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Motivations

• Why amortized analysis and when? 
• Suppose you have a linked list of sorted 

elements
– How difficult is it to find min/max?

• If you do not allow insert/delete operations 
on your data structure, then you can count 
on the efficiency of the find operation

• What happens if you allow insert/delete?
– While maintaining the order
– Without concern for the order

Motivation – cont’d

• Insertion/deletion while maintaining the order
– Find min/max remains cheap, whereas insertion/deletion is 

expensive

• Insertion/deletion without maintaining the order
– Find min/max becomes expensive, whereas insertion/deletion 

is cheap

• So, what?
– Well, if we allow cheap insertion/deletion, and periodically 

fix things up, then, even if the cost of fix-up is high, we 
calculate an amortizedcost for a sequence of 
find/insertion/deletion

• Assumption: frequency of insertion/deletion is low
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Motivating Example

• Consider a stack with size k, where initial value of 
k is 0

• Once the stack is full, allocate another stack with 
size 2k, and copy all the k elements to the new 
stack

• What is the amortizedcost of performing a 
sequence of n operations?
– Cost of push and pop is O(1)

Motivating Example – cont’d

• After the i-th expansion, 2i-1 elements must be copies to the new 
stack

• What is the total worst case cost for a sequence of n operations?

… …

2i

…

… …

n

…

Motivating Example: 
Calculating Amortized Cost

• How many times do we double the size?
– Log n

• What is the cost of each expansion?
– 2i-1

• What is the total cost of expansion?
– ∑ i=1

log n 2i-1 = 2 (log n ) -1 = n -1

• What is the total cost?
– n + n -1 < 2n    

– Thus, we have O(n) total cost for a sequence of n operations

– Amortized cost = O(1)
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Problem Statement

• Characterize and analyze the average cost of a specific 
operation over any sequenceof n operations on a data 
structure
– Even if there are different operations, the amortized cost is the 

same for all of them

• What is the difference with the average case complexity?
– Average case: 

• over a probability distribution of input

– Amortized: 
• no probability is involved; average for a sequence of operations

– Worst case: 
• time complexity for the worst case input

Techniques

• Aggregate

• Accounting

• Potential

Aggregate Analysis - I

• T(n):  worst-case cost for n operations
• Amortized: T(n) / n
• Example:  Stack
• Operations:

– PUSH(S, x): O(1) each; O(n) for any sequence 
of n operations

– POP(S): O(1) each; O(n) for any sequence of n 
operations

– MULTIPOP(S, k)
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Aggregate Analysis – Stack Example

• Linear time in the number of POPs
• Number of iterations of while loop?

– min(s, k), where s is the no. of elements on stack

• Worst case cost of MULTIPOP?
– O(n)

• Thus, worst case cost of a sequence of n operations?
– O(n2)

Aggregate Analysis - Stack Example

• Can we have n consecutive MULTIPOPs?
• Can we think of a tighter bound than O(n2)?
• How many times each object can be popped in a 

sequence of n operations? 
– n. why?

• Thus average over n operations is O(1) per 
operation

• Aggregate analysis summary
1. Calculate the worst case cost for a sequence of n 

operations
2. Take the average

Aggregate Analysis – Binary Counter

0000

0001

0010

0011

0100

…

1111
• k is the number of bits
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Aggregate Analysis – Binary Counter

• k-bit binary counter

• A[k-1] A[k-2]  ….  A[2] A[1] A[0]

• Count upward from 0

• Increment: add 1 in mod 2k-1

• Worst case cost of an increment?
– Number of bit flips; O(k)

• Worst case cost of a sequence of n increments
– O(nk)

• Does all bits flip for every increment?

Aggregate Analysis – Binary Counter
Bit flip frequency times in n increments
0 every time n
1 ½ the time n/2
2 ¼ the time n/4
… … …
i 1/2i the time n/2i
… … …
k-1 1/2k-1the time n/2k-1
i>= k never 0

total no. of flips = n . ∑ i=1
log n (1/2)i <= 2n   (why?)

• Worst case cost over the sequence = O(n)
• Amortized cost = O(1)

Accounting Method
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Accounting Method - I
• Taking the average does not seem to reflect the individual cost of 

each operation!
• Allocate some charge for each operation

– Some maybe charged more than actual cost
– Some maybe charged less than actual cost

• Amortized cost = the amount we charge
• Credit = amortized cost – actual cost
• We can use the credit to compensate the operations whose 

amortized cost is less than actual cost
• Requirements:

– Always (Credit >=0)  holds
– I.e., the amortized cost must be an upper bound of the actual cost

• How does this method differ from the aggregate method?
– Amortized costs of different operations may not be the same

Accounting Method - II

• What does it mean if (Credit< 0)?
– Undercharging an operation with the promise of 

repaying the account later
– Amortized cost cannot be an upper bound

• Let ci be the actual cost of operation i
• Let aci be the amortized cost of operation i
• Thus, for all sequences of n operations, we should 

have ∑ i=1
n aci - ∑ i=1

n ci >= 0

– I.e., the total credit associated with the data structure 
should be nonnegative at all times

Accounting Method – Stack Example

• For each PUSH consider $2 amortized cost
– $1 actual cost of  PUSH
– $1 prepayment for POP later on

• What should be the amortized cost of POP and 
MULTIPOP?
– Both $0. (Why?)

• Can Credit ever become negative?
• What is the amortized cost for n operations?

– O(n)

• What is the actual cost?
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Accounting Method – Stack Example

• What if we have a stack with size k and we 
take a backup after every k operations?

• How would you assign an amortized cost to 
each stack operation? 
– PUSH � $2  Why?

– POP    � $2  Why?

– MULTIPOP � $0  Why?

• Could Creditgo negative?

Accounting Method – Binary Counter

• How much should we dedicate for setting a bit to 1? 
– $2 amortized cost of setting a bit to 1. why?

• Should we charge anything for resetting back to 0?

• Given a value in the counter, how can you calculate 
the current available credit?

• What does this mean?
– Credit is always nonnegative

• What is the amortized cost of n increments?
– O(n) why?

Accounting Method vs. Aggregate

• Aggregate considers a uniform cost for all 
operations

• Accounting considers separate costs for 
different operations (associates credit to each 
operation)
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Potential Method

Potential Method - I
• In the accounting method, the credit associated to each 

object can only be used to repay for the same object

• What if we accumulate the credit as a whole to repay for 
any operation we want?

• This way we have more flexibility

• Accumulated credit = potential of the data structure

• Let Di be data structure after operation i

• Let D0 be the initial data structure 

• Let ci be the actual cost of operation i

• Let aci be the amortized cost of operation i

Potential Method - II
• Define a potential function 
• Φ: Di � R, where 

– R is the set of real numbers and Φ(Di) is the potential associated to data 
structure Di

• Added potential due to i-th operation is 
Φ(Di) - Φ(Di-1)

• Thus, we have aci = ci + Φ(Di) - Φ(Di-1)∑ i=1
n aci = ∑ i=1

n ci + ∑ i=1
n  Φ(Di) - Φ(Di-1)

= ∑ i=1
n ci + Φ(Dn) - Φ(D0) Why?

• What does this say about Φ?
• How can we guarantee that the amortized cost is an upper bound 

for the actual cost?
– In each step we should have Φ(Di) >= Φ(D0)
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Potential Method - Stack
• How should we define the potential function for stack 

operations?

• Potential function Φ: number of items in stack
– i.e., sum of credits of all items in the accounting method

• What is  Φ(D0)?

• Does this always Φ(Di) >= Φ(D0) hold? Why?

Potential Method - Stack

Operation ci ΦΦΦΦ(Di) - ΦΦΦΦ(Di-1) aci

PUSH 1 (|s|+1) – |s| = 1 2
POP 1 (|s|-1) – |s| = -1 0
MULTIPOP k’ (|s| - k’) -|s| = -k’ 0

where  k’= min(k, |s|) and |s| is the number of items in 
stack

• Is amortized cost an upper bound of actual cost?
• What is the amortized cost of a sequence of n 

operations?
• I leave the binary counter for you as an exercise! 

Dynamic Tables
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Dynamic Tables - I

• Need a table (e.g., hash table), but do not know how 
many objects will be stored

• Expand the size of the table when needed

• Contract the table when few items exist

• Can we have an amortized cost O(1) per operation?

• Constraint: 
– the unused space is always less than or equal to a fraction of 

the allocated space
• In this case, not more than half

Dynamic Tables - II

• Let sizebe the size of the table
• Let numbe the number of items stored 
• Load factor  α = num/size
• if size= 0 then numwill be 0; then define α = 1
• Assume we only insert new objects
• Double the size of the table once it is full
• Constraint: ensure α >= 1/2
• Elementary insertion: insertions that do not need 

expansion

Dynamic Tables - III
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Aggregate Analysis

• What is the actual cost of i-th operation 
(denoted ci)?
– If i-1 is a power of 2 then ci = i
– Otherwise, ci = 1

• Total cost = ∑ i=1
n ci = n + ∑ j=1

log n 2j < 3n

• Amortized cost per operation = 3

Accounting Analysis

• Consider $3 for each object. Why? (remember we 
only insert)
– $1 for insertion
– $1 for moving
– $1 for moving an element that has been moved once. 

Why?

• Assume we have m items and just expanded the 
table

• The existing m items pay for their move, but can 
they pay for the next move?

Potential Method - I

• Define a potential function for a table T
– Φ(T) = 2 num(T) – size(T)

• Initial state?
– Φ(T) = 0

• Just before expansion?
– num = size, thus Φ(T) = num

• Just after expansion?
– num = ½ size, thus Φ(T) = 0

• Is Φ(T) >= 0 always true?
– num >= ½ size is always true, thus Φ(T) >= 0 always holds
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Potential Method - II
• Let numi be the number of elements in the table after i-th

operation

• Let sizei be the size of the table after i-th operation

• Let Φi be the potential of the table after i-th operation

• Consider possible two cases after  i-th operation:

• No expansion:
– numi = numi-1 + 1

– sizei = sizei-1
– ci = 1

– aci = ci + Φi - Φi-1 = 1 + (2 . numi - sizei) - (2 . numi-1 – sizei-1)

– aci = 3

Potential Method - III
• Expansion

– numi = numi-1 + 1
• sizei-1 = numi-1 = numi -1 

– sizei = 2 . sizei-1
– ci = numi

– aci = ci + Φi - Φi-1 

= numi + (2 . numi - sizei) - (2 . numi-1 – sizei-1)

= numi + (2 . numi – 2. (numi -1)) - (2 . (numi -1) –
(numi -1))

– aci = 3

• In the case of only insertion, amortized cost per 
operation: O(1)

Expansion –
Potential Function
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Expansion & Contraction - I

• What if we want to free some unused space when 
the load factor goes below some threshold?

• α drops too low, contract the table
– Allocate smaller table

– Copy all items to the new table

• Constraint:
– A constant lower bound for α, i.e., load factor cannot 

go below a factor of the table size 

• Cost of elementary insertions and deletions: O(1)

Expansion & Contraction - II

• Strategy
– Expand when α =1
– Contract when α is going below ½

• I.e., ½ =< α <=1

• What is the potential problem with this strategy?
– Thrashing could occur!
– Insert and delete right on the boundary of ½

• How do we fix this strategy?
– ¼ =< α <=1
– Double the size when α =1; after expansion α = ½
– Halve the size when α = ¼ ; after contraction α =  ½

Expansion & Contraction - III
• How do we ensure that we have enough potential to pay for 

expansion/contraction? potential function?
• Φ(T ) = 

– 2 ·num[T ] − size[T] if   α ≥ 1/2 
– size[T ]/2 −num[T] if   α < 1/2 

• Is Φ(T ) >= 0?
– T is empty⇒ Φ = 0
– α ≥ ½ ⇒ num[T] ≥ ½ size[T] ⇒ Φ(T ) >= 0
– α < ½ ⇒ num[T] < ½ size[T] ⇒ Φ(T ) >= 0

• Intuitively, Φ(T ) measures how far from α = 1/2 we are
– α = ½ ⇒ Φ(T ) = 2 ·num − 2 ·num = 0
– α = 1 ⇒ Φ(T ) = 2 ·num − num = num
– α = ¼ ⇒ Φ(T ) = size /2 −num = 4 ·num /2 −num = num
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Expansion & Contraction - III

• Cases to be analyzed for amortized cost per 
operation
– Insertion/deletion

– α ≥ ½ or α < ½

– Expansion/contraction

• Case 1: i-th operation is a deleteoperation
– Notation: αi denotes α after i-th operation

– Subcase 1-1: If αi−1 < 1/2 and αi < 1/2

Expansion & Contraction - Deletion

• Subcase 1-1 (Delete): αi−1 < ½ and αi < ½
– No contraction

aci = 1 + (sizei /2 − numi ) − (sizei−1/2 −numi−1)

= 1 + (sizei /2 − numi ) − (sizei /2 − (numi +1))

= 2 

– Contraction
aci = (numi +1) + (sizei /2 −numi) − (sizei-1 /2 − numi-1)

» we have sizei /2 = sizei−1 /4 = numi−1 = numi +1

aci = (numi +1)  + ((numi +1) − numi ) − ((2 ·numi +2) −
(numi +1))

= 1 

Expansion & Contraction - Deletion
• Case 2 (Delete): If αi−1 ≥ 1/2, then no contraction will be 

needed
• Subcase 2-1: αi ≥ 1/2

aci = 1 + (2 ·numi −sizei ) − (2 ·numi−1 −sizei−1)
= 1 + (2 ·numi −sizei) − (2 ·numi +2 −sizei )
= −1  (Does it make sense?)

• Subcase 2-2: αi < ½
– thus we have numi =< ½ ·sizei −1 

aci = 1 + (sizei /2 − numi ) − (2 ·numi−1 −sizei−1)
= 1 + (sizei /2 −numi ) − (2 ·numi +2 − sizei )
= −1 + 3/2 . sizei - 3 . numi

=< −1 + 3/2 . sizei - 3 . (½ ·sizei −1) = 2

• Therefore, amortized cost is =< 2
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Expansion & Contraction - Insertion

• αi−1 ≥ ½ , same analysis as before; aci = 3

• αi−1 < ½ , no expansion 

• If αi−1 < ½ and αi < ½
aci = ci + Φi - Φi-1 

= 1 + (sizei /2 −numi ) − (sizei−1 /2 −numi−1)

= 1 + (sizei /2 −numi ) − (sizei /2 − (numi −1))

= 0

Expansion & Contraction - Insertion

• If αi−1 < ½ and αi >= ½
aci = 1 + (2 ·numi −sizei) − (sizei−1 /2 − numi−1)

= 1 + (2(numi−1 +1) − sizei−1 ) − (sizei−1 /2 − numi−1)

= 3 ·numi−1 − 3/2 . sizei−1  + 3

= 3 ·αi−1 . sizei−1 − 3/2 . sizei−1  + 3

<  3  (Why?)

• Therefore, amortized cost < 3


