CS 5321:
Advanced Algorithms —
Amortized Analysis of

Data Structures

Ali Ebnenasir
Department of Computer Science
Michigan Technological University

Motivations

» Why amortized analysis and when?
» Suppose you have a linked list of sorted
elements
— How difficult is it to find min/max?
« If you do not allow insert/delete operations
on your data structure, then you can count
on the efficiency of théind operation
What happens if you allow insert/delete?
— While maintaining the order
— Without concern for the order

Motivation — cont'd

Insertion/deletion while maintaining the order

— Find min/max remains cheap, whereas insertion/deletion is
expensive

Insertion/deletion without maintaining the order

— Find min/max becomes expensive, whereas insertion/deletiq
is cheap

So, what?

— Well, if we allow cheap insertion/deletion, and periodically
fix things up, then, even if the cost of fix-up is high, we
calculate aramortizedcost for a sequence of
find/insertion/deletion

« Assumption: frequency of insertion/deletion is low

Motivating Example

* Consider a stack with size k, where initial vatife
kis 0

« Once the stack is full, allocate another stack wit
size 2k, and copy all the k elements to the new
stack

* What is theamortizedcost of performing a
sequence of n operations?
— Cost of push and pop is O(1)

Motivating Example — cont'd

« After the i-th expansion,i2 elements must be copies to the new
stack
* What is the total worst case cost for a sequence of n opefation

=
=

Motivating Example:
Calculating Amortized Cost

* How many times do we double the size?

— Logn

What is the cost of each expansion?

_ 21

What is the total cost of expansion?

— Z =1 logn2i-1 =2(ogn)_.1 =n -1

What is the total cost?

-n+n-1<2n

— Thus, we have O(n) total cost for a sequence of n operatio
— Amortized cost = O(1)

12

Problem Statement

« Characterize and analyze the average cost ofdfispe
operationover any sequenad n operations on data
structure

— Even if there are different operations, the amortized sdkei
same for all of them
* What is the difference with the average case ceriiyf?
— Average case:
« over a probability distribution of input
— Amortized:
« no probability is involved; average for a sequeotceperations
— Worst case:
« time complexity for the worst case input

Techniques

» Aggregate
» Accounting
* Potential

Aggregate Analysis - |

» T(n): worst-case cost for n operations
Amortized: T(n) / n

Example: Stack

Operations:

— PUSH(S, x): O(1) each; O(n) for any sequence
of n operations

— POP(S): O(1) each; O(n) for any sequence of n
operations

— MULTIPOP(S, k)

Aggregate Analysis — Stack Examplg

MULTIPOP(S, k)
while S is not empty and £ > 0
do Por(S)
k<—k—1

Linear time in the number of POPs

Number of iterations of while loop?

— min(s, k), where s is the no. of elements on stack
Worst case cost of MULTIPOP?

- O(n)

Thus, worst case cost of a sequence of n opes&tion
- O()

¢ Can we have n consecutive MULTIPOPs?
» Can we think of a tighter bound than @
* How many times each object can be popped in a

e Thus average over n operations is O(1) per

« Aggregate analysis summary

Aggregate Analysis - Stack Example

sequence of n operations?
— n.why?

operation

1. Calculate the worst case cost for a sequence of n
operations

2. Take the average

Aggregate Analysis — Binary Counter

0000 INCREMENT(A, k)
0010 whilei < kand A[i] =1
0011 do A[i] < O

ifi <k

then A[i] < 1
1111

« k is the number of bits

Aggregate Analysis — Binary Counter|

¢ k-bit binary counter

e Alk-1] Alk-2] A[2] A[1] A[0]

« Count upward from 0

 Increment: add 1 in mod<2

« Worst case cost of an increment?
— Number of bit flips; O(k)

* Worst case cost of a sequence of n increments
— O(nk)

« Does all bits flip for every increment?

Aggregate Analysis — Binary Countel

Bit flip frequency timesin n increments
0 every time n

1 1 the time [n/2]

2 Y, the time [n/4l

i 1/2 the time [n/2]

k-1 1/Zthe time Ln/21]

i>=k never 0

total no. of flips =n X, 99" (1/2) <=2n (why?)
« Worst case cost over the sequence = O(n)
* Amortized cost = O(1)

Accounting Method

Accounting Method - |

Taking the average does not seem to reflect the individuabtos
each operation!
Allocate some charge for each operation

— Some maybe charged more than actual cost

— Some maybe charged less than actual cost
Amortized cost = the amount we charge

Credit= amortized cost — actual cost
We can use the credit to compensate the operations whose
amortized cost is less than actual cost

Requirements:

— Always Credit>=0) holds

— l.e.,the amortized cost must be an upper bound of theabecost

How does this method differ from the aggregate method?

— Amortized costs of different operations may notlesame

Accounting Method - Il

¢ What does it mean iQredit< 0)?

— Undercharging an operation with the promise of
repaying the account later

— Amortized cost cannot be an upper bound

 Let g be the actual cost of operatibn

 Let agbe the amortized cost of operation

. ;I;hus, for all sequences ofoperations, we should
ave

Xi"ag-Xi, " g >=0

— l.e., the total credit associated with the data structure
should be nonnegative at all times

Accounting Method — Stack Example

* For each PUSH consider $2 amortized cost
— $1 actual cost of PUSH
— $1 prepayment for POP later on
* What should be the amortized cost of POP and
MULTIPOP?
— Both $0. (Why?)
« CanCreditever become negative?
* What is the amortized cost for n operations?
- 0O(n)
« What is the actual cost?

Accounting Method — Stack Example

* What if we have a stack with size k and we
take a backup after every k operations?

» How would you assign an amortized cost to
each stack operation?
— PUSH > $2 Why?
- POP > $2 Why?
— MULTIPOP = $0 Why?

» CouldCreditgo negative?

Accounting Method — Binary Counter

* How much should we dedicate for setting a bit?o 1
— $2 amortized cost of setting a bit to 1. why?
« Should we charge anything for resetting back to 0?
« Given a value in the counter, how can you caleulat
the current available credit?
* What does this mean?
— Credit is always nonnegative
* What is the amortized cost of n increments?
— O(n) why?

Accounting Method vs. Aggregate

» Aggregate considers a uniform cost for all
operations

» Accounting considers separate costs for
different operations (associates credit to each
operation)

Potential Method

Potential Method - |

In the accounting method, the credit associatezhti
object can only be used to repay for the same bbjec

What if we accumulate the credit as a whole tayejpr
any operation we want?

This way we have more flexibility

Accumulated credit = potential of the data stroetu
Let D, be data structure after operation

Let D, be the initial data structure

Let G be the actual cost of operation

Let ag be the amortized cost of operation

Potential Method - II

Define a potential function
®: D, > R, where

— Ris the set of real numbers ah(D)) is the potential associated to data
structure

Added potential due to i-th operation is
®(D;) - P(D;.,)
Thus, we have ae ¢ + ®(D)) - ?(D,,)
2 "aG =2y "G+ X iy " (D) - (D)
=Zia "G+ ®(D,) - B(Dy Why?
What does this say abo®®

How can we guarantee that the amortized cost is an upper bou
for the actual cost?
— In each step we should ha®¢D)) >= ®(D,)

hd

Potential Method - Stack

* How should we define the potential function faact
operations?

Potential functior®: number of items in stack
— i.e., sum of credits of all items in the accounting method

e What is ®(Dg)?

« Does this alway®(D;) >= ®(Dg) hold? Why?

Potential Method - Stack

Operation G (D) - ®(D,.,) ac
PUSH 1 (s|+1)-1s| =1 2
POP 1 (s|-1) - Is| =-1 0
MULTIPOP k' (Is| - k) -|s| = -k’ 0
where k'=min(k, [s]) and |s| is the number ohgen
stack

* Is amortized cost an upper bound of actual cost

» What is the amortized cost of a sequence of n
operations?

* | leave the binary counter for you as an exercisq

~NJ

Dynamic Tables

Dynamic Tables - |

* Need a table (e.g., hash table), but do not know h
many objects will be stored

« Expand the size of the table when needed
« Contract the table when few items exist
« Can we have an amortized cost O(1) per operation?

¢ Constraint

— the unused space is always less than or equal to a fraction
the allocated space
« In this case, not more than half

Dynamic Tables - II

¢ Letsizebe the size of the table

¢ Letnumbe the number of items stored

¢ Load factora = num/size

¢ if size= 0 thennumwill be 0; then define = 1
* Assume wenly insert new objects

* Double the size of the table once it is full

¢ Constraint: ensure >=1/2

« Elementary insertioninsertions that do not need
expansion

Dynamic Tables - IlI

TABLE-INSERT(T, x)
if size[T]| =0
then allocate rable|T | with 1 slot
size[T] < 1
if num|T| = size|T] > expand?
then allocate new-table with 2 - size[T | slots
insert all items in table[T | into new-table > num|T | elem insertions
free table|T |
table|T| < new-table
size|T] < 2 - size[T]
insert x into table[T | > | elem insertion
num(T | < num[T |+ 1

Initially, num[T | = size[T] = 0.

10

Aggregate Analysis

» What is the actual cost of i-th operation
(denoted §?
—Ifi-1 is a power of 2 then & i
— Otherwise, = 1

* Total cost=% ., "c=n+X ., °9"2 <3n

» Amortized cost per operation = 3

Accounting Analysis

» Consider $3 for each object. Why? (remember we
only insert)
— $1 for insertion
— $1 for moving
— $1 for moving an element that has been moved once.
Why?
* Assume we have m items and just expanded the
table
« The existing m items pay for their move, but can
they pay for the next move?

Potential Method - |

Define a potential function for a table T
— ®(T) = 2 num(T) — size(T)
« Initial state?
-®(M=0
 Just before expansion?
— num = size, thu®(T) = num
¢ Just after expansion?
— num = % size, thu®(T) = 0
¢ Is ®(T) >= 0 always true?
— num >= %; size is always true, th@6T) >= 0 always holds

11

Potential Method - II

Let num be the number of elements in the table after i-th
operation

Let size be the size of the table after i-th operation
Let @, be the potential of the table after i-th operation
Consider possible two cases after i-th operation:

No expansion:

—num=num, +1

— size = size,

-g=1

—aG=Gg+®-d =1+ (2. num-sizg) - (2. num, — size,)
—-ag=3

Potential Method - 1l

Expansion
—num=num, +1
* sizg, =num,; =num -1
— size=2. size,
—G=num
—aG=G+ P -y
=num+ (2. num- sizg) - (2. num, — size,)
=num+ (2. num-2. (hum-1)) - (2. (num-1) —
(num-1))
-ag=3
In the case of only insertion, amortized cost per
operation: O(1)

Expansion —
Potential Function

size; i |num;

12

Expansion & Contraction - |

What if we want to free some unused space wh
the load factor goes below some threshold?
a drops too low, contract the table

— Allocate smaller table

— Copy all items to the new table

Constraint:

— A constant lower bound fer, i.e., load factor cannot
go below a factor of the table size

Cost of elementary insertions and deletions: O(

-
~

« Strategy

« What is the potential problem with this strategy?

Expansion & Contraction - I

— Expand whem =1

— Contract whem is going below %2
e le., Ya=<a <=1

— Thrashing could occur!

— Insert and delete right on the boundary of %2
How do we fix this strategy?

— Y4 =<a <=1

— Double the size whemn=1, after expansion = %2
— Halve the size whem = ¥4 ; after contraction = %2

Expansion & Contraction - Il

How do we ensure that we have enough potential to pay for
expansion/contraction? potential function?

®(T)=

— 2 -nun{T] - sizgT] if a>1/2
— sizdT1/2 —nun|T] if a< 12
Is®(T) >=0?

— Tisempty=®=0

—az% =nunfT] >2%size[T] = ®(T)>=0

—a<¥% =nunfT] <%sizdT] = ®(T)>=0
Intuitively, ®(T) measures how far from = 1/2 we are
- a=% = ®(T)=2-num-2-num=0

-a=1 = ®(T)= 2 -num- num=num

- a=% = ®(T)=size 2 -num=4 -num 2 —num= num

13

Expansion & Contraction - Il

 Cases to be analyzed for amortized cost per
operation

— Insertion/deletion
—oa=>%ora< %
— Expansion/contraction
» Case 1i-th operation is aleleteoperation
— Notation:¢; denotesx after i-th operation
— Subcase 1-1: i;_; < 1/2 andg; < 1/2

Expansion & Contraction - Deletion

» Subcase 1-1 (Delete);_; < ¥2 anda; < Y2
— No contraction
aG=1 +(size/2 —num) — (size_,/2 —num_,)
=1 +(size/2 —num) - (size/2 - (num +1))
=2
— Contraction
ag = (num +1) + (size/2 —num) — (size, /2 —num_,)
» we havesize/2 =size_, /4 =num_, = num +1
ag = (num +1) + ((num +1) —num) - ((2 -num +2) -
(num +1))
=1

Expansion & Contraction - Deletion

Case 2 (Delete): ;_, > 1/2, then no contraction will be
needed
Subcase 2-1g; > 1/2
aG=1+(2 -num -size) - (2 -num_, -size_,)
=1+(2 -num -size¢) — (2 -num +2 —size)
= -1 (Does it make sense?)
Subcase 2-2z, < %2
— thus we havaum =< -sizg-1
aG=1+(size/2 -num) - (2 -num_, -size_,)
=1 +(size/2 —num) - (2 -num +2 - size)
=-1+3/2 sizg -3.num
=<-1+3/2 size -3. (% -sizg-1) =2
Therefore, amortized cost is =< 2

14

Expansion & Contraction - Insertion

* ¢;_; =%, same analysis as before;a3
* 0;_, < % ,n0 expansion
e If g;_, <% andg; < %2

aG= G+ - O,y

=1 +(size/2 —num) — (size_, /2 —num_,)

=1 +(size/2 —num) — (size /2 — (num —-1))
=0

Expansion & Contraction - Insertion

* If g;_, <% andg, >= %
aGg =1 +(2 -num -size) — (size_, /2 —num_,)

=1+2(num_, +1) - size_;) — (size_, /2 — num_,)
=3 -num_, —3/2 .sizg, +3

=3 .0q,_,.Size_,— 3/2 .sizeg_; +3
< 3 (Why?)

» Therefore, amortized cost < 3

15

