CS 5321:

Advanced Algorithms – NP-completeness of Some Number Theory Problems

Ali Ebnenasir Department of Computer Science Michigan Technological University

Ac	know	ledg	ement
110	CIIO W	icug	CHICH

- Abdulhossein Esfahanian
- Hector A. Villa-Martine

Number Problems

- Problems where the inputs are numbers
 - Prime number problem:
 - Input: Integer n
 - Yes/No Question: Is n prime?
 - Partition problem

 - Input: Set S of n numbers {s₁, ..., s_n}
 Yes/No Question: Is there an S' subset of S such that the sum of numbers in S' = the sum of numbers in S S'.
- What is the input size for these problems?

PARTITION is NP-complete

- PARTITION
 - **Input**: Set S of n numbers $\{s_1, ..., s_n\}$
 - Yes/No Question:
 - Is there an S' subset of S such that the sum of numbers in S' = the sum of numbers in S S'?
- 3DM \leq_p PARTITION

Integer Programming (IP)

Instance: A set v of integer variables, a set of inequalities over these variables, a function f(v) to maximize, and integer B.

Question: Does there exist an assignment of integers to ν such that all inequalities are true and $f(\nu) \ge B$?

Example:

$$v_1 \ge 1, \ v_2 \ge 0$$

 $v_1 + v_2 \le 3$
 $f(v) = 2v_2 \ ; \ B = 3$

5

Is Integer Programming (IP) NP-Hard?

Theorem: Integer Programming is NP-Hard

Proof: By reduction from Satisfiability (SAT \leq_p IP)

- Take an instance of SAT; includes Boolean variables and
- The IP instance has twice as many variables, one for each variable and its compliment, as well as the following inequalities:

$$0 \le v_i \le 1$$
 and $0 \le \neg v_i \le 1$
 $1 \le v_i + \neg v_i \le 1$

for each clause $C = \{v_1, \neg v_2, \dots v_i\} : v_1 + \neg v_2 + \dots + v_i \ge 1$

Reduction

SAT is satisfiable $\underline{\mathbf{iff}}$ the answer to the IP problem is affirmative

1. Left-to-Right proof:

In any SAT solution, a TRUE literal corresponds to a 1 in IP since, if the expression is SATISFIED, at least one literal per clause is TRUE, so the inequality sum is > 1.

2.Right-to-Left proof:

Given a solution to this IP instance, all variables will be 0 or 1. Set the literals corresponding to 1 as TRUE and 0 as FALSE. No boolean variable and its complement will both be true, so it is a legal assignment with also must satisfy the clauses.

7

Observations

- We proved the NP-hardness of a special case of IP
- The transformation captures the essence of why IP is hard it has nothing to do with big coefficients or big ranges on variables; restricting to 0/1 is enough. A reduction tells us a lot about a problem.
- How easy it is to show the NP membership of IP?

8

The Subset Sum (SS) Problem

- Inputs:
 - Set S of numbers.
 - Number *T* called the *target*.
- Output
 - Yes, if S has a subset S' such that: $\sum S'(i) = T$.
 - No, if no such subset exist.
- Brute-force solution:
 - Compute all possible subsets of S and verify

•	
٠	
•	
•	
•	
•	
•	
•	
•	
•	
٠	

- Inputs:
 - $-S = \{10, 9, 15, 22, 39, 5, 15\}$
 - T = 47
- Output:
 - Yes, because $\{15, 22, 5\}$ is a subset of S and 15 + 22 + 5 = 42

Subset Sum is NP-Complete

- Subset Sum (SS) is in NP
 - What is a certificate?
- Verifiable in polynomial time?
- $3-SAT \leq_p SS$

3-SAT

The 3-SAT problem:

- 3-CNF formula φ has:
 - k clauses $C_1, C_2, ..., C_k$
 - n propositional variables $x_1, x_2, ..., x_n$
- φ has the form $\varphi = C_1 \wedge C_2 \wedge ... \wedge C_k$.
 - Each clause C_i has at most three variables $C_i = l_i \lor l_j \lor l_k$, where $i \neq j \neq k$ and l_i is a literal denoting x_i or $\neg x$.
- $-x_i$ and $\neg x_i$ cannot be in the same clause
- Each variable x_i appears in at least one clause.

Example of 3-CNF formula

$$\varphi = C_1 \land C_2 \land C_3 \land C_4$$

$$C_1 = x_1 \lor \neg x_2 \lor \neg x_3$$

$$C_2 = \neg x_1 \lor \neg x_2 \lor \neg x_3$$

$$C_3 = \neg x_1 \lor \neg x_2 \lor x_3$$

$$C_4 = x_1 \lor x_2 \lor x_3$$

Polynomial Reduction from 3-SAT $(3-SAT \le_p SS)$

- *Input*: an instance of 3-SAT
- *Output*: an instance of SS; i.e., a set *S* of numbers and one target number *T*.
- Mapping:
 - For each variable x_i , consider two numbers v_i and v'_i
 - For each clause C_j , consider two numbers s_j and $s^{\prime}_{\ j}$
 - The format of each number is $v_1 \dots v_n C_1 \dots C_k$
 - -|S| = 2(n + k) numbers in base 10 each with (n + k) digits

Mapping: Example

Using the same example with 3 variables x_1 , x_2 , x_3 and 4 clauses C_1 , C_2 , C_3 , C_4 :

$$\varphi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

$$C_1 = x_1 \lor \neg x_2 \lor \neg x_3$$

$$C_2 = \neg x_1 \lor \neg x_2 \lor \neg x_3$$

$$C_3 = \neg x_1 \lor \neg x_2 \lor x_3$$

$$C_4 = x_1 \lor x_2 \lor x_3$$

Mapping Table

- Table (part 1):
- v_i and v'_i comes from x_i , $1 \le i \le 3$

	<i>x</i> ₁	<i>x</i> ₂	X ₃	C ₁	C ₂	C ₃	C ₄
Т							
<i>V</i> ₁							
<i>V</i> ₁							
<i>V</i> ₂							
V ₂							
<i>V</i> ₃							
<i>V</i> ₃							

Mapping Table

- Table (part 2):
- s_j and s'_j comes from C_j , $1 \le j \le 4$
- · Target value:
 - T has 1 for each x_i and 4 for each C_i

	<i>x</i> ₁	<i>x</i> ₂	X ₃	C ₁	C ₂	C ₃	C_4
S ₁							
s' ₁							
S ₂							
s' ₂							
s ₃							
s' ₃							
s_4							
s' ₄							

Mapping Table

- Fill rows for v_i and v'_i.
 v_i and v'_i has 1 in column x_i and 0 otherwise.

	<i>x</i> ₁	<i>x</i> ₂	X ₃	C ₁	C_2	C_3	C_4
Т	1	1	1	4	4	4	4
<i>v</i> ₁	1	0	0				
<i>V</i> ₁	1	0	0				
<i>V</i> ₂	0	1	0				
V ₂	0	1	0				
<i>V</i> ₃	0	0	1				
<i>V</i> ₃	0	0	1				

Mapping Table

- · Corresponding to clauses:
 - v_i has 1 in column C_j if x_i appears in C_j , and 0 otherwise.
 - $-v_i$ has 1 in column C_i if $\neg x_i$ appears in C_j , and 0

$C_1 = x_1 \lor \neg x_2 \lor \neg x_3$
$C_2 = \neg x_1 \lor \neg x_2 \lor \neg x_3$
$C_3 = \neg x_1 \lor \neg x_2 \lor x_3$

C_4	=	x_1	$\vee x$	$\vee x_2$

	<i>x</i> ₁	<i>x</i> ₂	X ₃	C ₁	C ₂	C ₃	C ₄
Т	1	1	1	4	4	4	4
<i>V</i> ₁	1	0	0	1	0	0	1
V ₁	1	0	0	0	1	1	0
<i>V</i> ₂	0	1	0	0	0	0	1
<i>V</i> ₂	0	1	0	1	1	1	0
<i>V</i> ₃	0	0	1	0	0	1	1
<i>V</i> ₃	0	0	1	1	1	0	0

Reduction from SAT (14/15)

- For s_j and s'_j:
 s_j has 1 in column C_j, and 0 otherwise
- s'_i has 2 in column C_i , and 0 otherwise

	<i>x</i> ₁	<i>x</i> ₂	X ₃	C ₁	C ₂	C ₃	C ₄
S ₁	0	0	0	1	0	0	0
s' ₁	0	0	0	2	0	0	0
S ₂	0	0	0	0	1	0	0
s' ₂	0	0	0	0	2	0	0
S ₃	0	0	0	0	0	1	0
s' ₃	0	0	0	0	0	2	0
S ₄	0	0	0	0	0	0	1
s' ₄	0	0	0	0	0	0	2

SS Instance: Example

- Interpret each row as a base 10 integer.
- $S = \{1001001, 1000110, 100001, 101110,$ 10011, 11100, 1000, 2000, 100, 200, 10, 20, 1, 2}.
- *T* = 1114444.

Reduction Correctness

- Claim:
 - The 3-SAT formula, φ , is satisfiable **if and only if** there is a subset $S' \subseteq S$ whose sum is T

Left-to-Right Proof

- Suppose there is an assignation to $x_1, x_2, ..., x_n$, such that φ evaluates to true
- If $x_i = true$, then include v_i in S'
- If $x_i = false$, then include v'_i in S'

Left-to-Right Proof: Example

- $x_1 = 0, x_2 = 0, x_3 = 1$
- $S' = \{v_1', v_2', v_3\}$
- Z has the sum of the elements in S'.
- T is the target.
- We need to find how to make Z = T.
- $\varphi = C_1 \land C_2 \land C_3 \land C_4$
 - $C_1 = x_1 \lor \neg x_2 \lor \neg x_3$
 - $C_2 = \neg x_1 \lor \neg x_2 \lor \neg x_3$
 - $C_3 = \neg x_1 \lor \neg x_2 \lor x_3$
 - $C_4 = x_1 \lor x_2 \lor x_3$

	x ₁	X ₂	X ₃	C ₁	C ₂	C ₃	C ₄
<i>v</i> ₁	1	0	0	0	1	1	0
v ₂	0	1	0	1	1	1	0
V ₃	0	0	1	0	0	1	1
z	1	1	1	1	2	3	1
Т	1	1	1	4	4	4	4

Left-to-Right Proof: Example

Claim:

In Z, the digits corresponding to variables are 1.

Reason:

S' includes v_i or v'_i , but not both.

_								
ſ		<i>x</i> ₁	x ₂	<i>X</i> ₃	C ₁	C ₂	C ₃	C ₄
Γ	v' ₁	1	0	0	0	1	1	0
Γ	V ₂	0	1	0	1	1	1	0
ſ	<i>V</i> ₃	0	0	1	0	0	1	1
ſ	Z	1	1	1	1	2	3	1
Γ	Т	1	1	1	4	4	4	4

Left-to-Right Proof

Claim

In Z, the digits corresponding to clauses are 1, 2, or 3.

Reason

- v_i has 1 in column C_j if x_i appears in C_j , and 0 otherwise.
- v'_i has 1 in column C_j if $\neg x_i$ appears in C_j , and 0 otherwise.

Clause C_j has 3 variables.

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	C ₁	C ₂	C ₃	C ₄
Ì	v' ₁	1	0	0	0	1	1	0
l	v ₂	0	1	0	1	1	1	0
Ī	<i>V</i> ₃	0	0	1	0	0	1	1
I	Z	1	1	1	1	2	3	1
	Т	1	1	1	4	4	4	4

Left-to-Right Proof

How Z can be equal to T?

- Use "filler" variables s_j to make Z equal to T
- Until now
 - -Z = 1111231
 - -T = 1114444

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	C ₁	C ₂	C ₃	C ₄
V ₁	1	0	0	0	1	1	0
V ₂	0	1	0	1	1	1	0
<i>V</i> ₃	0	0	1	0	0	1	1
Z	1	1	1	1	2	3	1
Т	1	1	1	4	4	4	4

Left-to-Right Proof

- s_j has 0 in digits from variables.
- s_j has 1 or 2 in digits from clauses.
- We can add both s_j and s'_j

	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	C ₁	C ₂	C ₃	C ₄
S ₁	0	0	0	1	0	0	0
s' ₁	0	0	0	2	0	0	0
S ₂	0	0	0	0	1	0	0
s' ₂	0	0	0	0	2	0	0
S ₃	0	0	0	0	0	1	0
s' ₃	0	0	0	0	0	2	0
S ₄	0	0	0	0	0	0	1
s' ₄	0	0	0	0	0	0	2

Left-to-Right Proof

- 1. Add V_i to S' which are in the solution to φ .
- 2. Use filler variables

 $S' = \{1000110, 101110, 10011, 1000, 2000, 200, 10, 1, 2\}$ Z = T

Q.E.D. (quod erat demonstrandum)

	<i>x</i> ₁	x ₂	<i>X</i> ₃	C ₁	C ₂	C ₃	C ₄
V ₁	1	0	0	0	1	1	0
\vec{v}_2	0	1	0	1	1	1	0
<i>V</i> ₃	0	0	1	0	0	1	1
S ₁	0	0	0	1	0	0	0
S'1	0	0	0	2	0	0	0
S'2	0	0	0	0	2	0	0
S_3	0	0	0	0	0	1	0
S ₄	0	0	0	0	0	0	1
S' ₄	0	0	0	0	0	0	2
Z	1	1	1	4	4	4	4
Т	1	1	1	4	4	4	4

Right-to-Left Proof

- Suppose there is a subset $S' \subseteq S$ that sums to T.
 - -T is written as n 1's followed by k 4's
- Claim: There exists a truth-value assignment to x_i that satisfies φ

Right-to-Left Proof

- The *n* most significant digits of *T* are 1 (remember *T* is 1111...4444).
- Thus subset S' includes either v_i or v'_i for i = 1, 2, ..., n

	X,,1	X _i	<i>X</i> _{i+1}	Ci	Cj
V_{i-1}	1	0	0		
V _{i-1}	1	0	0		
V _i	0	1	0		
V_i	0	1	0		
V _{i+1}	0	0	1		
V _{i+1}	0	0	1		
Т	1	1	1	4	4

Right-to-Left Proof

Truth-value assignment:

- if $v_i \in S$ '
 - $-x_{i} = 1$
- If $v'_i \in S'$
 - $-x_{i}=0$
- Claim:
 - This assignment satisfies φ .

Right-to-Left Proof

In the *k* least significant digits of *T*

- The "filler" variables sum up at most to 3
- Thus, the digit corresponding to C_j in T, must include at least one v_i or v'_i.

	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	C ₁	C ₂	C ₃	C ₄
S ₁	0	0	0	1	0	0	0
s' ₁	0	0	0	2	0	0	0
S ₂	0	0	0	0	1	0	0
s'2	0	0	0	0	2	0	0
S ₃	0	0	0	0	0	1	0
s' ₃	0	0	0	0	0	2	0
S ₄	0	0	0	0	0	0	1
s' ₄	0	0	0	0	0	0	2
Т	1	1	1	4	4	4	4

Right-to-Left Proof

If $v_i \in S$ ' then $x_i = 1$ and C_j is satisfied since $C_j = (\dots \lor x_i \lor \dots)$

	<i>X</i> _{i-1}	X _i	<i>X</i> _{i+1}	C _{j-1}	Cj	C_{j+1}
V _i	0	1	0	0	1	0
Filler	0	0	0	3	3	3
T	1	1	1	4	4	4

Right-to-Left Proof

If $v'_i \in S'$ then $x_i = 0$ and C_i is satisfied since $C_j =$ $(\dots \vee \neg x_i \vee \dots)$ Q.E.D.

	<i>X</i> _{i-1}	X _i	<i>X</i> _{i+1}	C _{j-1}	Cj	C _{j+1}
v'i	0	1	0	0	1	0
Filler	0	0	0	3	3	3
T	1	1	1	4	4	4

Knapsack Problem

- 0-1 Knapsack optimization problem
 - Input
 - Capacity K
 n items with weights w_i and values v_i

 Yes/No Question
 - - Find a set of items S such that
 - the sum of weights of items in S is at most K
 the sum of values of items in S is maximized
- We gave a polynomial-time dynamic programming solution for this problem
- Show that Partition ≤ p Knapsack
 Is this a contradiction?

Defining subproblems

- Define P(i,w) to be the problem of choosing a set of objects from the *first* i objects that maximizes value subject to weight constraint of w.
 - Impose an arbitrary ordering on the items
- V(i,w) is the value of this set of items
- Original problem corresponds to V(n, K)

Recurrence Relation/Running Time

- $V(i,w) = \max (V(i-1,w-w_i) + v_i, V(i-1, w))$
 - A maximal solution for P(i,w) either
 - uses item i (first term in max)
 - or does NOT use item i (second term in max)
- V(0,w) = 0 (no items to choose from)
- V(i,0) = 0 (no weight allowed)
- What is the running time of this solution?
 - Number of table entries:
 - Time to fill each entry:

Example

$$w_A = 2$$
 $v_A = 40
 $w_B = 3$ $v_B = 50

$$w_C = 1$$
 $v_C = 100

$$w_D = 5 \quad v_D = \$95$$

$$w_E = 3 \quad v_E = \$30$$

		Α	В	C	D	Е
	1	\$0	\$0	\$100	\$100	\$100
	2	\$40	\$40	\$100	\$100	\$100
	3	\$40	\$50	\$140	\$140	\$140
ht	4	\$40	\$50	\$150	\$150	\$150
Weight	5	\$40	\$90	\$150	\$150	\$150
Νe	6	\$40	\$90	\$190	\$195	\$195
	7	\$40	\$90	\$190	\$195	\$195
	8	\$40	\$90	\$190	\$235	\$235
	9	\$40	\$90	\$190	\$245	\$245
	10	\$40	\$90	\$190	\$245	\$245

Items

Weak NP-completeness

- An NP-complete problem is called "weakly NP-complete" if it has in its description one or more integer parameters and the corresponding problem where these parameters are represented in unary is in P.
- An NP-complete problem is strongly NP-complete if the problem is still NP-complete even if integer parameters are encoded in unary

Select the Right Source Problem

3-SAT: The old reliable. When none of the other problems seem to work, this is the one to come back to.

Integer Partition: A good choice for *number* problems.

- **3-Partition**: A good choice for proving "*strong*" NP-completeness for *number* problems.
 - Strongly NP-complete: A problem that remains NP-complete even if its numerical parameters are bounded by a polynomial in input size.

Vertex Cover: A good choice for selection problems.

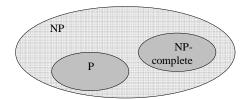
Hamiltonian Path: A good choice for *ordering* problems.

Minimum Set Cover

Problem: Given a family F of subsets $\{S_1, S_2, ..., S_m\}$ of a universal set $U = \{u_1, u_2, ..., u_n\}$ and an integer k, is it possible to choose only k elements of F such that the union of these elements is U.

- NP membership?
 - \bullet given a subset of sets, we can count them, and show that all elements of U are included.
- NP-hardness?
 - •What problem should we choose to reduce this time?

State of Knowledge (assuming $P \neq NP$)



If $P \neq NP$ then $NPI = NP - (P \cup NP\text{-complete}) \neq \phi$

NPI is the class of problems having intermediate complexity

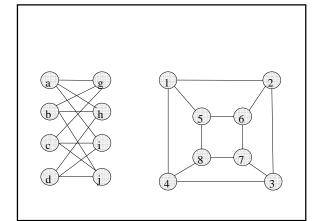
Class of NPI Problems

- Assuming P ≠NP
 - Any language in NP that is not known to be in P and there is not NP-hardness proof for it yet
 - Certain problems that have withstood the test of time
 - · Graph Isomorphism
 - · Composite numbers
 - · Linear programming

GRAPH ISOMORPHISM (GI)

- INSTANCE: Graphs G=(V, E) and G'=(V, E')
- DECISION:
 - Are G and G' isomorphic?
 - Is there a one-to-one function $f: V \rightarrow V$ such that $(u, v) \in E$ if and only if $(f(u), f(v)) \in E$?
- NP membership?
- NP-hardness?

_			
-			
-			
-			
_			
-			
_			
-			
_			
-			
_			
_			
-			
_	 	 	



SUB-GRAPH ISOMORPHISM (SGI)

- INSTANCE: Graphs G1=(V1, E1) and G2=(V2, E2)
- DECISION:
 - Does G1 have a sub-graph isomorphic to G2?
- NP membership?
- NP-hardness?
 - CLIQUE is a special case of SGI!
 - Thus SGI is NP-hard!

GRAPH ISOMORPHISM (GI)

- INSTANCE: Graphs G=(V, E) and G'=(V, E')
- DECISION:
 - Are G and G' isomorphic?
 - Is there a one-to-one function $f \colon V \to V$ such that $(u, v) \in E$ if and only if $(f(u), f(v)) \in E$?
- After so many years, we do not yet know whether GI is in P or NP-complete.
- What is it about GI?

GRAPH ISOMORPHISM (GI)

- · GI is much more constrained than already known NP-complete problems
- When reducing a known problem to an unknown problem, we seem to need some redundancy in the target problem
- GI lacks such a redundancy!
 - For example, in SGI, adding new edges to G1 does not affect the fact that G1 includes (or does not include) a subgraph isomorphic to G2
 - · We do not have such a leeway with GI!

Complement Problems

- The complement of a problem is the problem with reverse answers to the decision problem
- E.g., what is the complement of SAT, CLIQUE, VERTEX COVER, etc.
- co-NP: class of all problems whose complement is in NP
- co-P: class of all problems whose complement is in P
- What is co-NP-complete?

NP vs. co-NP NP co-NP NPcomplete complete

Conjecture: $co-NP \neq NP$ If $co-NP \neq NP$ then $P \neq NP$

If the complement of an NP-complete problem is in NP, then

co-NP = NP. Why?

COMPOSITE NUMBERS

- INSTANCE: Positive integer K
- DECISION:
 - Are there integers x and y such that K = x. y?
- What is the complement of COMPOSITE?
 - PRIMES
- Both are in NP!
- Unlikely that COMPOSITE is NP-complete!
- COMPOSITE was consider to be an NPI problem until 2002.
- In fact, now that we know PRIMES is in P, COMPOSITE is in P as well!

Summary: Polynomial or Exponential?

P NP-Complete
Shortest Path Longest Path
Eulerian Circuit Hamiltonian Cycle
Edge Cover Vertex Cover

53