
Greedy Algorithms – Cont’d

Making Change

Example: Making Change

• Input
– Positive integer n

• Task
– Compute the minimum number of minimal multisets of 

coins from C = {d1, d2, d3, …, dk} such that the sum of all 
coins chosen equals n

• Example
– n = 73, C = {1, 3, 6, 12, 24}

– Solution: 3 coins of size 24, 1 coin of size 1

Dynamic Programming Solution 1

• Subsolutions: T(j) for 0 ≤ j ≤ n
• Recurrence relation

– T(n) = mini (T(i) + T(n-i))
– T(di) = 1
– Linear array of values to compute

• Time complexity of computing each entry?



Dynamic Programming Solution 2

• Subsolutions: T(j) for 0 ≤ j ≤ n

• Recurrence relation
– T(n) = mini (T(n-di) + 1)

• There has to be a “first/last” coin

– T(di) = 1

– Linear array of values to compute
• Time complexity of computing each entry?

Greedy Solution

• From dynamic programming 2: 

T(n) = mini (T(n-di) + 1)

• Key observation
– For many (but not all) sets of coins, the optimal choice for 

the first/last coin di will always be the maximum possible di

– That is, T(n) = T(n-dmax) + 1 where dmax is the largest di ≤ n

• Algorithm
– Choose largest di smaller than n and recurse

Comparison

T(n)

DP 1: T(k) T(n-k)

DP 2: di T(n-di)

Greedy: dmax T(n-dmax)dmax dmax



Example 1: Making Change Proof 1

• Greedy is optimal for coin set C = {1, 3, 9, 27, 81}

• Structural property of any optimal solution:
– In any optimal solution, the number of coins of 

denomination 1, 3, 9, and 27 must be at most 2.

– Why?

• This structural property immediately leads to the 
fact that the greedy solution must be optimal
– Why?

Example 1: Making Change Proof 2

• Greedy is optimal for coin set C = {1, 3, 9, 27, 81}
• Let S be an optimal solution and G be the greedy solution
• Let Ak denote the number of coins of size k in solution A
• Let  kdiff be the largest value of k s.t. Gk ≠ Sk

• Claim 1: Gkdiff > Skdiff.  Why?
• Claim 2: For some di < dkdiff , we should have Si ≥ 3. Why?
• Claim 3: We can create a better solution than S by 

performing a “swap”.  What swap?
• These three claims imply kdiff does not exist and Gk is 

optimal.

Proof that Greedy is NOT optimal

• Consider the following coin set
– C = {1, 3, 6, 12, 24, 30}

• Prove that greedy will not produce an 
optimal solution 

• What about the following coin set?
– C = {1, 5, 10, 25, 50}



Greedy Technique

• When trying to solve a problem, make a local 
greedy choice that optimizes progress towards 
global solution and recurse

• Implementation/running time analysis is typically 
straightforward
– Often implementation involves use of a sorting 

algorithm or a data structure to facilitate 
identification of next greedy choice

• Proof of optimality is typically the hard part

Proofs of Optimality
• We will often prove some structural properties about an 

optimal solution
– Example: Every optimal solution to the activity selection 

problem has a task with earliest end time

• We will often prove that an optimal solution is the one 
generated by the greedy algorithm
– If we have an optimal solution that does not obey the greedy 

constraint, we can “swap” some elements to make it obey the 
greedy constraint

• Always consider the possibility that greedy is not 
optimal and consider counter-examples

Exercise: 
Minimizing Sum of Completion Times
• Input

– Set of n jobs with lengths xi

• Task
– Schedule these jobs on a single processor so that the 

sum of all job completion times are minimized

• Example
– {2, 1, 3}
– Solution: 

Completion times: 3, 1, 6 for a sum of 10

• Develop a greedy strategy and prove it is optimal



Questions

• What is the running time of your algorithm?

• Does it ever make sense to preempt a job?  That 
is, start a job, interrupt it to run a second job 
(and possibly others), and then finally finish the 
first job?

• Can you develop a swapping proof of 
optimality for your algorithm?


