Exploiting Computational Redundancy for Efficient
Recovery from Soft Errors in Sensor Nodes

Aly Farahat Ali Ebnenasir
Department of Computer Science Department of Computer Science
Michigan Technological University Michigan Technological University
Houghton MI 49931, U.S.A. Houghton MI 49931, U.S.A.
Email: anfaraha@mtu.edu Email: aebnenas@mtu.edu

Abstract—Most existing techniques for the design and imple- are mostly based on redundant and/or multi-path retrans-
mentation of fault tolerance use resource redundancy. As s, mission [10]. Several methods exist for (i) designing self-
due to scarcity of resources, it is difficult to directly apply them stabilizing WSN communication protocols [1] that ensure a

for adding fault tolerance to sensor nodes in Wireless Senso . .
Networks (WSNS). Thus, it is desirable to develop technique correct synchronization among sensor nodes starting firom a

that implement fault tolerance under the constraints of menory ~ arbitrary non-synchronized state, and (ii) providing nesy

and processing power of sensor nodes. We present a novel meth for data dissemination in WSNs [13]. ECC methods (e.g.,
for designipg recovery from transient faults that cause nomn Hamming code [9]) often require extensive memory redun-
deterministic bit-flips in the task queue of the scheduler of dancy for storing extra parity bits in code words. Moreover,

TinyOS, which is the operating system of choice for sensor mes. . . - . .
Specifically, our approach exploits computational redundacy for decoding/coding algorithms in these methods are compuatati

the design of recovery instead of using resource redundancyhe ally expensive.
presented fault-tolerant task queue recovers from bit-flig with We propose a novel approach that enables space/time-

significantly lower space/time overhead compared with the Eor  efficient recovery to transient Bit-Flips (BFs) in motes.€Th
Correction Codes. proposed approach is based on the detection of the viofation
. INTRODUCTION of invariance conditions that must always be true and dynami

Wireless Sensor Networks (WSNs) are increasingly us&grrections of such \_/iolations. _Specifically, we focus o _th
in mission-critical applications (e.g., body sensor neksp t@sk queue of the TinyOS as it is one of the most critical
habitat monitoring, flood forecasting, etc.), where theyehto  COMPonents of the kernel of TinyOS and its structure is figavi
be deployed in harsh environments (e.g., volcano, forestign Sensitive to BFs. We first define conditions under which the

field, etc.). On one hand, WSNs must exhibit a high degré%Sk gueue has a valid structure, calleddnactural invariant.
of service dependability due to application requiremeats] Then, before and after the addition/removal of a task toifro

on the other hand, unexpected environmental events, ithe task queue, we check whether the structural invariant

faults, may negatively affect their quality of service. FO,h_o’Ids. In case of the \_/|0Iat|on of the invariant, we identify
examplefransient faults may cause non-deterministic bit-flipsOllfferent failure scenarios created due to the occurrerice o
in the main memory of sensor nodes (a.krates), thereby BFs and systgmatlpally correct them, thereby recovering to
perturbing the state of the running program to an arbitreates the structural invariant. The proposed approach enables th
in its state space. Since the quality of the service provijed detéction and correction of multiple BFs in a single-byte
the entire sensor network heavily relies on the dependabil¥@riable in a space/time-efficient fashion. Compared with t

of the controlling software of motes, fault tolerance téges Hamming Code (HC) [9], our approach needs at least 20%
should be applied to improve the dependability of mote$SS memory and performs at least twice as fast as HC. The
Nonetheless, due to their limited computational (e.g., wrgm time complexity of our approach is linear in the size of the
and processing power) and energy resources, it is impahcti@Sk queue. We also note that HC cannot cprrect muIt|_pIe BFs
to apply the traditional fault tolerance methods (e'g',oErrwhereas our approach_enables the cor_rectlon of multiple BFs
Correction Code (ECC) [9]) to motes. This paper proposes’d long as _they occur in the same variable. Furthermore, for_
novel method that exploits computational redundancy fer tff0Me Special cases, the proposed approach corrects BFs in

addition of recovery to transient bit-flips in the task quede Multiple variables as well. .
TinyOS [14] Organization. Section Il illustrates the structure of the TinyOS

Most existing techniques [12], [4], [10], [1], [13] presemtaSk. queue. Then, Section 1 presents pur_approa(;h forghe d
solutions for the design of fault-tolerant protocols for M&s tection and correction of transient bit flips in the TinyOSka
rather than focusing on the fault tolerance of individuai-se 9ueue. We also demonstrate the superiority of the spa@e/tim

sor nodes. For instance, techniques for reliable trangmnissefficiency of the proposed approach compared with the ECC
methods. Section IV makes concluding remarks and outlines

1TinyOS is the operating system of choice for sensor nodes $Ng/ future research directions.



inline uint8_t popTask
Il. STRUCTURAL INVARIANCE OF TINYOS TASK QUEUE = Pop 0

if( mhead !'= NO_TASK ) {
In this section, we define what constitutes a valid structure uint8_t id = mhead;

of TinyOS's task queue. In Tiny OS version 2.x, the task queue Mhead = mnext[m head];

. X . i . A K if( mhead == NO TASK ) mtail = NO TASK;

is a linked list of task identifiers implemented as a staltycal- mnext[id] = NO_TASK;

located array of 256 entries (see Figure 1). Figure 2 ilatety | eturn id; et f”n NO TASK:

the implementation of the task queue in nesC [8], which is a -

component-based variant of the C programming language usbom i SV&i ting( uint8_t id

for application development on TinyOS. Each identifier () { return (mnext[id] '= NOTASK) || (mtail == id); }

an integer between 0 and 255 inclusive. The set of varialiles o
bool pushTask( uint8_t id ) {

interest aran_head, m t ai | andm next [ 256] . m _head if( lisvaiting(id) ) {

holds the index of the oldest ID in the queue, and ai | 'fgem *{*eag igxtN[OaTtA:h]) { imahea% t:a: ld?_ mt ail =id; }

holds the ID of the most recent task inserted in the queue. (et yurn TRUE: - T oo

Every value inm next is an ID for the next task to be 1} else

executed and an index (i.e., pointer) to the successor entry

return FALSE; }
Fig. 2. Excerpt of the Tiny OS Scheduler.
in m_next . A distinguished task has the identifis® TASK

= 255. NO_TASK s the value o next[m tail] anditis The Correct Queue A Corrupted Queue
the successor of all non requesting identifiers. For exanagle i homg e . heaﬁ”“““’e
depicted in Figure 1, a queue stateconsists oim head=12, @127 |m_nexirz [127] m_nextr2
. . m_next[126]| 12
m next[12] =3, m next[ 3] =255,m tail =3, andVj :
(] # 12) . m_next [J ] :255. m _next[127] . \_next[127]
m_tail m tail
o hon m_| head 255 m_nexts] € m_next
(o8 m_next[12] m_tail . m_next(12] m_next[126][ s | . ®© l[S]
.
m_tail E/er‘::n’ " m_next[255]
m_next[3] m_next[3] Other 1255
m_next[3] Legend: Element m_nex(2s5] m nexl[]
m_tail [ compted Etoment m r‘ext[] -
P m_next[5]
E,g::’;ts m_nex{255] other o |:| Uncorrupted Element
of Elements m_next[255] —»  Index's Link (a) (b)

m"oe,“l pother Fig. 3. Valid and invalid task queue structures.
ot |

Transient faults. Transient faults may toggle multiple bits in
(52) a single variable; i.e.m head, m tai |l or a memory cell
of m next[]. The case of multi-variable corruption is the
subject of our current investigation. Bit-flips may pertuab

The states; represents a task queue having only tweask ID and the structure of the task queue to an invalid state
pending tasks of identifiers 12 and 3 respectively. The effeor example, Figure 3 demonstrates how resetting the most
of popTask() on s; is a transition to states, (see Fig- significant bit of m next[ 126] could change its content
ures 2 and 1). In state;, m head=3, m next [ 3] =255, from 255 to 127, thereby pointing tm next [ 127] instead
mtail =3, andVj : (0 < j < 255) : mnext[]j]=255. of pointing toNO_TASK.
The effect ofpushTask(5) ons; is a transition to states
(see Figures 2 and 1), whene head=12, m next [ 12] =3,
m next [ 3] =5, m next [ 5] =255, m tai | =5, and Vj Section IlI-A analyzes the memory and time requirements
(J#12)A(j #3) A (0 < j < 255): m next[j]=255. of correcting BFs with the Hamming code. Section II-B
Structural Invariant. A valid state of the task queue is a statdllustrates how our approach enables recovery from BFs by
where the queue has a linear structure with its headhéad) detecting invalid queue structures and correcting them.
pointing to its beginning and its taih{ t ai | ) pointing to the
most recently added identifier to the task queue. Each efemén Correcting Bit-Flips with ECC
of m next with a non-255 ID is reachable from the head. One approach for recovery from transient faults that cause
Each entry oin_next that is not in the queue holds the valuéit-flips is to use error detection and correction codes such
of NO_TASK, andm next[ m tail] is equal toNO TASK. as the Hamming Code (HC) [9]. However, due to high
Moreover, the task IDs belong to the interéak ID < 255. memory/CPU cost of the encoding/decoding algorithms these
Figure 3-(a) illustrates a sample valid state of the taskugue approaches seem impractical in the context of WSNs. For
Furthermore, any operation performed on the queue shoedample, there are two ways to deal with bit-flips in the task
remove an element from the head (ijgopTask() ), add an queue using HC; consider either individual memory cells of
element to the taijpushTask() or leave the structure of thethem next [] array as separate data words, or the entire 256
gueue and the task IDs unchanged. bytes of the task queue as one data word.

Fig. 1. Example states of the task queue.

IIl. ADDITION OF RECOVERY



In the first case, each cell of ta next[] array should invalid state to the invariant. Thus, we present the fumctio
be encoded before storing a value and it should be decoddt ect Correct () (see Figure 5) that we add to the
before reading its contents. To encode 8 bits of data with HTiny OS scheduler to enable the detection and correction of
we need 4 extra parity bits, which results in a code word witBFs before and after any push/pop operations on the task
12 bits in the following formatp; podypsdadsdypsdsdedrds, queue. The functiobet ect Corr ect () should be invoked
whered; denotes data bits for < j < 8, andp; represents in an atomic block (i.e.,at onm c{Det ect Correct()})
the parity bits forl < i < 4. The encoding algorithm of HC to ensure that detection and correction are not interrupted
determines the 12-bit code word by multiplyind 2 8 matrix  during execution. Depending on the harshness of the environ
by a vector made of the data bits. Such a matrix multiplicationent where the motes are deployed, the period of invoking
takes 96 multiplications and 84 additions; i.e., totallpb8sic Det ect Correct () could be changed by the developers;
operations in addition to one read and write operation ome., Det ect Correct () can be invoked in an adaptive
each memory cell, where a basic operation includes aritbmefashion by the scheduler of TinyOS in order to enable a
and logical operations as well as comparisons and loaé/stdradeoff between the degree of dependability and the energy
The decoding algorithm also multipliesdax 12 matrix by a cost of providing recovery. Next, we explain different jgaof
vector containing the 12-bit code word, which results in a £et ect Correct () to illustrate how detection and correc-
bit syndrome vector representing the position of the cdedip tion are achieved.
bit. (Thus, each decoding takes 48 multiplications and 44 Fault Transitions
additions, totally 92 basic operations.) Notice that foctea o
byte allocated irm_next [ ] 4 extra bits should be considered
for parity. That is,256/2 = 128 extra bytes should be
allotted along with the256 bytes allocated fom next[].
Besides, every time a task ID is stored/retrieved to/from a
memory cell inm next [ ], the encoding/decoding algorithm
must be executed. That is, for one round of detection and
correction 256 x (180 + 92) = 69632 basic operations shouldData structures. To detect and correct corruptions of the
be performed. task queuepet ect Correct () gathers some information

In the second case, the queue comprises a bit pattern vatPut the structure of the queue and stores them in these data
256 x 8 = 2024 bits, for which 1 + log 2024 = 12 parity ~Structures (see Figure 5):
bits are needed in HC. Thus, the size of the code WO ect correct (int q_size) {
is equal t02024 + 12 = 2036 bits. The encoding takes uint8_t previous;

uint8_t current=m head;

Set of
Valid
States

Set of
Invalid
States

Program Transitions

Fig. 4. Adding recovery to the task queue.

2024 x 2036 = 4120864 multiplications and2023 x 2036 = intgt | ndex=0;
4118828 additions; i.e., totally3239692 basic operations. For uint8_t dangl eEl env0; ' Narber of |
decoding, we will need2 x 2036 multiplications and2x2035  5iniat qieacch 20: 1/ Nber of o ements i he queue

additions resulting in48852 basic operations. This analysis uint8_t cyclePoint =0; // The corrupted element that
clearly illustrates the impracticality of using HC on senso /1" points back and creates a cycle
nodes with a small memory and a limited processing power.onponent visited = new Bit Vect or C(256) ;

While other ECC methods (e.g., , Forward Error Correctiorf Sited clearAl();

onponent poi ntedTo = new BitVect or C(256);
(FEC) [3] and Reed-Solomon (RS) [15]) can correct casesointedTo.clearAll(); .
where multiple variables are corrupted, they are even morg@PPisol PO if‘;g‘?;ﬁf'{)z new Bi t Vect or X(256);
expensive than HC in terms of either space or time. For _
example, the RS method neetisits for the correction of oo =¥ 1¢ 2 FALSE |
|t/2] bits andO(t?) is its time complexity. '
. Fig. 5. Data structures.
B. Adding Recovery to Task Queue (1) previous, current, dangleElem and

This section illustrates how we enable recovery to a valilycl ePoi nt are pointers that are used during the traversal
gueue structure from transient BFs. Figure 4 depicts a statethe queue; (2)non255 keeps the number of memory
machine that demonstrates the impact of transient fauls agells in m next that contain non-255 values; (gLengt h
how recovery should be achieved. Since the task queue istares the number of non-255 elements reachable from the
centralized program running on a single CPU, we can bendfgad of the queuen( head); (4) the vi si t ed bit vector
from a high atomicity model in which a set of instructionsallocates one bit corresponding to each elemenmafiext
can be performed atomically. In fact, the nesC languagkistrating whether or not it has been visited previouslyai
providesatomic blocks that capture a sequence of statemergaeue traversal for cycle detection; (5) thei nt edTo bit
that are supposed to be executed without interruption. Tiector keeps a bit for each elementrofnext demonstrating
essence of the addition of recovery in high atomicity [Bvhether or not that element is being pointed to by some other
is based on detecting the violation of the invariant due ®lement; (6) thepoi nt sToNoTask bit vector allocates
the occurrence of faults, and providing recovery from evegy bit corresponding to each memory cell of next that



containsNO_TASK; (7) thecyclic flag is set if a cycle A similar reasoning illustrates that, in the worst case, we
is detected in the structure of the task queue, and (8) therform 256 x 15 = 3840 basic operations iim head #

poi nt edByHead flag is true if and only if there is an NO TASK. Therefore, since either thief part or theel se
element in the queue that is pointed by bathhead and part is executed in Figure 6, the correctionmfhead takes
another element in the queue. We use ploé nt edByHead at most3840 basic operations.

flag in detecting/correcting the corruption ah head.

Notice that, we allocate 96 bytes for the bit vectors and 7 m_head =4 m_tail =17

bytes for other variables (i.e., 103 bytes totally) captgri \ q
local variables; i.e., wheiet ect Cor rect () returns this
memory is released. m_next[12] m_next[4] m_next[17] m_next[255]
Initialization. In this step, we first count the total number Fig. 7. Corruption ofm _head.

of elements inm_next that contain non-255 values. Then, _ . .
we initialize thepoi nt edTo and poi nt sToNoTask bit Detection and correction of cyclic structures. The
vectors. This step incurg56 x 15 = 3840 basic operations do- whi | e loop in the below code uses the sit ed bit

on our solution. pattern to determine whether there is a cycle in the queue.
/1 Count the number of non-255 el ements in array m next This loop also stores the number of elements in the queue
for (I ndex=0; | ndex<NO TASK; ++l ndex) that are reachable fromn_head in the qLengt h variable.
if (mnext[lIndex] != NO TASK) non255++;
// Deternine the elenents that are being pointed to /1 Detect cycles
for(1ndex=0; |ndex<NO TASK; ++I ndex) do { o o
poi nt edTo. set (m next [ | ndex] ) ; if(!visited.get(current)) visited.set(current);
/1 Deternine the el enents that point to NO TASK el se { cyclic = TRUE
for (I ndex=0; |ndex<NO TASK; ++l ndex) ~cyclePoint = previous; break; }
if(mnext[lndex] == NO TASK) poi ntsToNoTask. set (I ndex); previ ous=current;

current=m next[ previous];
Detection and correction ofm_head. Since the traversal of  gLengt h++ _ _
the queue for subsequent processing is performed using the } W!'eteurrent 1= NO_TASK & m.tail!=previous);
m_head pointer, we first ensure thah head is corrected. // Correct cycles ' _
If m_head points to NO_TASK (see Figure 6), then we '’ (Yelte B8 (eye om0 b o Mt a0 Xabk: return:
setm head to the index of the element to which no otherf (cyclic && cyclePoint 1= mtail)
element points, and exit (because, by assumption, our fiscus f°:§é?gg:‘i?ed42dg’éfwﬁgé‘f§< . ndex)
on single-variable corruption). Otherwise, we detect Whet (m.next[Index] != NO_TASK) & (Index != mhead)) {
m head points to another non-255 element in the queue. mnext[cyclePoint] = Index; return; }
(Please see Figure 7 and the first for-loop in the else part of
Figure 6.) If so, then we seh head to the index of the non- A cycle could be formed in two ways: either the tail points
255 element to which no other element points. (See the secdiatk to some element including itself (see Figure 8-(a)), or
for-loop in the else part of Figure 6.) Figure 7 illustratesage another element points back to some element including itsel
where the value ofn_head has been corrupted from 12 to 4(see Figure 8-(b)). If a cycle is detected, thentlyel i ¢ flag

_ is set and the index of the element pointing back is stored in
if (mhead == NO_TASK) {

for (I ndex=0; | ndex<NO TASK; ++I ndex) cycl ePoint. In casepycl ePoi nt i_s eql.JaI. tomtail,
i f(!point egToaggt(lgde?o & mnext[Index] != NO_TASK) { then that means the tail of the queue is pointing back to some
else | mhead = Index; return; } } element instead of pointing tiO_TASK. Otherwise, to fix
for (1 ndex=0; |ndex<NO_TASK ++Index) the cycle, we set the contentsmof next [ cycl ePoi nt] to
T (pont edTo. gt (e e by tend = mhead) Lk ) the index of the element that has becodaagled due to the
i; (?oi gt edByHeag) dex) cycle creation; i.e., the element to which no element points
or (1 ndex=0; | ndex<NO _TASK; ++I ndex : . .
i (1 poi nt edTo. get (I ndex) && m next[lndex] 1= NO TAs) { JO€SNOtpointtdNO_TASK, and is not equal tm_head. This
mhead = Index; return; } correction will take at mos256 x 26 = 6656 basic operations.
} _ Detection and correction of queue size and non-255 ele-
Fig. 6. Detect and correan_head. ments.To detect discrepancies in the size of the task queue, we

The time complexity (and energy consumption) of this stegdd a new variablg_si ze to the TinyOS scheduler to store
is proportional to the maximum number of basic operationthe size of the queue outside tBet ect Cor r ect function.
If m_ head = NO _TASK, thefor-1oop intheif part of Nonethelessg si ze could be perturbed by transient faults.
Figure 6 will be executed, which has one comparison and ofbke firstif statenent in Figure 9 correctsg_si ze.
increment for the loop counter in each iteration. MoreoveXotice that Det ect Correct can simultaneously correct
the i f-statenent inside thefor-| oop performs two q_si ze andm head, which is a special case of correcting
load operations, one comparison and two logical operatiokBFs in multiple variables. Moreover, faults may change the
per iteration. Thus, in the worst case, we have 7 basialue of an array element from 255 to some other value. This
operations in each iteration of thior - | oop, which results means that that element points to some queue element. Such
in 256 x 7 = 1792 basic operations imh head = NO TASK. a link is not part of the task queue and should be eliminated.



mihead=12_> m_next(12] m_head _| occurred or the corruption dfn_heao]. Nonetheles;, if the
code of theDet ect Correct () routine reaches this point,

then it means thain _head has the correct value.
18 |m_next[4]

m_head =12 m_tail =17

| ]
cyclePoint |:|

m_next[12] m_next[4] m_next[18] m_next[25] m_next[17] m_next[255]

cyclePoint = 17

m_next[255] T T
255 dangleElem corrupted dangling
. / - ¢ element element

Fig. 11. Corrupted acyclic structure.

255 2% The identification of theor r upt ed el enent in Figure
@) ®) 11 is not straightforward. Our strategy is to determine the i
Fig. 8. Cyclic corruption of the task queue. dex of the element in the queue that is pointed by two internal

elements of the queue (seenext [ 25] in Figure 11). Such

] ] ] an element must be in the fragment of the queue that starts
To this end, we assign 255 to an element to which no othgfi, the dangling element. Thus, we first find the index of the

element points, points to a non-255 element and is not eqahgling element by the firétor - | oop in Figure 12. If there
tom head. Thefor -1 oop in the second f statement g guch a dangling element, then we reset plu nt edTo
could take at mos256 x 11 = 2816 basic operations. bit vector. Then, in the firsdo-whi | e in Figure 12, we
if (glength == non255) { start setting the bits opoi nt edTo corresponding to the
if (qsize!=glLength) { q_size =glLength; return; }  fragment of the queue that starts with the dangling element.
else return; // Task queue is NOT corrupted. In the seconddo- whi | e, we search the first fragment of

, , the queue (starting frorm_head) for the element that points
if (non255 > q_size) // sonme 255 el enment has becone non255

for (1 ndex=0; | ndex<NO TASK; ++I ndex) to an element whose corresponding bit is already set in the
if (!pointedTo.get(Index) && poi nt edTo vector. Once we find such an element, we set its
(mnext[Index] !'= NO TASK) && (Index != mhead)) {

content to the index of the dangling element, and the queue is
corrected. This step includ@g x 256 = 6912 basic operations
Fig. 9. Detect and correct queue size. in the worst case.

m next[lndex] = NO TASK; return; }

Detection and correction ofm t ai | . To detect and correct  dangl eEl em = NO_TASK;
- for (I ndex=0; |ndex<NO TASK; ++I ndex)

the corruptions ofmtail, we setmt z_;ti | to the index P f(1poi ntedTo. get (1 ndex) &&
of the first element whose contents pointR® TASK (see :n_gextpndeﬁl ij= NO_TASK &&
below). For example, in Figure 1€y tai | is set to 17. The e l g em= Index: break: )
for-1oop in the below code performs at most 2560 basic
operations. if (dangl eEl em == NO_TASK) return;
poi ntedTo. clearAll ();
fOI‘(| ndex=0; | ndex<NO_TASK; ++| ndex) { current = dang| eEl em
if ((!pointsToNoTask. get (Index)) &&
(m_next[ m next [I ndex]] == NO_TASK) && do {
(mtail !'= mnext[Index])) { poi nt edTo. set (m next[current]);
mtail = mnext[Index]; return; } } previ ous=current ;
current =m next[ previous];
} while(current !'= NO TASK & & m tail!=previous);
m_head =12 m_tail =4
/ q current = m head;
18—» ... 255 255 do {
m_next{12]  m_nexi(4] m_next{17] - m_nex[255] e et E‘(:TF?gﬁ][ cgr;:r?;I]éEl{em return; }
Fig. 10. Corruption ofm tail . previous=current;

current =m next[ previous];
. . . } while(current !'= NO TASK & & m tail!=previous);
Detection and correction of corrupted acyclic structures. }

If faults corrupt a non-255 element so it points to one of its
successors, then a structure similar to Figure 11 could é&e cr
ated. In this example, the contentsmfnext [ 4] is changed Time complexity of Det ect Corr ect (). Since the code
from 18 to 25 andm next [ 18] becomes unreachable fromof Det ect Correct () does not include nested for-loops,
head; i.e., adangling element. One way to detect this casés time complexity is linear in the size of the task queue.
is to simply comparegLengt h with the number of non-255 Figure 13 presents a comparison of the time/space cost of the
elements; ifgLengt h £ non255, then either this case hasproposed method of this paper with two scenarios of using

Fig. 12. Detect and correct acyclic structures.



the Hamming code for correction of BFs: HC1 represents Several techniques exist for designing fault-tolerantadat
the case where each element mfnext is encoded with structures. Aumanret al. [2] present alternative implemen-
HC, and HC2 denotes the case where the entir@ext tations for pointer-based data structures by adding reatind
is encoded as a single word. Notice that, our approach olitks. Finocchiet al. [7] provide resilient search trees through
performs HC1 in terms of both time and space efficiencggeriodic checkpoints. Jgrgensenal. [11] devise a method
respectively by a factor of 20% and 60%. More importantlyhat ensures the resilience of priority queues by storirigtpo
the required memory (i.e., 103 bytes) is temporary; i.eenvhers in resilient memory locations. By contrast, our apphoac
Det ect Correct () returns this memory is released. Theontinuously monitors a structural invariance and proside
HC2 method seems impractical due to expensive computiregovery if the invariant is violated.

requirements. Future/ongoing work focuses on techniques for the correc-
_ tion of MBFs in multiple variables. Moreover, we would like
Approach Memory Cost | # of Operations . .
Hamming Code for each element of mnext (HC1) 128 Bytes =~ 70000 to Ieverage our preVIOus work [5] on automated addition of
Hamming Code for the entire mnext (HC2) 12 bits ~ 4.17 million fault tolerance for the addition of recovery to data struesu
Proposed Method 103 Bytes 28000 Specifically, our previous work models a state as a unique
Fig. 13. Space/Time cost of correction of BFs. valuation of variables of primitive types (e.g., Booleardan

Scope of correction.The scope of correction in these thredteger). Nonetheless, we need fo create richer models that
methods is different. Figure 14 demonstrates that our ambro capture the topological state of complex data structures. W
can correct multiple bit-flips in a single variable, whichnoat will also work on .models yvhere ,ECC methods and our
be achieved by HC1 and HC2. However, HC1 can corre@PproaCh are used in a hybrid fashion.

single bit-flips in multiple variables, which we do not curtly REFERENCES

have a solution for it. [1] M. Arumugam and S. Kulkarni. Self-stabilizing deternsitic TDMA

for sensor networksDistributed Computing and Internet Technology,

Approach Corrects SBFs | Corrects MBFs | Corrects SBFs | Corrects MBF's pages 69—81, 2005.
] _ in a Variable | in Multi Vars | in Multi Vars [2] Y. Aumann and M. Bender. Fault tolerant data structutesfocs, page
Hel Yos No Yes No 580. Published by the IEEE Computer Society, 1996.
He Yes No No No [3] G. C. Clark and J. B. Cain. Error-Correction Coding for Digital
Proposed Method Yes Yes No No Communications. Springer 1981.

[4] T. Clougueur, P. Ramanathan, K. Saluja, and K. Wang. &/lision
versus decision-fusion for fault-tolerance in collabweatarget detection
in sensor networks. IRProceedings of Fourth International Conference
on Information Fusion. Citeseer, 2001.

[5] A. Ebnenasir. Automatic synthesis of fault-tolerance. PhD thesis,

; Michigan State University, 2005.
Fault tolerance of Det ect Cor r ect () . In case transient [6] A. Ebnenasir and A. Farahat. A lightweight method for caated

faults perturb the local variables and/or the control flow = design of convergence. Ifo appear in the proceedigns of 25th |IEEE
of Det ect Correct (), the current round of execution of International Parallel and Distributed Processing Symposium (IPDPS),

Fig. 14. Scope of correction for Single Bit-Flips (SBFs) and Mulkipl
Bit-Flips (MBFs).

2011.
Det ect Correct () may_ not recover the structu_re of the 7] I. Finocchi, F. Grandoni, and G. ltaliano. Resilient s#m trees.
task queue. However, sincBet ect Correct() is exe- In Proceedings of the eighteenth annual ACM-SIAM symposium on

cuted repeatedly and transient faults eventually stoproicgy Discrete algorithms, pages 547-553. Society for Industrial and Applied

: : Mathematics, 2007.
Det ect Correct () will eventua"y prowde recovery. [8] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, andiler.

The nesC language: A holistic approach to networked emledys-

IV. CONCLUSIONS ANDFUTURE WORK tems. In Proceedings of the ACM SIGPLAN 2003 conference on

We presented a novel method for the detection and correc- ;’(f)%g?’famm'ng language design and implementation, page 11. ACM,

tIOI‘_] of t_ranS|ent BIt-F_le (BF) in the task queue of the TingO [9] R. W. Hamming. Coding and Information Theory. Prentice-Hall, Inc.,
which is the operating system of choice for sensor nodes. upper Saddle River, NJ, USA, 1986.

Since motes have limited Computationa| and energy ressurdéo] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptpmtocols for

] ] information dissemination in wireless sensor networksPiloceedings
instead of using resource redundancy’ the proposed apiproac of the 5th annual ACM/IEEE international conference on Mobile com-

exploits computational redundancy to efficiently recovent puting and networking, pages 174-185. ACM, 1999.

transient BFs that corrupt the contents and the structure (b A Jﬂfge?sel?v EI- M_?r:UZv af(‘diT-t Msﬂ'hafe- Priority qllgﬂ'g”;ég?
. memory taults.Algorithms an ala Jructures, pages —. y .

the task q_ueue' _The_essence of our approach is base_dﬁgp F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vimiedli. Fault

the detection of invalid structures of the queue that might ~ tolerance techniques for wireless ad hoc sensor netweeksors, pages

be created due to transient faults. Upon reaching an invalid 1491-1496, 2002.

] S. Kulkarni and M. Arumugam. Infuse: A TDMA based datas#imina-
structure, we analyze the structure of the task queue tion protocol for sensor networkgnternational Journal of Distributed

determine which failure scenario has occurred and recover Sensor Networks, 2(1):55-78, 2006.
to a valid state. Using this method, we can correct Multipl@4] P- Levis, S. Madden, J. Polastre, R. Szewczyk, K. Wiitisie, A. Woo,

. ] . . D. Gay, J. Hill, M. Welsh, E. Brewer, et al. TinyOS: An openagfisystem
BFs (MBFs) in single-byte variables. We illustrate that the ¢ "< f<or networksAmbient Intelligence, pages 115-148, 2005.

proposed approach can provide a better time/space efficies) 1. S. Reed and G. Solomon. Polynomial codes over ceftrite fields.
with respect to Error Correction Codes such as the Hamming é%ti{nilgggthe Society for Industrial and Applied Mathematics, 8:300—
code [9] (see Figures 13 and 14). ’ :



