
Exploiting Computational Redundancy for Efficient
Recovery from Soft Errors in Sensor Nodes

Aly Farahat
Department of Computer Science

Michigan Technological University
Houghton MI 49931, U.S.A.

Email: anfaraha@mtu.edu

Ali Ebnenasir
Department of Computer Science

Michigan Technological University
Houghton MI 49931, U.S.A.
Email: aebnenas@mtu.edu

Abstract—Most existing techniques for the design and imple-
mentation of fault tolerance use resource redundancy. As such,
due to scarcity of resources, it is difficult to directly apply them
for adding fault tolerance to sensor nodes in Wireless Sensor
Networks (WSNs). Thus, it is desirable to develop techniques
that implement fault tolerance under the constraints of memory
and processing power of sensor nodes. We present a novel method
for designing recovery from transient faults that cause non-
deterministic bit-flips in the task queue of the scheduler of
TinyOS, which is the operating system of choice for sensor nodes.
Specifically, our approach exploits computational redundancy for
the design of recovery instead of using resource redundancy. The
presented fault-tolerant task queue recovers from bit-flips with
significantly lower space/time overhead compared with the Error
Correction Codes.

I. I NTRODUCTION

Wireless Sensor Networks (WSNs) are increasingly used
in mission-critical applications (e.g., body sensor networks,
habitat monitoring, flood forecasting, etc.), where they have to
be deployed in harsh environments (e.g., volcano, forest, battle
field, etc.). On one hand, WSNs must exhibit a high degree
of service dependability due to application requirements,and
on the other hand, unexpected environmental events, i.e.,
faults, may negatively affect their quality of service. For
example,transient faults may cause non-deterministic bit-flips
in the main memory of sensor nodes (a.k.a.motes), thereby
perturbing the state of the running program to an arbitrary state
in its state space. Since the quality of the service providedby
the entire sensor network heavily relies on the dependability
of the controlling software of motes, fault tolerance techniques
should be applied to improve the dependability of motes.
Nonetheless, due to their limited computational (e.g., memory
and processing power) and energy resources, it is impractical
to apply the traditional fault tolerance methods (e.g., Error
Correction Code (ECC) [9]) to motes. This paper proposes a
novel method that exploits computational redundancy for the
addition of recovery to transient bit-flips in the task queueof
TinyOS [14].1

Most existing techniques [12], [4], [10], [1], [13] present
solutions for the design of fault-tolerant protocols for WSNs
rather than focusing on the fault tolerance of individual sen-
sor nodes. For instance, techniques for reliable transmission

1TinyOS is the operating system of choice for sensor nodes in WSNs.

are mostly based on redundant and/or multi-path retrans-
mission [10]. Several methods exist for (i) designing self-
stabilizing WSN communication protocols [1] that ensure a
correct synchronization among sensor nodes starting from an
arbitrary non-synchronized state, and (ii) providing recovery
for data dissemination in WSNs [13]. ECC methods (e.g.,
Hamming code [9]) often require extensive memory redun-
dancy for storing extra parity bits in code words. Moreover,
decoding/coding algorithms in these methods are computation-
ally expensive.

We propose a novel approach that enables space/time-
efficient recovery to transient Bit-Flips (BFs) in motes. The
proposed approach is based on the detection of the violations
of invariance conditions that must always be true and dynamic
corrections of such violations. Specifically, we focus on the
task queue of the TinyOS as it is one of the most critical
components of the kernel of TinyOS and its structure is heavily
sensitive to BFs. We first define conditions under which the
task queue has a valid structure, called thestructural invariant.
Then, before and after the addition/removal of a task to/from
the task queue, we check whether the structural invariant
holds. In case of the violation of the invariant, we identify
different failure scenarios created due to the occurrence of
BFs and systematically correct them, thereby recovering to
the structural invariant. The proposed approach enables the
detection and correction of multiple BFs in a single-byte
variable in a space/time-efficient fashion. Compared with the
Hamming Code (HC) [9], our approach needs at least 20%
less memory and performs at least twice as fast as HC. The
time complexity of our approach is linear in the size of the
task queue. We also note that HC cannot correct multiple BFs
whereas our approach enables the correction of multiple BFs
as long as they occur in the same variable. Furthermore, for
some special cases, the proposed approach corrects BFs in
multiple variables as well.
Organization. Section II illustrates the structure of the TinyOS
task queue. Then, Section III presents our approach for the de-
tection and correction of transient bit flips in the TinyOS task
queue. We also demonstrate the superiority of the space/time
efficiency of the proposed approach compared with the ECC
methods. Section IV makes concluding remarks and outlines
future research directions.

II. STRUCTURAL INVARIANCE OF TINYOS TASK QUEUE

In this section, we define what constitutes a valid structure
of TinyOS’s task queue. In Tiny OS version 2.x, the task queue
is a linked list of task identifiers implemented as a statically al-
located array of 256 entries (see Figure 1). Figure 2 illustrates
the implementation of the task queue in nesC [8], which is a
component-based variant of the C programming language used
for application development on TinyOS. Each identifier (ID)is
an integer between 0 and 255 inclusive. The set of variables of
interest arem_head, m_tail andm_next[256]. m_head
holds the index of the oldest ID in the queue, andm_tail
holds the ID of the most recent task inserted in the queue.
Every value inm_next is an ID for the next task to be
executed and an index (i.e., pointer) to the successor entry
in m_next. A distinguished task has the identifierNO_TASK
= 255. NO_TASK is the value ofm_next[m_tail] and it is
the successor of all non requesting identifiers. For example, as
depicted in Figure 1, a queue states1 consists ofm_head=12,
m_next[12]=3, m_next[3]=255, m_tail=3, and∀j :
(j 6= 12) : m_next[j]=255.

3

255

255

m_head

m_tail

m_next[12]

m_next[3]

m_next[255]

(s1)

255

255

255

255

Other

Elements

of

m_next[]

3

5

255

m_head

m_tail

m_next[12]

m_next[3]

m_next[255]

(s2)

255

255

255

255

Other

Elements

of

m_next[]

255 m_next[5]

255

255

m_head

m_tail

m_next[3]

m_next[255]

255

255

255

255

Other

Elements

of

m_next[]

(s3)

12

3

3

3

5

12

Fig. 1. Example states of the task queue.

The states1 represents a task queue having only two
pending tasks of identifiers 12 and 3 respectively. The effect
of popTask() on s1 is a transition to states2 (see Fig-
ures 2 and 1). In states2, m_head=3, m_next[3]=255,
m_tail=3, and∀j : (0 ≤ j ≤ 255) : m_next[j]=255.
The effect ofpushTask(5) on s1 is a transition to states3
(see Figures 2 and 1), wherem_head=12,m_next[12]=3,
m_next[3]=5, m_next[5]=255, m_tail=5, and ∀j :
(j 6= 12) ∧ (j 6= 3) ∧ (0 ≤ j ≤ 255): m_next[j]=255.
Structural Invariant. A valid state of the task queue is a state
where the queue has a linear structure with its head (m_head)
pointing to its beginning and its tail (m_tail) pointing to the
most recently added identifier to the task queue. Each element
of m_next with a non-255 ID is reachable from the head.
Each entry ofm_next that is not in the queue holds the value
of NO_TASK, andm_next[m_tail] is equal toNO_TASK.
Moreover, the task IDs belong to the interval0 ≤ ID ≤ 255.
Figure 3-(a) illustrates a sample valid state of the task queue.
Furthermore, any operation performed on the queue should
remove an element from the head (i.e.,popTask()), add an
element to the tailpushTask() or leave the structure of the
queue and the task IDs unchanged.

inline uint8_t popTask()
{
if(m_head != NO_TASK) {
uint8_t id = m_head;
m_head = m_next[m_head];
if(m_head == NO_TASK) m_tail = NO_TASK;
m_next[id] = NO_TASK;
return id; }

else return NO_TASK;
}

bool isWaiting(uint8_t id)
{ return (m_next[id] != NO_TASK) || (m_tail == id); }

bool pushTask(uint8_t id) {
if(!isWaiting(id)) {
if(m_head == NO_TASK) { m_head = id; m_tail = id; }
else { m_next[m_tail] = id; m_tail = id; }
return TRUE;

} else return FALSE; }

Fig. 2. Excerpt of the Tiny OS Scheduler.

127

2

255

m_head

m_tail

m_next[12]

m_next[127]

m_next[255]

The Correct Queue

Structure

255

255

255

255

Other

Elements

of

m_next[]

255 m_next[5]

127

2

255

m_head

m_tail

m_next[12]

m_next[127]

m_next[255]

A Corrupted Queue

Structure

127

255

255

255

Other

Elements

of

m_next[]

255 m_next[5]

Legend:

Corrupted Element

Uncorrupted Element

Index’s Link (a) (b)

m_next[126]

m_next[126]

12

5

12

5

Fig. 3. Valid and invalid task queue structures.

Transient faults. Transient faults may toggle multiple bits in
a single variable; i.e.,m_head, m_tail or a memory cell
of m_next[]. The case of multi-variable corruption is the
subject of our current investigation. Bit-flips may perturba
task ID and the structure of the task queue to an invalid state.
For example, Figure 3 demonstrates how resetting the most
significant bit of m_next[126] could change its content
from 255 to 127, thereby pointing tom_next[127] instead
of pointing toNO_TASK.

III. A DDITION OF RECOVERY

Section III-A analyzes the memory and time requirements
of correcting BFs with the Hamming code. Section III-B
illustrates how our approach enables recovery from BFs by
detecting invalid queue structures and correcting them.

A. Correcting Bit-Flips with ECC

One approach for recovery from transient faults that cause
bit-flips is to use error detection and correction codes such
as the Hamming Code (HC) [9]. However, due to high
memory/CPU cost of the encoding/decoding algorithms these
approaches seem impractical in the context of WSNs. For
example, there are two ways to deal with bit-flips in the task
queue using HC; consider either individual memory cells of
them_next[] array as separate data words, or the entire 256
bytes of the task queue as one data word.

In the first case, each cell of them_next[] array should
be encoded before storing a value and it should be decoded
before reading its contents. To encode 8 bits of data with HC,
we need 4 extra parity bits, which results in a code word with
12 bits in the following format:p1p2d1p3d2d3d4p4d5d6d7d8,
wheredj denotes data bits for1 ≤ j ≤ 8, andpi represents
the parity bits for1 ≤ i ≤ 4. The encoding algorithm of HC
determines the 12-bit code word by multiplying a12×8 matrix
by a vector made of the data bits. Such a matrix multiplication
takes 96 multiplications and 84 additions; i.e., totally 180 basic
operations in addition to one read and write operation on
each memory cell, where a basic operation includes arithmetic
and logical operations as well as comparisons and load/store.
The decoding algorithm also multiplies a4× 12 matrix by a
vector containing the 12-bit code word, which results in a 4-
bit syndrome vector representing the position of the corrupted
bit. (Thus, each decoding takes 48 multiplications and 44
additions, totally 92 basic operations.) Notice that for each
byte allocated inm_next[] 4 extra bits should be considered
for parity. That is, 256/2 = 128 extra bytes should be
allotted along with the256 bytes allocated form_next[].
Besides, every time a task ID is stored/retrieved to/from a
memory cell inm_next[], the encoding/decoding algorithm
must be executed. That is, for one round of detection and
correction,256× (180+92) = 69632 basic operations should
be performed.

In the second case, the queue comprises a bit pattern with
256 × 8 = 2024 bits, for which 1 + log 2024 = 12 parity
bits are needed in HC. Thus, the size of the code word
is equal to 2024 + 12 = 2036 bits. The encoding takes
2024× 2036 = 4120864 multiplications and2023 × 2036 =
4118828 additions; i.e., totally8239692 basic operations. For
decoding, we will need12×2036multiplications and12×2035
additions resulting in48852 basic operations. This analysis
clearly illustrates the impracticality of using HC on sensor
nodes with a small memory and a limited processing power.
While other ECC methods (e.g., , Forward Error Correction
(FEC) [3] and Reed-Solomon (RS) [15]) can correct cases
where multiple variables are corrupted, they are even more
expensive than HC in terms of either space or time. For
example, the RS method needst bits for the correction of
bt/2c bits andO(t2) is its time complexity.

B. Adding Recovery to Task Queue

This section illustrates how we enable recovery to a valid
queue structure from transient BFs. Figure 4 depicts a state
machine that demonstrates the impact of transient faults and
how recovery should be achieved. Since the task queue is a
centralized program running on a single CPU, we can benefit
from a high atomicity model in which a set of instructions
can be performed atomically. In fact, the nesC language
providesatomic blocks that capture a sequence of statements
that are supposed to be executed without interruption. The
essence of the addition of recovery in high atomicity [6]
is based on detecting the violation of the invariant due to
the occurrence of faults, and providing recovery from every

invalid state to the invariant. Thus, we present the function
DetectCorrect() (see Figure 5) that we add to the
Tiny OS scheduler to enable the detection and correction of
BFs before and after any push/pop operations on the task
queue. The functionDetectCorrect() should be invoked
in an atomic block (i.e.,atomic{DetectCorrect()})
to ensure that detection and correction are not interrupted
during execution. Depending on the harshness of the environ-
ment where the motes are deployed, the period of invoking
DetectCorrect() could be changed by the developers;
i.e., DetectCorrect() can be invoked in an adaptive
fashion by the scheduler of TinyOS in order to enable a
tradeoff between the degree of dependability and the energy
cost of providing recovery. Next, we explain different parts of
DetectCorrect() to illustrate how detection and correc-
tion are achieved.

Fig. 4. Adding recovery to the task queue.

Data structures. To detect and correct corruptions of the
task queue,DetectCorrect() gathers some information
about the structure of the queue and stores them in these data
structures (see Figure 5):

DetectCorrect(int q_size) {
uint8_t previous;
uint8_t current=m_head;
uint8_t Index=0;
uint8_t dangleElem=0;
uint8_t non255 =0; // Number of non-255 elements
uint8_t qLength =0; // Number of elements in the queue
uint8_t cyclePoint =0; // The corrupted element that

// points back and creates a cycle

component visited = new BitVectorC(256);
visited.clearAll();
component pointedTo = new BitVectorC(256);
pointedTo.clearAll();
component pointsToNoTask = new BitVectorC(256);
pointsToNoTask.clearAll();

bool cyclic = FALSE;
bool pointedByHead = FALSE;

Fig. 5. Data structures.

(1) previous, current, dangleElem and
cyclePoint are pointers that are used during the traversal
of the queue; (2)non255 keeps the number of memory
cells in m_next that contain non-255 values; (3)qLength
stores the number of non-255 elements reachable from the
head of the queue (m_head); (4) the visited bit vector
allocates one bit corresponding to each element ofm_next
illustrating whether or not it has been visited previously in a
queue traversal for cycle detection; (5) thepointedTo bit
vector keeps a bit for each element ofm_next demonstrating
whether or not that element is being pointed to by some other
element; (6) thepointsToNoTask bit vector allocates
a bit corresponding to each memory cell ofm_next that

containsNO_TASK; (7) the cyclic flag is set if a cycle
is detected in the structure of the task queue, and (8) the
pointedByHead flag is true if and only if there is an
element in the queue that is pointed by bothm_head and
another element in the queue. We use thepointedByHead
flag in detecting/correcting the corruption ofm_head.
Notice that, we allocate 96 bytes for the bit vectors and 7
bytes for other variables (i.e., 103 bytes totally) capturing
local variables; i.e., whenDetectCorrect() returns this
memory is released.
Initialization. In this step, we first count the total number
of elements inm_next that contain non-255 values. Then,
we initialize thepointedTo and pointsToNoTask bit
vectors. This step incurs256 × 15 = 3840 basic operations
on our solution.

// Count the number of non-255 elements in array m_next
for(Index=0; Index<NO_TASK; ++Index)

if (m_next[Index] != NO_TASK) non255++;
// Determine the elements that are being pointed to
for(Index=0; Index<NO_TASK; ++Index)

pointedTo.set(m_next[Index]);
// Determine the elements that point to NO_TASK
for(Index=0; Index<NO_TASK; ++Index)

if(m_next[Index] == NO_TASK) pointsToNoTask.set(Index);

Detection and correction ofm_head. Since the traversal of
the queue for subsequent processing is performed using the
m_head pointer, we first ensure thatm_head is corrected.
If m_head points to NO_TASK (see Figure 6), then we
set m_head to the index of the element to which no other
element points, and exit (because, by assumption, our focusis
on single-variable corruption). Otherwise, we detect whether
m_head points to another non-255 element in the queue.
(Please see Figure 7 and the first for-loop in the else part of
Figure 6.) If so, then we setm_head to the index of the non-
255 element to which no other element points. (See the second
for-loop in the else part of Figure 6.) Figure 7 illustrates acase
where the value ofm_head has been corrupted from 12 to 4.

if (m_head == NO_TASK) {
for(Index=0; Index<NO_TASK; ++Index)
if(!pointedTo.get(Index) && m_next[Index] != NO_TASK) {

m_head = Index; return; } }
else {

for(Index=0; Index<NO_TASK; ++Index)
if(pointedTo.get(Index) && Index == m_head) {

pointedByHead = TRUE; break; }
if (pointedByHead)
for(Index=0; Index<NO_TASK; ++Index)
if(!pointedTo.get(Index) && m_next[Index] != NO_TASK) {

m_head = Index; return; }
}

Fig. 6. Detect and correctm_head.

The time complexity (and energy consumption) of this step
is proportional to the maximum number of basic operations.
If m_head = NO_TASK, thefor-loop in the if part of
Figure 6 will be executed, which has one comparison and one
increment for the loop counter in each iteration. Moreover,
the if-statement inside thefor-loop performs two
load operations, one comparison and two logical operations
per iteration. Thus, in the worst case, we have 7 basic
operations in each iteration of thisfor-loop, which results
in 256×7 = 1792 basic operations ifm_head = NO_TASK.

A similar reasoning illustrates that, in the worst case, we
perform 256 × 15 = 3840 basic operations ifm_head 6=
NO_TASK. Therefore, since either theif part or theelse
part is executed in Figure 6, the correction ofm_head takes
at most3840 basic operations.

Fig. 7. Corruption ofm_head.

Detection and correction of cyclic structures. The
do-while loop in the below code uses thevisited bit
pattern to determine whether there is a cycle in the queue.
This loop also stores the number of elements in the queue
that are reachable fromm_head in theqLength variable.

// Detect cycles
do {

if(!visited.get(current)) visited.set(current);
else { cyclic = TRUE;

cyclePoint = previous; break; }
previous=current;
current=m_next[previous];
qLength++;

} while(current != NO_TASK && m_tail!=previous);

// Correct cycles
if (cyclic && (cyclePoint == m_tail)) {

m_next[cyclePoint] = NO_TASK; return; }
if (cyclic && cyclePoint != m_tail)

for(Index=0; Index<NO_TASK; ++Index)
if(!pointedTo.get(Index) &&

(m_next[Index] != NO_TASK) && (Index != m_head)) {
m_next[cyclePoint] = Index; return; }

A cycle could be formed in two ways: either the tail points
back to some element including itself (see Figure 8-(a)), or
another element points back to some element including itself
(see Figure 8-(b)). If a cycle is detected, then thecyclic flag
is set and the index of the element pointing back is stored in
cyclePoint. In casecyclePoint is equal tom_tail,
then that means the tail of the queue is pointing back to some
element instead of pointing toNO_TASK. Otherwise, to fix
the cycle, we set the contents ofm_next[cyclePoint] to
the index of the element that has becomedangled due to the
cycle creation; i.e., the element to which no element points,
does not point toNO_TASK, and is not equal tom_head. This
correction will take at most256×26 = 6656 basic operations.
Detection and correction of queue size and non-255 ele-
ments.To detect discrepancies in the size of the task queue, we
add a new variableq_size to the TinyOS scheduler to store
the size of the queue outside theDetectCorrect function.
Nonetheless,q_size could be perturbed by transient faults.
The first if statement in Figure 9 correctsq_size.
Notice that DetectCorrect can simultaneously correct
q_size andm_head, which is a special case of correcting
MBFs in multiple variables. Moreover, faults may change the
value of an array element from 255 to some other value. This
means that that element points to some queue element. Such
a link is not part of the task queue and should be eliminated.

Fig. 8. Cyclic corruption of the task queue.

To this end, we assign 255 to an element to which no other
element points, points to a non-255 element and is not equal
to m_head. Thefor-loop in the secondif statement
could take at most256× 11 = 2816 basic operations.

if (qLength == non255) {
if (q_size != qLength) { q_size = qLength; return; }

else return; // Task queue is NOT corrupted.
}

if (non255 > q_size) // some 255 element has become non255
for(Index=0; Index<NO_TASK; ++Index)

if (!pointedTo.get(Index) &&
(m_next[Index] != NO_TASK) && (Index != m_head)) {

m_next[Index] = NO_TASK; return; }

Fig. 9. Detect and correct queue size.

Detection and correction ofm_tail. To detect and correct
the corruptions ofm_tail, we setm_tail to the index
of the first element whose contents point toNO_TASK (see
below). For example, in Figure 10,m_tail is set to 17. The
for-loop in the below code performs at most 2560 basic
operations.

for(Index=0; Index<NO_TASK; ++Index) {
if ((!pointsToNoTask.get(Index)) &&

(m_next[m_next[Index]] == NO_TASK) &&
(m_tail != m_next[Index])) {

m_tail = m_next[Index]; return; } }

Fig. 10. Corruption ofm_tail.

Detection and correction of corrupted acyclic structures.
If faults corrupt a non-255 element so it points to one of its
successors, then a structure similar to Figure 11 could be cre-
ated. In this example, the contents ofm_next[4] is changed
from 18 to 25 andm_next[18] becomes unreachable from
head; i.e., adangling element. One way to detect this case
is to simply compareqLength with the number of non-255
elements; ifqLength 6= non255, then either this case has

occurred or the corruption ofm_head. Nonetheless, if the
code of theDetectCorrect() routine reaches this point,
then it means thatm_head has the correct value.

Fig. 11. Corrupted acyclic structure.

The identification of thecorrupted element in Figure
11 is not straightforward. Our strategy is to determine the in-
dex of the element in the queue that is pointed by two internal
elements of the queue (seem_next[25] in Figure 11). Such
an element must be in the fragment of the queue that starts
with the dangling element. Thus, we first find the index of the
dangling element by the firstfor-loop in Figure 12. If there
is such a dangling element, then we reset thepointedTo
bit vector. Then, in the firstdo-while in Figure 12, we
start setting the bits ofpointedTo corresponding to the
fragment of the queue that starts with the dangling element.
In the seconddo-while, we search the first fragment of
the queue (starting fromm_head) for the element that points
to an element whose corresponding bit is already set in the
pointedTo vector. Once we find such an element, we set its
content to the index of the dangling element, and the queue is
corrected. This step includes27×256 = 6912 basic operations
in the worst case.

dangleElem = NO_TASK;
for(Index=0; Index<NO_TASK; ++Index)

if(!pointedTo.get(Index) &&
m_next[Index] != NO_TASK &&
Index != m_head) {

dangleElem = Index; break; }

if (dangleElem == NO_TASK) return;

pointedTo.clearAll();
current = dangleElem;

do {
pointedTo.set(m_next[current]);
previous=current;
current=m_next[previous];
} while(current != NO_TASK && m_tail!=previous);

current = m_head;

do {
if (pointedTo.get(m_next[current]) {

m_next[current] = dangleElem; return; }
previous=current;
current=m_next[previous];
} while(current != NO_TASK && m_tail!=previous);

}

Fig. 12. Detect and correct acyclic structures.

Time complexity of DetectCorrect(). Since the code
of DetectCorrect() does not include nested for-loops,
its time complexity is linear in the size of the task queue.
Figure 13 presents a comparison of the time/space cost of the
proposed method of this paper with two scenarios of using

the Hamming code for correction of BFs: HC1 represents
the case where each element ofm_next is encoded with
HC, and HC2 denotes the case where the entirem_next
is encoded as a single word. Notice that, our approach out-
performs HC1 in terms of both time and space efficiency,
respectively by a factor of 20% and 60%. More importantly,
the required memory (i.e., 103 bytes) is temporary; i.e., when
DetectCorrect() returns this memory is released. The
HC2 method seems impractical due to expensive computing
requirements.

Approach Memory Cost # of Operations

Hamming Code for each element of m next (HC1) 128 Bytes ' 70000

Hamming Code for the entire m next (HC2) 12 bits ' 4.17 million

Proposed Method 103 Bytes 28000

Fig. 13. Space/Time cost of correction of BFs.

Scope of correction.The scope of correction in these three
methods is different. Figure 14 demonstrates that our approach
can correct multiple bit-flips in a single variable, which cannot
be achieved by HC1 and HC2. However, HC1 can correct
single bit-flips in multiple variables, which we do not currently
have a solution for it.

Approach Corrects SBFs Corrects MBFs Corrects SBFs Corrects MBFs

in a Variable in Multi Vars in Multi Vars

HC1 Yes No Yes No

HC2 Yes No No No

Proposed Method Yes Yes No No

Fig. 14. Scope of correction for Single Bit-Flips (SBFs) and Multiple
Bit-Flips (MBFs).

Fault tolerance of DetectCorrect(). In case transient
faults perturb the local variables and/or the control flow
of DetectCorrect(), the current round of execution of
DetectCorrect() may not recover the structure of the
task queue. However, sinceDetectCorrect() is exe-
cuted repeatedly and transient faults eventually stop occurring,
DetectCorrect() will eventually provide recovery.

IV. CONCLUSIONS ANDFUTURE WORK

We presented a novel method for the detection and correc-
tion of transient Bit-Flip (BF) in the task queue of the TinyOS,
which is the operating system of choice for sensor nodes.
Since motes have limited computational and energy resources,
instead of using resource redundancy, the proposed approach
exploits computational redundancy to efficiently recover from
transient BFs that corrupt the contents and the structure of
the task queue. The essence of our approach is based on
the detection of invalid structures of the queue that might
be created due to transient faults. Upon reaching an invalid
structure, we analyze the structure of the task queue to
determine which failure scenario has occurred and recover
to a valid state. Using this method, we can correct Multiple
BFs (MBFs) in single-byte variables. We illustrate that the
proposed approach can provide a better time/space efficiency
with respect to Error Correction Codes such as the Hamming
code [9] (see Figures 13 and 14).

Several techniques exist for designing fault-tolerant data
structures. Aumannet al. [2] present alternative implemen-
tations for pointer-based data structures by adding redundant
links. Finocchiet al. [7] provide resilient search trees through
periodic checkpoints. Jørgensenet al. [11] devise a method
that ensures the resilience of priority queues by storing point-
ers in resilient memory locations. By contrast, our approach
continuously monitors a structural invariance and provides
recovery if the invariant is violated.

Future/ongoing work focuses on techniques for the correc-
tion of MBFs in multiple variables. Moreover, we would like
to leverage our previous work [5] on automated addition of
fault tolerance for the addition of recovery to data structures.
Specifically, our previous work models a state as a unique
valuation of variables of primitive types (e.g., Boolean and
integer). Nonetheless, we need to create richer models that
capture the topological state of complex data structures. We
will also work on models where ECC methods and our
approach are used in a hybrid fashion.

REFERENCES

[1] M. Arumugam and S. Kulkarni. Self-stabilizing deterministic TDMA
for sensor networks.Distributed Computing and Internet Technology,
pages 69–81, 2005.

[2] Y. Aumann and M. Bender. Fault tolerant data structures.In focs, page
580. Published by the IEEE Computer Society, 1996.

[3] G. C. Clark and J. B. Cain. Error-Correction Coding for Digital
Communications. Springer, 1981.

[4] T. Clouqueur, P. Ramanathan, K. Saluja, and K. Wang. Value-fusion
versus decision-fusion for fault-tolerance in collaborative target detection
in sensor networks. InProceedings of Fourth International Conference
on Information Fusion. Citeseer, 2001.

[5] A. Ebnenasir. Automatic synthesis of fault-tolerance. PhD thesis,
Michigan State University, 2005.

[6] A. Ebnenasir and A. Farahat. A lightweight method for automated
design of convergence. InTo appear in the proceedigns of 25th IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2011.

[7] I. Finocchi, F. Grandoni, and G. Italiano. Resilient search trees.
In Proceedings of the eighteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 547–553. Society for Industrial and Applied
Mathematics, 2007.

[8] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D.Culler.
The nesC language: A holistic approach to networked embedded sys-
tems. In Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation, page 11. ACM,
2003.

[9] R. W. Hamming. Coding and Information Theory. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1986.

[10] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptiveprotocols for
information dissemination in wireless sensor networks. InProceedings
of the 5th annual ACM/IEEE international conference on Mobile com-
puting and networking, pages 174–185. ACM, 1999.

[11] A. Jørgensen, G. Moruz, and T. Mølhave. Priority queuesresilient to
memory faults.Algorithms and Data Structures, pages 127–138, 2007.

[12] F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentelli. Fault
tolerance techniques for wireless ad hoc sensor networks.sensors, pages
1491–1496, 2002.

[13] S. Kulkarni and M. Arumugam. Infuse: A TDMA based data dissemina-
tion protocol for sensor networks.International Journal of Distributed
Sensor Networks, 2(1):55–78, 2006.

[14] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, et al. TinyOS: An operating system
for sensor networks.Ambient Intelligence, pages 115–148, 2005.

[15] I. S. Reed and G. Solomon. Polynomial codes over certainfinite fields.
Journal of the Society for Industrial and Applied Mathematics, 8:300–
304, 1960.

