x_1 \land x_1 = x_2) \lor (x_0 \neq x_1 \land x_1 = x_2) \lor (x_0 = x_1 \land x_1 \neq x_2).
\]

Minimal actions. Notice that the guard of an action \(A : \text{grd} \rightarrow \text{stmt} \) of a process \(P \) can be specified in terms of a proper subset of \(V \). In such cases, \(A \) is the union of a set of \(k \geq 1 \) minimal actions \(\text{grd}_1 \rightarrow \text{stmt}_1, \ldots, \text{grd}_k \rightarrow \text{stmt}_k \), where \(\text{grd}_d = (\text{grd}_1 \lor \cdots \lor \text{grd}_k) \), and each \(\text{grd}_d (1 \leq j \leq k) \) is specified in terms of the values of all variables in \(V_i \) (where \(i \in \mathbb{Z}_N \)). More precisely, a minimal action of a process \(P_i \) includes a single valuation of all readable variables for \(P_i \) in its guard and a single valuation of all writable variables for \(P_i \) in its assignment statement. For example, consider an action \((x_2 = x_0) \rightarrow x_0 = x_0 + 1 \) in
the TR protocol. This action is the union of the minimal actions
\((x_2 = 0 \land x_0 = 0 \rightarrow x_2 = 1), \ (x_2 = 1 \land x_0 = 1 \rightarrow x_2 = 2),\) and \((x_2 = 2 \land x_0 = 2 \rightarrow x_0 = 0).\) The proposed
backtracking algorithm in Section 5 explores the space of all
minimal actions.

Computations. Intuitively, a computation of a protocol \(p\) is
an interleaving of its actions. Formally, a computation of \(p\) is a
sequence \(\sigma = (s_0, s_1, \ldots)\) of states that satisfies the
goodness conditions: (1) for each transition \((s_i, s_{i+1})\) in \(\sigma\), where \(i \geq 0\),
there exists an action \(\text{grd} \rightarrow \text{stmt}\) in some process such that
\(\text{grd}\) holds at \(s_i\) and the execution of \(\text{stmt}\) at \(s_i\) yields
\(s_{i+1}\), and (2) \(\sigma\) is maximal in that either \(\sigma\) is finite or if it is
finite, then \(\sigma\) reaches a state \(s_f\) where no action is enabled.
A computation prefix of a protocol \(p\) is a finite sequence
\(\sigma = (s_0, s_1, \ldots, s_m)\) of states, where \(m > 0\), such that each
transition \((s_i, s_{i+1})\) in \(\sigma\) where \(i \in \mathbb{Z}_m\) belongs to some
action \(\text{grd} \rightarrow \text{stmt}\) in some process. The projection of a pro-
tocol \(p\) on a non-empty state predicate \(X\), denoted \(\delta_p[X]\),
consists of transitions of \(p\) that start in \(X\) and end in \(X\).

Closure and Invariant. A state predicate \(X\) is closed in an
action \(\text{grd} \rightarrow \text{stmt}\) iff executing \(\text{stmt}\) from any state \(s \in (X \land \text{grd})\)
results in a state in \(X\). We say a state predicate \(X\) is
closed in a protocol \(p\) iff \(X\) is closed in every action of \(p\).
In other words, closure [2] requires that every computation of \(p\)
starting in \(X\) remains in \(X\). We say a state predicate \(I\) is an
invariant of \(p\) iff \(I\) is closed in \(p\).

TR Example. Starting from a state in the predicate \(I_{TR}\), the
TR protocol generates an infinite sequence of states, where
all reached states belong to \(I_{TR}\).

Remark. Some researchers [23], [25] have a stronger definition
for the notion of invariant, where in addition to closure
a program must meet its specifications from its
invariant. Since in the problem of synthesizing self-stabi-
ilization (Problem 4.1) we have a constraint of preserving
specifications in invariant, we have a more relaxed defini-
tion of invariant where only closure is required. We also
note that a program may have multiple invariants,
however, ideally we would like to use the weakest possi-
ble invariant.

Convergence and Self-Stabilization. A protocol \(p\) strongly
converges to \(I\) iff from any state in \(S_p\), every computation of \(p\)
reaches a state in \(I\). A protocol \(p\) weakly converges to \(I\) iff from
any state in \(S_p\) there is a computation of \(p\) that reaches
a state in \(I\). We say a protocol \(p\) is strongly (respectively,
weakly) self-stabilizing to \(I\) iff \(I\) is closed in \(p\) and \(p\) is
strongly (respectively, weakly) converging to \(I\). For ease of
presentation, we drop the term “strongly” wherever we
refer to strong stabilization.

4 Problem Statement

In this section, we formally state the problem of creating a
self-stabilizing puppet protocol from a specified shadow
protocol. Let \(p\) be a non-stabilizing protocol and \(I\) be an
invariant of \(p\). We manually expand the state space of \(p\) by
including new variables. Such puppet variables provide
computational redundancy in the hopes of giving the proto-
col sufficient information to detect and correct illegitimate
states without forming livelocks. Our experience shows that
better performance can be achieved if variables with small
domains are included initially. If the synthesis fails, then
designers can incrementally increase variable domains or
include additional puppet variables. This way designers can
manage the growth of the state space and keep the syn-
thesis time/space costs under control.

Now, let \(p'\) denote the self-stabilizing version of \(p\) that we
would like to design and \(I'\) represent an invariant. \(S_{p'}\)
denotes the state space of \(p'\); i.e., the state space of \(p\)
expanded by adding puppet variables. Such an expansion
can be reversed by a function \(H : S_{p'} \rightarrow S_p\) that maps every
state in \(S_{p'}\) to a state in \(S_p\) by removing the puppet variables.
The expansion itself is expressed as a one-to-many mapping
\(E : S_p \rightarrow S_{p'}\) that maps each state \(s \in S_p\) to a set of states
\(\{s' | s' \in S_{p'} \land H(s') = s\}.\) Observe that \(H\) and \(E\) can also be
applied to transitions of \(p\) and \(p'\). That is, the function \(H\)
maps each transition \((s_0, s_1)\), where \(s_0, s_1 \in S_{p'}\), to a trans-
ition \((s_0, s_1)\), where \(s_0, s_1 \in S_p\). Moreover, \(E((s_0, s_1)) =
\{(s_0, s_1) | s_0 \in S_{p'} \land s_1 \in S_p \land H((s_0, s_1)) = (s_0, s_1)\}.
Furthermore, each computation (respectively, computation prefix)
of \(p'\) in the new state space \(S_{p'}\) can be mapped to a computa-
tion (respectively, computation prefix) in the old state space
\(S_p\) using \(H\). Our objective is to design a protocol \(p'\) that is
self-stabilizing to \(I'\) when transient faults occur. That is,
from any state in \(S_{p'}\), protocol \(p'\) must converge to \(I'\). In
the absence of faults, \(p'\) must behave similar to \(p\). Thus, each
computation of \(p'\) that starts in \(I'\) must be mapped to a
unique computation of \(p\) starting in \(I\). We state the problem
as follows: \((\text{The function } \text{Pre}(\delta) \text{ takes a set of transitions } \delta
\text{ and returns the source states of } \delta)\)

- Input: A protocol \(p\) and an invariant \(I\), the function \(H\)
 and the mapping \(E\) capturing the impact of puppet variables.
- Output: A protocol \(p'\) and an invariant \(I'\) in \(S_{p'}\).
- Constraints:
 1) Preserve the invariant:
 \(I = H(I')\)
 2) Preserve transitions in the invariant:
 \(\{(\delta_p[I] = H(\delta_{p'}[I']) \land \{(s, s) | s \in I') \})\)
 \(\land \forall (s', s') \in \delta_{p'} : (s' \in I' \rightarrow s' \in I')\)
 3) Preserve deadlock freedom in the invariant:
 \(\forall s \in \text{Pre}(\delta_{p'}[I]) : \text{Pre}(\delta_{p'}[I'], (s)) \text{ is cycle-free}\)
 4) Preserve progress in the invariant:
 \(\forall s \in \text{Pre}(\delta_{p'}[I]) : \delta_{p'}[I']\text{Pre}(\delta_{p'}[I'), (s)) \text{ is cycle-free}\)
 5') strongly converges to \(I'\)

The first constraint requires that no states are added/
removed to/from \(I\); i.e., \(I = H(I')\). The second constraint
requires that each transition of the shadow protocol \(\delta_p[I]\)
is represented by some transitions in \(\delta_{p'}[I']\), and all other
transitions in \(\delta_{p'}\) originating from \(I'\) remain in \(I'\) and do not
change shadow values. The third and fourth constraints
require that non-silent states (i.e., where a process is
enabled) of \(p\) in \(I\) should remain deadlock-free and livelock-
free in \(p'\) in order to ensure progress to a state with different
shadow values. Finally, \(p'\) must be livelock-free and dead-
lock-free in \(\neg I'\).

1. This problem statement is an adaptation of the problem of adding
fault tolerance in [25].
Example 4.2. 4-State Token Ring.

Keeping with the idea of superposition from [20] for the sake of example, we can specify a token ring using a non-stabilizing 2-state token ring. Each process \(P_i \) owns a binary variable \(t_i \) and can read \(t_{i-1} \). The first process \(P_0 \) is distinguished as \(Bot \), in that it acts differently from the others. \(Bot \) has a token when \(t_{N-1} = t_0 \) and each other process \(P_{i>0} \) is said to have a token when \(t_{i-1} \neq t_i. \) \(Bot \) has action \((t_{N-1} = t_0 \rightarrow t_0 \leftarrow 1 - t_0) \), and each other process \(P_{i>0} \) has action \((t_{i-1} \neq t_i \rightarrow t_i := t_{i-1}); \). Let \(I \) denote the legitimate states where exactly one process has a token

\[
I = \exists i \in \mathbb{Z}_N: ((i = 0 \land t_{i-1} = t_i) \lor (i \neq 0 \land t_{i-1} \neq t_i))
\]

To transform this protocol to a self-stabilizing version thereof, we add a binary puppet variable \(x_i \) to each process \(P_i \). Each process \(P_i \) can also read its predecessor’s variable \(x_{i-1} \). Let \(I' = \mathcal{E}(I) \) be the invariant of this transformed protocol. Let the new protocol \(p' \) have the following actions for \(Bot \) and the other processes \(P_{i>0} \):

\[
Bot: (x_{N-1} = x_0) \land (t_{N-1} \neq t_0) \rightarrow x_0 := 1 - x_0;
\]

\[
Bot: (x_{N-1} = x_0) \land (t_{N-1} = t_0) \rightarrow x_0 := 1 - x_0; \quad t_0 := x_{N-1};
\]

\[
P_i: (x_{i-1} \neq x_i) \land (t_{i-1} = t_i) \rightarrow x_i := 1 - x_i;
\]

\[
P_i: (x_{i-1} \neq x_i) \land (t_{i-1} \neq t_i) \rightarrow x_i := 1 - x_i; \quad t_i := x_{i-1};
\]

This protocol is stabilizing for all rings of size \(N \in \{2, \ldots , 7\} \) but contains a livelock when \(N = 8 \). In [20], we found that this topology and shadow protocol, no self-stabilizing protocol exists for all \(N \in \{2, \ldots , 8\} \). Gouda and Haddix [4] give a similar token ring protocol that stabilizes for all ring sizes. They introduce another binary variable \(\text{ready}_i \) to each process.

Let us check that the superposition preserves the 2-state token ring protocol for a ring of size \(N = 3 \). Fig. 2 shows the transition system of the non-stabilizing 2-state protocol \(p \) within \(I \) and stabilizing 4-state protocol \(p' \), where each state is a node and each arc is a transition. Legitimate states are boxed and reoccurring transitions within these states are black. Recovery transitions are drawn with dashed gray lines. Solid gray lines denote transitions within our maximal choice of \(I' \) but would serve as recovery transitions for smaller choices of \(I' \). Verifying the conditions from Problem 4.1, we find: (1) \(I = \mathcal{H}(I') \) is true since \(I' = \mathcal{E}(I) \), (2) the shadow protocol is preserved since there exists a transition of \(p' \) that changes rows if a similar transition exists in the 2-state protocol \(p \), (3) no deadlocks are introduced in the invariant since all states in the boxed rows have outgoing transitions, (4) progress is preserved in the invariant since there are no cycles in any of the boxed rows of \(p' \), and (5) convergence from \(I' \) to \(I' \) holds since there are no livelocks or deadlocks in \(I' \).

\textbf{Shadow/Puppet versus superposition.} Compare the shadow/puppet method (Section 2) with the superposition method (Example 4.2) when used to specify a token ring’s invariant and behavior. In the shadow specification of Section 2, each \(tok_i \) variable denotes whether a process has the token, and a token is passed by simply moving a 1 value forward to \(tok_{i+1} \). In the non-stabilizing protocol of Example 4.2, each \(t_i \) variable holds token information in a clever way resulting from a comparison with \(t_{i-1} \), and a token is passed by flipping the \(t_i \) bit. We see that in the case of superposition, a designer must have some foresight about how the \(t_i \) variables can be manipulated in a stabilizing protocol. By contrast, the shadow/puppet method gives a designer freedom to define token passing with the \(tok_i \) shadow variables without constraining the specific actions of the synthesized protocol \(p' \). It is therefore not surprising that shadow/puppet synthesis can find protocols that cannot be reasonably expressed with superposition (Section 6).

In Protocon, the two methods differ only by whether the variables used to specify the invariant are marked with the \textit{shadow} keyword or not. In the case that shadow variables exist, our synthesis method treats them as write-only when constructing \(p' \). When the shadow protocol is silent (i.e., has no actions in its invariant), processes should know the final values of their writable shadow variables. Self-loops are a trivial consequence of this and must be ignored for actions that only assign shadow variables (e.g., Section 6.1). When the shadow protocol is non-silent, processes should know when they are performing shadow actions, but they should also be able to act without affecting the shadow state (i.e., shadow self-loops). Thus, the minimal actions we use must allow shadow variables to not be assigned (e.g., Section 6.3).

\textbf{Deterministic, self-disabling processes.} Theorems 4.3 and 4.4 below show that the assumptions of deterministic and self-disabling processes do not impact the completeness of any algorithm that solves Problem 4.1. In general, convergence is achieved by collaborative actions of all processes. That is, each process partially contributes to the correction of the global state of a protocol. As such, starting at a state \(s_0 \in \sim I \), a single process may not be able to recover the entire system single-handedly. Thus, even if a process executes
consecutive actions starting at \(s_0 \), it will reach a local deadlock from where other processes can continue their execution towards converging to \(I \). The execution of consecutive actions of a process can be replaced by a single write action of the same process. As such, we assume that once a process executes an action it will be disabled until the actions of other processes enable it again. That is, processes are self-disabling.

Theorem 4.3. Let \(p \) be a non-stabilizing protocol with invariant \(I \). There is an SS version of \(p \) to \(I \) iff there is an SS version of \(p \) to \(I \) with self-disabling processes.

Proof. The proof of right to left is straightforward, hence omitted. The proof of left to right is as follows. Let \(p_{ss} \) be an SS version of \(p \) to \(I \), and \(P_I \) be a process of \(p_{ss} \). Consider a computation prefix \(\sigma = (s_0, s_1, \ldots, s_m) \), where \(m > 0 \), \(\forall i : 0 \leq i \leq m : s_i \not\in I \), and all transitions in \(\sigma \) belong to \(P_I \). Moreover, we assume that \(P_I \) becomes disabled at \(s_m \). Now, we replace each transition \((s_i, s_{i+1}) \in \sigma (0 \leq i < m)\) by a transition \((s_i, s_0)\). Such a revision will not generate any deadlock states in \(-I\). Moreover, if the inclusion of a transition \((s_i, s_0)\), where \(0 \leq i < m - 1 \), forms a non-progress cycle, then this cycle must have been already there in the protocol because a path from \(s_i \) to \(s_m \) already existed. Thus, this change does not introduce new livelocks in \(\delta_p \mid -I \).

Theorem 4.4. Let \(p \) be a non-stabilizing protocol with invariant \(I \). There is an SS version of \(p \) to \(I \) iff there is an SS version of \(p \) to \(I \) with deterministic processes.

Proof. Any SS protocol with deterministic processes is an acceptable solution to Problem 4.1; hence the proof of right to left. Let \(p_{ss} \) be an SS version of \(p \) to \(I \) with nondeterministic but self-disabling processes. Moreover, let \(P_I \) be a self-disabling process of \(p_{ss} \) with two nondeterministic actions \(A \) and \(B \) originated at a global state \(s_0 \not\in I \), where \(A \) takes the state of \(p_{ss} \) to \(s_1 \) and \(B \) puts \(p_{ss} \) in a different state \(s_2 \). The following argument does not depend on \(s_1 \) and \(s_2 \) because by the self-disablement assumption, if \(s_1 \) and \(s_2 \) are in \(-I\), then there must be a different process other than \(P_I \) that executes from there. Otherwise, the transitions \((s_0, s_1)\) and \((s_0, s_2)\) recover \(p_{ss} \) to \(I \).

The state \(s_0 \) identifies an equivalence class of global states. Let \(s'_0 \) be a state in the equivalence class. The local state of \(P_I \) is identical in \(s_0 \) and \(s'_0 \), and the part of \(s_0 \) (and \(s'_0 \)) that is unreadable to \(P_I \) could vary among all possible valuations. As such, corresponding to \((s_0, s_1)\) and \((s_0, s_2)\), we have transitions \((s'_0, s'_1)\) and \((s'_0, s'_2)\). To enforce determinism, we remove the action \(B \) from \(P_I \). Such removal of \(B \) will not make \(s_0 \) and \(s'_0 \) deadlocked. Since \(s'_0 \) is an arbitrary state in the equivalence class, it follows that no deadlocks are created in \(-I\). Moreover, removal of transitions cannot create livelocks. Therefore, the self-stabilization property of \(p_{ss} \) is preserved in the resulting deterministic protocol after the removal of \(B \).

5 Synthesis Using Backtracking

In [3], we have shown that Problem 4.1 is an NP-complete problem in the size of the expanded state space. In this section, we present an efficient and complete backtracking search algorithm to solve Problem 4.1. Backtracking search is a well-studied technique [26] that is easy to implement and can give very good results. Throughout this section, we use “actions” and “minimal actions” interchangeably (unless otherwise stated). Section 5.1 provides a high-level description of the algorithm, and Section 5.2 presents the details of the algorithm. Section 5.3 presents an intelligent method for the inclusion of new actions in candidate solutions. Finally, Section 5.4 discusses some issues related to the optimization of the proposed algorithm.

5.1 Overview of the Search Algorithm

Like any other backtracking search, our algorithm incrementally builds upon a guess, or a partial solution, until it either finds a complete solution or finds that the guess is inconsistent. We decompose the partial solution into two pieces: (1) an under-approximation formed by making well-defined decisions about the form of a solution, and (2) an over-approximation that is the set of remaining possible solutions (given the current under-approximation).

In a standard constraint satisfaction problem, a backtracking search builds upon a partial assignment to problem variables. The partial assignment is inconsistent in two cases: (i) the constraints upon assigned variables are broken (i.e., the under-approximation causes a conflict), and/or (ii) the constraints cannot be satisfied by the remaining variable assignments (i.e., the over-approximation cannot contain a solution).

Each time a choice is made to build upon the under-approximation, the current partial solution is saved at decision level \(j \) and a copy that incorporates the new choice is placed at level \(j + 1 \). If the guess at level \(j + 1 \) is inconsistent, we move back to level \(j \) and discard the choice that brought us to level \(j + 1 \). If the guess at level \(0 \) is found to be inconsistent, then enough guesses have been tested to determine that no solution exists.

In the context of our work, we apply a backtracking search in the space of all valid minimal actions that can be included in a solution. Specifically, we use a set of actions, called \(\text{delegates} \), that plays the role of the under-approximation, and another set of actions, called \(\text{candidates} \), that contains the remaining actions to potentially include in \(\text{delegates} \). Thus, the set \(\{\text{delegates} \cup \text{candidates}\} \) constitutes the over-approximation.

Fig. 3 illustrates an abstract flowchart of the proposed backtracking algorithm. We start with the non-stabilizing protocol \(p \), its invariant \(I \) (which is closed in \(p \)), the topology of \(p' \), and the mappings to \(\{E\} \) and from \(\{H\} \) its expanded state space. The algorithm in Fig. 3 starts by computing all valid candidate actions (in the expanded state space) that adhere to the read/write permissions of all processes. The initial value of \(\text{delegates} \) is often the empty set unless there are specific actions that must be in the solution (e.g., to ensure the reachability of particular states). The algorithm in Fig. 3 then calls \(\text{ReviseActions} \) to remove self-loops from \(\text{candidates} \) (since they violate convergence), and checks for inconsistencies in the partial solution. The designer may give additional constraints that forbid certain actions.

In general, \(\text{ReviseActions} \) (see the bottom dashed box in Fig. 3) is invoked whenever we strengthen the partial solution by adding to the under-approximation or removing from the over-approximation. It may further remove from
computes the largest possible invariant I candidates from S and check their eligibility for inclusion in the
adds.

AddStabilizationRec makes a recursive call to itself, using the copied partial solution for the next decision level. If the copied partial solution is found to be inconsistent (either by a call to ReviseActions or by the exhaustive search in the call to AddStabilizationRec), then we remove action A from candidates using ReviseActions. If after removal of A the partial solution is consistent, then we continue in the loop. Otherwise, we backtrack since no stabilizing protocol exists with the current under-approximation.

5.2 Details of the Algorithm

This section presents the details of the proposed backtracking method. Notice that we assume that the input to this algorithm is a non-stabilizing shadow protocol already superposed with some new finite-domain puppet variables. Misusing C/C++ notation, we prefix a function parameter with an ampersand ($) if modifications to it will affect its value in the caller’s scope (i.e., it is a return parameter).

AddStabilization. Algorithm 1 is the entry point of our backtracking algorithm. The AddStabilization function returns true iff a self-stabilizing protocol is found which will then be formed by the actions in delegates. Initially, the function determines all possible candidate minimal actions. Next, the function determines which actions are explicitly required (Line 2) or disallowed by additional constraints (Line 4). We invoke ReviseActions to include adds in the under-approximation and remove dels from the over-approximation on Line 6. If the resulting partial solution is consistent, then the recursive version of this function (AddStabilizationRec) is called. Otherwise, a solution does not exist.

Algorithm 1. Entry Point of the Backtracking Algorithm for Solving Problem 4.1

```plaintext
AddStabilization($p$: protocol, $I$: state predicate, $E$: mapping $S_p \rightarrow S_p$, $\&$delegates: protocol actions, forbidden: forbidden actions)
Output: Return true when a solution delegates can be found. Otherwise, false.
1: let candidates be the set of all minimal actions that can be included in a stabilizing protocol.
2: let adds := delegates [Forced actions, if any]
3: delegates := \{
4: let dels := candidates $\&$ forbidden
5: let $I'$ := \{
6: if not ReviseActions($p$, $I$, $E$, $\&$delegates, $\&$candidates, $\&$dels) then
7: return false
8: end if
9: return AddStabilizationRec($p$, $I$, $E$, $\&$delegates, candidates, $I'$)
```

AddStabilizationRec. Algorithm 2 defines the main recursive search. Like AddStabilization, it returns true iff a self-stabilizing protocol is found that is formed by the actions in delegates. This function continuously adds candidate
actions to the under-approximation delegates as long as candidate actions exist. If no candidates remain, then delegates and the over-approximation delegates ∪ candidates of the protocol are identical. If ReviseActions does not find anything wrong, then delegates is self-stabilizing, hence the successful return on Line 16.

Algorithm 2. Recursive Backtracking Function to Add Stabilization

AddStabilizationRec(p, I, E, &delegates,
candidates, I')

Output: Return true if delegates contains the solution. Otherwise, return false.
1: while candidates ≠ ∅ do
2: let A := PickAction(p, E, delegates,
3: next_delegates := delegates
4: next_candidates := candidates
5: let I' := ∅
6: if ReviseActions(p, I, E, &next_delegates,
7: &next_candidates, &I', (A), ∅) then
8: delegates := next_delegates {Assign the actions to
9: return true
10: end if
11: end if
12: if not ReviseActions(p, I, E, &delegates,
13: &candidates, &I', ∅, (A)) then
14: return false
15: end if
16: end while
17: return true

On Line 2 of AddStabilizationRec, a candidate action A is chosen by calling PickAction (Algorithm 4). Any candidate action may be picked without affecting the search algorithm’s correctness, but the next section explains a heuristic we use to pick certain candidate actions over others to improve search efficiency. After picking an action, we copy the current partial solution into next_delegates and next_candidates, and add the action A on Line 6. If the resulting partial solution is consistent, then we recurse by calling AddStabilizationRec. If that recursive call finds a self-stabilizing protocol, then it will store its actions in delegates and return successfully. Otherwise, if action A does not yield a solution, we will remove it from the candidates on Line 12. If this removal creates a non-stabilizing protocol, then return failure; otherwise, continue the loop.

ReviseActions. Algorithm 3 is a key component of the backtracking search. ReviseActions performs five tasks: it (1) adds actions to the under-approximated protocol by moving the adds set from candidates to delegates; (2) removes forbidden actions from the over-approximated protocol by removing the dels set from candidates; (3) enforces self-disabling (Theorem 4.3) and determinism (Theorem 4.4) which results in removing more actions from the over-approximated protocol; (4) computes the maximal invariant I' and transitions (δp|I') in the expanded state space to satisfy Constraints 2–4 of Problem 4.1 given the current under/over-approximations, and (5) verifies Constraints 1 and 5 of Problem 4.1 by ensuring the invariant I' captures all of I, the under-approximation is livelock-free in ~I', and the over-approximation weakly converges to I'. If the check fails, then ReviseActions returns false. Finally, ReviseActions invokes the CheckForward function to infer actions that must be added to the under-approximation or removed from the over-approximation, and will return false only if it infers that the current partial solution cannot be used to form a self-stabilizing protocol. A trivial version of CheckForward can just return true.

Algorithm 3. Add Adds to the Under-approximation and Remove dels from the Over-approximation

ReviseActions(p, I, E, &delegates,
&I', adds, dels)
Output: Return true if adds can be added to delegates and dels can be removed from candidates, and I' can be revised accordingly. Otherwise, return false.
1: delegates := delegates ∪ adds
2: candidates := candidates \ adds
3: for A ∈ adds do
4: Add each action B ∈ candidates to dels if it belongs to the same process as A and satisfies one of the following conditions:
 • A enables B (enforce self-disabling process)
 • B enables A (enforce self-disabling process)
 • A and B are enabled at the same time (enforce determinism)
 {Find candidate actions that are now trivially unnecessary for stabilization}
5: if all checks pass then
6: candidates := candidates \ dels
7: Compute the maximal I' and (δp|I') such that:
 • I' ⊆ E(I)
 • (δp|I') transitions can be formed by actions in delegates ∪ candidates
 • All transitions of delegates beginning in I' are included in (δp|I')
 • Constraints 2, 3, and 4 of Problem 4.1 hold
8: Check Constraints 1 and 5 of Problem 4.1:
 • I = Η(I')
 • The protocol formed by delegates is livelock-free in ~I'
 • Every state in ~I' has a computation prefix by transitions of delegates ∪ candidates that reaches some state in I'
9: if all checks pass then
10: adds := ∅
11: dels := ∅
12: if CheckForward(p, I, E, delegates,
13: candidates, I', adds, dels) then
14: return ReviseActions(p, I, E, &delegates,
15: &candidates, &I', adds, dels)
16: return true
17: end if
18: end if
19: return false
A good ReviseActions implementation should provide early detection for when delegates and candidates cannot be used to form a self-stabilizing protocol. At the same time, since the function is called whenever converting candidates to delegates or removing candidates, it cannot have a high cost. Thus, we ensure that actions in delegates do not form a livelock and that actions in delegates ∪ candidates provide weak stabilization.

A good CheckForward implementation should at least remove candidate actions that are not needed to resolve deadlocks. This can be performed quickly and allows the AddStabilizationRec function to immediately return a solution when all deadlocks are resolved.

Theorem 5.1 (Completeness). The AddStabilization algorithm is complete.

Proof. We show that if AddStabilization returns false, then no solution exists. Since each candidate action is minimal and we consider all such actions as candidates, a subset of the candidate actions would form a self-stabilizing protocol iff such a protocol exists. Observe that AddStabilizationRec follows the standard backtracking [27] procedure where we (1) add a candidate action to the under-approximation in a new decision level, and (2) backtrack and remove that action from the candidates if an inconsistency (which cannot be fixed by adding to the under-approximation) is discovered by ReviseActions at that new decision level. Even though ReviseActions removes candidate actions in order to enforce deterministic and self-disabling processes, we know by Theorems 4.4 and 4.3 that this will not affect the existence of a self-stabilizing protocol. Thus, since we follow the general template of backtracking [27], the search will test every consistent subset of the initial set of candidate actions where processes are deterministic and self-disabling. Therefore, if our search fails, then no solution exists. □

Theorem 5.2 (Soundness). The AddStabilization algorithm is sound.

Proof. We show that if AddStabilization returns true, then it has found a self-stabilizing protocol formed by the actions in delegates. Notice that when AddStabilizationRec returns true, the AddStabilization or AddStabilizationRec function that called it simply returns true with the same delegates set. The only other case where AddStabilization returns true is when candidates is empty in AddStabilizationRec (Line 16). Notice that to get to this point, ReviseActions must have been called and must have returned true after emptying the candidates set and verifying the Constraints of Problem 4.1 on Line 8. Therefore, when AddStabilization returns true the actions of delegates form a self-stabilizing protocol. □

5.3 Picking Actions via the Minimum Remaining Values Method

The worst-case complexity of a depth-first backtracking search is determined by the branching factor b and depth d of its decision tree, evaluating to $O(b^d)$. We can tackle this complexity by reducing the branching factor. To do this, we use a minimum remaining values (MRV) method in PickAction. MRV is classically applied to constraint satisfaction problems [26] by assigning a value to a variable that has the minimal remaining candidate values. In our setting, we pick an action that resolves a deadlock with the minimal number of remaining actions available to resolve it.

Algorithm 4. Pick an Action Using the Minimum Remaining Values (MRV) Method

PickAction(p, E, delegates, candidates, I')

Output: Next candidate action to pick.

1: let deadlock_sets be a single-element array, where deadlock_sets[0] holds a set of deadlocks in $\neg I' \cup E(\text{Pre}(\delta_i))$ that actions in delegates do not resolve.
2: for all action \in candidates do
3: let $i := |\text{deadlock_sets}|$
4: while $i > 0$ do
5: $i := i - 1$
6: let resolved := deadlock_sets[i]
7: $\cap \text{Pre(action)}$
8: if resolved $\neq \emptyset$ then
9: if $i = |\text{deadlock_sets}| - 1$ then
10: let deadlock_sets[$i + 1$] := \emptyset (Grow array by one element)
11: deadlock_sets[i] := deadlock_sets[i] \ resolved
12: deadlock_sets[$i + 1$] := deadlock_sets[$i + 1$] \ resolved
13: end if
14: end while
15: end for
16: for $i = 1, \ldots, |\text{deadlock_sets}| - 1$ do
17: if deadlock_sets[i] $\neq \emptyset$ then
18: return An action from candidates that resolves a deadlock in deadlock_sets[i].
19: end if
20: end for
21: return An action from candidates. (Edge case)

Algorithm 4 shows the details of PickAction that keeps an array deadlock_sets, where each element deadlock_sets[i] contains all the deadlocks that are resolved by exactly i candidate actions. We initially start with array size $|\text{deadlock_sets}| = 1$ and with deadlock_sets[0] containing all unresolved deadlocks. We then shift deadlocks to the next highest element in the array (bubbling up) for each candidate action that resolves them. After building the array, we find the lowest index i for which the deadlock set deadlock_sets[i] is nonempty, and then return an action that can resolve some deadlock in that set. Line 21 can only be reached if either the remaining deadlocks cannot be resolved (but ReviseActions catches this earlier) or all deadlocks are resolved (but CheckForward can catch this earlier).

5.4 Optimizing the decision tree

This section presents the techniques that we use to improve the efficiency of our backtracking algorithm.

Conflicts. Every time a new candidate action is included in delegates, ReviseActions checks for inconsistencies, which involves cycle detection and reachability analysis. These procedures become very costly as the complexity of
the transition system grows. To mitigate this problem, whenever an inconsistency is found, we record a minimal set of decisions (subset of delegates) that causes it. We reference these conflict sets [26] in CheckForward to remove candidate actions that would cause an inconsistency.

Randomization and restarts. When using the standard control flow of a depth-first search, a bad choice near the top of the decision tree can lead to infeasible runtime. This is the case since the bad decision exists in the partial solution until the search backtracks up the tree sufficiently to change the decision. To limit the search time in these branches, we employ a method outlined by Gomes et al. [28] that combines randomization with restarts. In short, we limit the amount of backtracking to a certain height (we use 3). If the search backtracks past the height limit, it forgets the current decision tree and restarts from the root. To avoid trying the same unfruitful decisions after a restart, PickAction randomly selects a candidate action permissible by the MRV method. This approach remains complete since a conflict is recorded for any set of decisions that causes a restart.

Parallel search. In order to increase the chance of finding a solution, we instantiate several parallel executions of the algorithm in Fig. 3; i.e., search diversification. As noted in [28], parallel tasks will generally avoid overlapping computations due to the randomization used in PickAction. We have observed linear speedup when the search tasks are expected to restart several times before finding a solution [19]. The parallel tasks share conflicts with each other to prevent the re-exploration of branches that contain no solutions. In our MPI implementation, conflict dissemination occurs between tasks using a virtual network topology formed by a generalized Kautz graph [21] of degree 4. This topology has a diameter logarithmic in the number of nodes and is fault-tolerant in that multiple paths between two nodes ensure message delivery. That is, even if some nodes are performing costly cycle detection and do not check for incoming messages, they will not slow the dissemination of new conflicts.

Table 1

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Procs</th>
<th>Shadow Self-Loops</th>
<th>MPI Procs</th>
<th>Compute Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-State Maximal Matching</td>
<td>2–7</td>
<td>Forbidden</td>
<td>1</td>
<td>0.54 secs</td>
</tr>
<tr>
<td>4-State Token Ring*</td>
<td>2–8</td>
<td>Forbidden</td>
<td>4</td>
<td>1.50 hrs</td>
</tr>
<tr>
<td>3-State Token Ring</td>
<td>2–9</td>
<td>Forbidden</td>
<td>4</td>
<td>23.75 mins</td>
</tr>
<tr>
<td>3-State Token Chain*</td>
<td>2–5</td>
<td>Forbidden</td>
<td>4</td>
<td>5.29 secs</td>
</tr>
<tr>
<td>3-State Token Chain [1]</td>
<td>2–4</td>
<td>Allowed</td>
<td>4</td>
<td>48.93 secs</td>
</tr>
<tr>
<td>4-State Token Chain [1]</td>
<td>2–4</td>
<td>Allowed</td>
<td>4</td>
<td>10.11 secs</td>
</tr>
<tr>
<td>3-State Token Ring [1]</td>
<td>2–5</td>
<td>Forbidden</td>
<td>4</td>
<td>1.14 mins</td>
</tr>
<tr>
<td>3-State Token Ring [1]</td>
<td>2–5</td>
<td>Allowed</td>
<td>4</td>
<td>1.07 mins</td>
</tr>
<tr>
<td>3-State Token Ring [1]</td>
<td>2–5</td>
<td>Allowed</td>
<td>4</td>
<td>5.22 mins</td>
</tr>
</tbody>
</table>

* No protocol is found to stabilize for all system sizes under consideration.

Fig. 4. Synthesis runtimes for case studies.

6 Case Studies

In this section, we look for exact lower bounds for constant-space maximal matching and token passing protocols using shadow/puppet synthesis. Section 6.1 presents an intuitive way to synthesize maximal matching with shadow variables. Section 6.2 explores the unidirectional token ring with a distinguished process. Section 6.3 explores bidirectional token passing protocols. Each section gives a new self-stabilizing protocol that we conjecture uses the minimal number of states per process to achieve stabilization.

Fig. 4 provides the synthesis runtimes of all case studies. The Procs column indicates the system sizes (numbers of processes) that are simultaneously considered during synthesis. For example, the maximal matching case shows 2–7, which means that we are resolving deadlocks without introducing livelocks for 5 different systems of various sizes. These ranges are chosen to increase the chance of synthesizing a generalizable protocol. The Shadow Self-Loops column indicates whether actions within the \(\delta' \) invariant may leave shadow variables unchanged. This is achieved by modifying Line 7 of Algorithm 3 to enforce that \((\delta'_p \delta') \subseteq \mathcal{E}(\delta_p) \); forbidding these actions makes every action of a token passing protocol actually pass a token. The MPI Procs column indicates the number of MPI processes used for synthesis.

6.1 2-State Maximal Matching on a Ring

A matching for a graph is a set of edges that do not share any common vertices. A matching is maximal iff adding any new edge would violate the matching property. In a ring, a set of edges is a matching as long as at least 1 of every 2 consecutive edges is excluded from the set. For the set to be a maximal matching, at least 1 out of every 3 consecutive edges must be included. To see that the matching is maximal, consider selecting another edge to create a new matching. The edge itself cannot be in the current matching nor can either of the two adjacent edges, but we have already enforced that one of those three is selected, therefore the new edge cannot be added!

To specify this problem, use a binary shadow variable \(e_i \) to denote whether the edge between adjacent processes \(P_{i-1} \) and \(P_i \) is in the matching \(e_i = 1 \) means to include the edge, otherwise exclude the edge). The invariant is therefore the states where at least 1 of every 3 consecutive \(e \) values equals 1, but at least 1 of every 2 consecutive \(e \) values equals 0

\[
I = \forall i \in \mathbb{Z}_N : (e_{i-1} = 1 \lor e_i = 1 \lor e_{i+1} = 1) \land (e_i = 0 \lor e_{i+1} = 0).
\]

We would like processes to determine whether their neighboring links are included in a matching, therefore we give each \(P_i \) write access to \(e_i \) and \(e_{i+1} \). Each \(e_i \) is a shadow variable since it exists only for specification, therefore processes have write-only access. Since a matching should not change, there are no shadow actions; i.e., silent stabilization. We give each process \(P_i \) a binary puppet variable \(x_i \) to read and write along with read access to the \(x_{i-1} \) and \(x_{i+1} \) variables of its neighbors in the ring. We only are guessing that an \(x \) domain size of 2 is large enough to achieve stabilization and represent \((e_i, e_{i+1}) \) values with \((x_{i-1}, x_i, x_{i+1}) \) values in some way. Synthesis gives the following protocol, which we believe to be generalizable after verification of rings up to size \(N = 100 \). Notice that the \(e \) values are fully determined based on the \(x \) values.

\[
P_i : x_{i-1} = 1 \land x_i = 1 \land x_{i+1} = 1 \longrightarrow e_i = 1 ; x_i = 0 ; e_{i+1} = 0 ;
P_i : x_{i-1} = 0 \land x_i = 1 \land x_{i+1} = 1 \longrightarrow e_i = 0 ; x_i = 0 ; e_{i+1} = 0 ;
P_i : x_{i-1} = 0 \land x_i = 0 \land x_{i+1} = 0 \longrightarrow e_i = 0 ; x_i = 1 ; e_{i+1} = 1 ;
P_i : x_{i-1} = 1 \land x_i = 0 \longrightarrow e_i = 1 ; e_{i+1} = 1 ;
P_i : x_{i-1} = 0 \land x_i = 0 \land x_{i+1} = 1 \longrightarrow e_i = 0 ; e_{i+1} = 0 ;
P_i : x_{i-1} = 0 \land x_i = 1 \land x_{i+1} = 0 \longrightarrow e_i = 0 ; e_{i+1} = 1 ;
\]
An implementation of this protocol consists only of puppet variables, and therefore discards the e variables. Of the 6 actions above, only the first 3 modify x values. From these 3, we discard the e variables and combine the first 2 actions. This leaves us with the puppet protocol that would be used for implementation, where each P_i has the following actions:

$$
P_i : \begin{array}{l}
x_i = 1 \land x_{i+1} = 1 \rightarrow x_i := 0; \\
x_{i-1} = 0 \land x_i = 0 \land x_{i+1} = 0 \rightarrow x_i := 1;
\end{array}
$$

Further, we can derive the meaning of the puppet variables by observing how the value of (e_i, e_{i+1}) is assigned for each particular value of (x_{i-1}, x_i, x_{i+1}). We could do this by observing all 6 actions, but we only need to observe the first 3 since they subsume the last 3. The last 3 actions respectively assign $(1, 0)$, $(0, 0)$, and $(0, 1)$ to (e_i, e_{i+1}) to denote that P_i is matched with (i) P_{i-1}, (ii) nothing, and (iii) P_{i+1}. We use (x_{i-1}, x_i, x_{i+1}) values to represent these cases

$$
x_{i-1} = 1 \land x_i = 0 \quad (P_i \text{ matched with } P_{i-1})
$$

$$
x_{i-1} = 0 \land x_i = 0 \land x_{i+1} = 1 \quad (P_i \text{ not matched})
$$

$$
x_{i-1} = 0 \land x_i = 1 \land x_{i+1} = 0 \quad (P_i \text{ matched with } P_{i+1})
$$

6.2 5-State Unidirectional Token Ring

In the token ring shadow specification in Section 2, each process P_i is given a binary shadow variable tok_i that denotes whether the process has a token. The invariant is all states where exactly one token exists ($\exists i : tok_i = 1$), and each process should eventually pass the token within the invariant ($tok_i = 1 \rightarrow tok_{i+1} := 0 \land tok_{i+1} = 1$). For synthesis, we give each P_i a puppet variable x_i and also let it read x_{i-1}. Like in Dijkstra’s token ring, we distinguish P_i as Bot to allow its actions to differ from the other processes. We also force each action in the invariant to pass a token by forbidding shadow self-loops. With this restriction, we found that no protocol using 4 states per process is stabilizing for all rings of size $N \in \{2, 3, \ldots, 8\}$.

Using 5 states per process (i.e., each x_i has domain $\{0, 1, 2\}$), the synthesized protocol is not always generalizable, even when we synthesize for all rings of size $N \in \{2, 3, \ldots, 9\}$. However, we can increase our chances of finding a generalizable version by allowing the search to record many solutions and verify correctness for larger ring sizes. After sufficient synthesis-and-verify, we are left with the following protocol, which we think is generalizable after verification of rings up to size $N = 30$

$$
\begin{align*}
&P_{i-1} : x_{N-i} = 0 \land x_0 = 0 \rightarrow x_0 := 1; \\
&P_{i-1} : x_{N-i} = 1 \land x_0 \leq 1 \rightarrow x_0 := 2; \\
&P_{i-1} : x_{N-i} > 1 \land x_0 > 1 \rightarrow x_0 := 0; \\
&P_i : x_{i-1} = 0 \land x_i > 1 \rightarrow x_i := [x_i/4]; \\
&P_i : x_{i-1} = 1 \land x_i \neq 1 \rightarrow x_i := 1; \\
&P_i : x_{i-1} = 2 \land x_i \leq 1 \rightarrow x_i := 2 + x_i; \\
&P_i : x_{i-1} \geq 3 \land x_i \leq 1 \rightarrow x_i := 4; \\
\end{align*}
$$

For example, a process may act several times in the 3-bit token ring of Gouda and Haddix [4] without passing a token, but this protocol converges in fewer steps (faster) than our 5-state token ring. Dijkstra’s N-state token ring requires much more process memory, yet it converges in fewer steps than the 3-bit protocol while also ensuring that the token will be passed with every action (i.e., liveness).

6.3 3-State Token Chain

Rather than around a ring, we can also pass a token back-and-forth along a linear (chain) topology. Formally, the token passing behavior can be described by guarded commands. As with the ring, let there be N processes, where each process P_i has a binary shadow variable tok_i that denotes whether it has a token. Each process P_i can read and write tok_{i-1} when $i > 0$, and each P_i can read and write tok_{i+1} when $i < N - 1$. Additionally, all processes can read a binary shadow variable fwd that denotes the direction the token is moving (1 means up, 0 means down). That is, a process $P_{i-1} < i < N - 1$ passes the token to P_i when $fwd = 1$ and passes it to P_{i+1} when $fwd = 0$. The two end processes P_0 and P_{N-1} must behave differently than the others, therefore they are distinguished as Bot and Top respectively. Both Bot and Top can write fwd, and do assign it when they pass the token in order to change the direction of passing. The full shadow protocol is given by the following actions (where $0 < i < N - 1$):

$$
\begin{align*}
&P_{i} : tok_i = 1 \land fwd = 1 \rightarrow tok_i := 0; \\
&P_{i} : tok_i = 1 \land fwd = 0 \rightarrow tok_i := 1;
\end{align*}
$$

For synthesis, give each process a ternary puppet variable x_i. Each $P_{i} < i < N - 1$ can also read x_{i-1} and x_{i+1}. Likewise, Bot can read x_1 and Top can read x_{N-2}. One of the synthesized protocols is as follows, which we conjecture to be generalizable after verification of chains up to size $N = 30$

$$
\begin{align*}
&P_{i} : x_{i-1} = 1 \land x_i \neq 1 \rightarrow x_i := 1; \\
&P_{i} : x_{i-1} = 0 \land x_i = 0 \land x_{i+1} = 1 \rightarrow x_i := 0; \\
&P_{i} : x_{i-1} = 0 \land x_i = 0 \land x_{i+1} = 2 \rightarrow x_i := 2; \\
&Tops : x_{N-2} = 1 \land x_{N-1} = 1;
\end{align*}
$$

This protocol does not always pass the token within the invariant, however we found that no such protocol exists. As shown by Dijkstra [1], we can obtain a stabilizing protocol with this behavior by either using 4 states per process or allowing Bot and Top to communicate. Using the same shadow specification and the puppet topologies from [1], we synthesized 4-state token chains and 3-state token rings. Both cases appear to give generalizable protocols (verified up to $N = 15$), regardless of whether we force each action in the invariant to pass a token.

7 RELATED WORK AND DISCUSSION

This section discusses related work on manual and automated design of fault tolerance in general and
self-stabilization in particular. Manual methods are mainly based on the approach of design and verify, where one designs a fault-tolerant system and then verifies the correctness of (1) functional requirements in the absence of faults, and (2) fault tolerance requirements in the presence of faults. For example, Liu and Joseph [29] provide a method for augmenting fault-intolerant systems with a set of new actions that implement fault tolerant functionalities. Katz and Perry [30] present a general (but expensive) method for global snapshot and reset towards adding convergence to non-stabilizing systems. Varghese [31] and Afek et al. [32] provide a method based on local checking for global recovery of locally correctable protocols. Varghese [14] also proposes a counter flushing method for detection and correction of global predicates. Nesterenko and Tixeuil [16] employ a mapping to define all system states as legitimate state of an abstract specification. This effectively removes the need for convergence, but it is not always possible or may require human ingenuity in the specification. Chandy and Misra introduce variable superposition [33], where the functional concerns are specified on a set of variables, and extra implementation details are carried out using a set of superposed variables. Our work further decouples these two sets but uses their superposition as an implicit mapping.

Since it is unlikely that an efficient method exists for algorithmic design of self-stabilization [3], most existing techniques [5], [6], [7], [8], [34] are based on sound heuristics. For instance, Abujarad and Kulkarni [5], [6] present a heuristic for adding convergence to locally-correctable systems. Zhu and Kulkarni [34] give a genetic programming approach for the design of fault tolerance, using a fitness function to quantify how close a randomly-generated protocol is to being fault-tolerant. Farahat and Ebnenasir [7] provide a lightweight method for designing self-stabilization even for non-locally correctable protocols. They also devise [8] a swarm method for exploiting the computational power of computer clusters towards automated design of self-stabilization. While the swarm synthesis method inspires the proposed work in this paper, it has two limitations: it is incomplete and forbids any change in the invariant. Methods for automated design of fault tolerance [23], [35] have the option to make deadlock states unreachable. This is not an option in the addition of self-stabilization; recovery should be provided from any state in protocol state space.

8 Conclusions and Future Work

We presented a two-step method for automated design of self-stabilizing systems, called shadow/puppet synthesis. In the first step, designers provide a shadow specification consisting of a set of legitimate states, system topology and the expected system behaviors in the absence of faults. In the second step, we algorithmically generate a self-stabilizing system that accurately implements the behaviors in legitimate states and provides convergence to legitimate states in terms of some superposed variables, called the puppet system. Then, we use a parallel backtracking search to intelligently look for a self-stabilizing solution. We have implemented our approach and have automatically generated self-stabilizing protocols that none of the existing heuristics can generate (to the best of our knowledge). These protocols include token passing protocols on the topologies given by Dijkstra in [1], 2-state maximal matching, 5-state token ring, 3-state token chain, coloring on Kautz graphs, ring orientation, and leader election on a ring [19].

We are currently investigating several extensions of this work. First, we use theorem proving techniques to figure out why a synthesized protocol may not be generalizable. Then, we plan to incorporate the feedback received from theorem provers in our backtracking method. Another extension is to leverage the techniques used in SMT solvers and apply them in our backtracking search.

Acknowledgments

The authors would like to thank the anonymous referees for their valuable comments and suggestions. This work was sponsored in part by the NSF grant CCF-1116546. Superior, a high performance computing cluster at Michigan Technological University, was used in obtaining the experimental results presented in this paper.

References

Alex Klinkhamer received the bachelor’s and master’s degrees in 2010 and 2013, both from Michigan Technological University. He is currently working towards the PhD degree at the Department of Computer Science, Michigan Technological University. His research interests include self-stabilization, distributed systems and parallel algorithms.

Ali Ebnenasir received the bachelor’s and master’s degrees in 1994 and 1998 respectively from the University of Isfahan and Iran University of Science and Technology. He received the PhD degree from the Computer Science and Engineering Department, Michigan State University (MSU), in 2005. He is an associate professor of computer science at Michigan Technological University and a senior member of the ACM. After finishing his postdoctoral fellowship at MSU in 2006, he joined the Department of Computer Science at Michigan Technological University. His research interests include software dependability, formal methods and parallel and distributed computing.

For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/publications/dlib.