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Abstract. We consider the mathematical properties of a model for the simulation of the large
eddies in turbulent viscous, incompressible, electrically conducting flows. We prove existence and
uniqueness of solutions for the simplest (zeroth) closed MHD model (1.7), we prove that the solutions
to the LES-MHD equations converge to the solution of the MHD equations in a weak sense as the
averaging radii converge to zero, and we derive a bound on the modeling error. Furthermore, we
show that the model preserves the properties of the 3D MHD equations. In particular, we prove
that the kinetic energy and the magnetic helicity of the model are conserved, while the model’s cross
helicity is approximately conserved and converges to the cross helicity of the MHD equations as the
radii δ1, δ2 tend to zero. Also, the model is proven to preserve the Alfvén waves, with the velocity
converging to that of the MHD, as δ1, δ2 tend to zero.
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1. Introduction.
Magnetically conducting fluids arise in important applications including plasma

physics, geophysics and astronomy. In many of these, turbulent MHD (magnetohydro-
dynamics [2]) flows are typical. The difficulties of accurately modeling and simulating
turbulent flows are magnified many times over in the MHD case. They are evinced
by the more complex dynamics of the flow due to the coupling of Navier-Stokes and
Maxwell equations via the Lorentz force and Ohm’s law.

Direct numerical simulation of a 3d turbulent flow typically requires O(Re9/4)
mesh points in space per time step, and thus is often not computationally economical
or even feasible. On the other hand, the largest structures in the flow (containing
most of the flow’s energy) are responsible for much of the mixing and most of the
flow’s momentum transport. This led to various numerical regularizations; one of
these is Large Eddy Simulation (LES) [29], [20], [8]. It is based on the idea that the
flow can be represented by a collection of scales with different sizes, and instead of
trying to approximate all of them down to the smallest one, one defines a filter width
δ > 0 and computes only the scales of size bigger than δ (large scales), while the effect
of the small scales on the large scales is modeled. This reduces the number of degrees
of freedom in a simulation and represents accurately the large structures in the flow.

In this report we consider the problem of modeling the motion of large structures
in a viscous, incompressible, electrically conducting, turbulent fluid.

The MHD equations are related to engineering problems such as plasma con-
finement, controlled thermonuclear fusion, liquid-metal cooling of nuclear reactors,
electromagnetic casting of metals, MHD sea water propulsion.

The flow of an electrically conducting fluid is affected by Lorentz forces, induced
by the interaction of electric currents and magnetic fields in the fluid. The Lorentz
forces can be used to control the flow and to attain specific engineering design goals
such as flow stabilization, suppression or delay of flow separation, reduction of near-
wall turbulence and skin friction, drag reduction and thrust generation. There is a
large body of literature dedicated to both experimental and theoretical investigations
on the influence of electromagnetic force on flows (see e.g., [18, 25, 26, 17, 37, 13, 38,
19, 33, 7]). The MHD effects arising from the macroscopic interaction of liquid metals
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with applied currents and magnetic fields are exploited in metallurgical processes
to control the flow of metallic melts: the electromagnetic stirring of molten metals
[27], electromagnetic turbulence control in induction furnaces [39], electromagnetic
damping of buoyancy-driven flow during solidification [28], and the electromagnetic
shaping of ingots in continuous casting [30].

The mathematical description of the problem proceeds as follows. Assuming the
fluid to be viscous and incompressible, the governing equations are the Navier- Stokes
and pre-Maxwell equations, coupled via the Lorentz force and Ohm’s law (see e.g.
[32]). Let Ω = (0, L)3 be the flow domain, and u(t, x), p(t, x), B(t, x) be the velocity,
pressure, and the magnetic field of the flow, driven by the velocity body force f and
magnetic field force curl g. Then u, p, B satisfy the MHD equations:

ut +∇ · (uuT )− 1
Re

∆u +
S

2
∇(B2)− S∇ · (BBT ) +∇p = f,

Bt +
1

Rem
curl(curl B) + curl (B × u) = curl g,

∇ · u = 0,∇ ·B = 0,

(1.1)

in Q = (0, T )× Ω, with the initial data:

u(0, x) = u0(x), B(0, x) = B0(x) in Ω, (1.2)

and with periodic boundary conditions (with zero mean):

Φ(t, x + Lei) = Φ(t, x), i = 1, 2, 3,

∫

Ω

Φ(t, x)dx = 0, (1.3)

for Φ = u, u0, p, B,B0, f, g.
Here Re, Rem, and S are nondimensional constants that characterize the flow:

the Reynolds number, the magnetic Reynolds number and the coupling number, re-
spectively. For derivation of (1.1), physical interpretation and mathematical analysis,
see [10, 21, 31, 16] and the references therein.

If aδ1 , aδ2 denote two local, spacing averaging operators that commute with the
differentiation, then averaging (1.1) gives the following non-closed equations for uδ1 ,

B
δ2

, pδ1 in (0, T )× Ω:

uδ1
t +∇ · (uuT

δ1
)− 1

Re
∆uδ1 − S∇ · (BBT

δ1
) +∇

(S

2
B2

δ1 + pδ1

)
= f

δ1
,

B
δ2

t +
1

Rem
curl(curl B

δ2) +∇ · (BuT
δ2

)−∇ · (uBT
δ2

) = curl gδ2 ,

∇ · uδ2 = 0, ∇ ·Bδ2 = 0.

(1.4)

The usual closure problem which we study here arises because uuT
δ1 6= uδ1 uδ1 ,

BBT
δ1 6= B

δ1
B

δ1 , uBT
δ2 6= uδ1 BT

δ2
. To isolate the turbulence closure problem

from the difficult problem of wall laws for near wall turbulence, we study (1.1) hence

(1.4) subject to (1.3). The closure problem is to replace the tensors uuT
δ1

, BBT
δ1

,

uBT
δ2

with tensors T (uδ1 , uδ1), T (B
δ2

, B
δ2), T (uδ1 , B

δ2), respectively, depending
only on uδ1 , B

δ2 and not u, B. There are many closure models proposed in large
eddy simulation reflecting the centrality of closure in turbulence simulation. Calling
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w, q,W the resulting approximations to uδ1 , pδ1 , B
δ2 , we are led to considering the

following model

wt +∇ ·T (w, w)− 1
Re

∆w − ST (W,W ) +∇q = f
δ1

Wt +
1

Rem
curl(curl W ) +∇ ·T (w, W )−∇ ·T (W,w) = curl gδ2 ,

∇ · w = 0, ∇ ·W = 0.

(1.5)

With any reasonable averaging operator, the true averages uδ1 , B
δ2

, pδ1 are smoother
than u,B, p. We consider the simplest, accurate closure model that is exact on con-
stant flows (i.e., uδ1 = u, B

δ2 = B) is

uuT
δ1 ≈ uδ1 uT

δ1
δ1

=: T (uδ1 , uδ1),

BBT
δ1 ≈ B

δ2
BT

δ2
δ1

=: T (B
δ2

, B
δ2), (1.6)

uBT
δ2 ≈ uδ1 BT

δ2
δ2

=: T (uδ1 , B
δ2),

leading to

wt +∇ · (wwT
δ1

)− 1
Re

∆w − S∇ · (W WT
δ1

) +∇q = f
δ1

, (1.7a)

WT +
1

Rem
curl(curl W ) +∇ · (WwT

δ2
)−∇ · (wWT

δ2
) = curl gδ2 , (1.7b)

∇ · w = 0, ∇ ·W = 0, (1.7c)

subject to w(x, 0) = uδ1
0 (x),W (x, 0) = B

δ2

0 (x) and periodic boundary conditions (with
zero means).

We shall show that the LES MHD model (1.7) has the mathematical properties
which are expected of a model derived from the MHD equations by an averaging
operation and which are important for practical computations using (1.7).

The model considered can be developed for quite general averaging operators, see
e.g. [1]. The choice of averaging operator in (1.7) is a differential filter, defined as fol-
lows. Let the δ > 0 denote the averaging radius, related to the finest computationally
feasible mesh. (In this report we use different lengthscales for the Navier-Stokes and
Maxwell equations). Given φ ∈ L2

0(Ω), φ
δ ∈ H2(Ω) ∩ L2

0(Ω) is the unique solution of

Aδφ
δ

:= −δ2∆φ
δ
+ φ

δ
= φ in Ω, (1.8)

subject to periodic boundary conditions. Under periodic boundary conditions, this
averaging operator commutes with differentiation, and with this averaging operator,
the model (1.6) has consistency O(δ2), i.e.,

uuT
δ1

= uδ1 uT
δ1

+ O(δ1
2),

BBT
δ1

= B
δ2

BT
δ2

δ1

+ O(δ2
2),

uBT
δ2

= uδ1 BT
δ2

δ2

+ O(δ1
2 + δ2

2),
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for smooth u, B. We prove that the model (1.7) has a unique, weak solution w,W
that converges in the appropriate sense w → u, W → B, as δ1, δ2 → 0.

In Section 2 we prove the global existence and uniqueness of the solution for the
closed MHD model, after giving the notations and a definition. Section 3 treats the
questions of limit consistency of the model and verifiability. The conservation of the
kinetic energy and helicity for the approximate deconvolution model is presented in
Section 4. Section 5 shows that the model preserves the Alfén waves, with the velocity
tending to the velocity of Alfvén waves in the MHD, as the radii δ1, δ2 tend to zero.

2. Existence and uniqueness for the MHD LES equations.

2.1. Notations and preliminaries. We shall use the standard notations for
function spaces in the space periodic case (see [36]). Let Hm

p (Ω) denote the space of
functions (and their vector valued counterparts also) that are locally in Hm(R3), are
periodic of period L and have zero mean, i.e. satisfy (1.3). We recall the solenoidal
space

D(Ω) = {φ ∈ C∞(Ω) : φ periodic with zero mean,∇ · φ = 0},
and the closures of D(Ω) in the usual L2(Ω) and H1(Ω) norms :

H = {φ ∈ H0
2 (Ω),∇ · φ = 0 in D(Ω)′}2,

V = {φ ∈ H1
2 (Ω),∇ · φ = 0 in D(Ω)′}2.

We define the operator A ∈ L (V, V ′) by setting

〈A (w1,W1), (w2,W2)〉 =
∫

Ω

(
1

Re
∇w1 · ∇w2 +

S

Rem
curl W1curl W2

)
dx, (2.1)

for all (wi,Wi) ∈ V . The operator A is an unbounded operator on H, with the
domain D(A ) = {(w, W ) ∈ V ; (∆w, ∆W ) ∈ H} and we denote again by A its
restriction to H.
We define also a continuous tri-linear form B0 on V × V × V by setting

B0((w1,W1), (w2,W2), (w3, W3)) =
∫

Ω

(
∇ · (w2wT

1

δ1
) w3 (2.2)

−S∇ · (W2WT
1

δ1
)w3 +∇ · (W2wT

1

δ2
)W3 −∇ · (w2WT

1

δ2
)W3

)
dx

and a continuous bilinear operator B(·) : V → V with

〈B(w1,W1), (w2, W2)〉 = B0((w1, W1), (w1,W1), (w2,W2))

for all (wi,Wi) ∈ V .
The following properties of the trilinear form B0 hold (see [24, 31, 15, 12])

B0((w1,W1), (w2,W2), (Aδ1w2, SAδ2W2)) = 0,

B0((w1,W1), (w2,W2), (Aδ1w3, SAδ2W3))
= −B0((w1,W1), (w3,W3), (Aδ1w2, SAδ2W2)),

(2.3)

for all (wi,Wi) ∈ V . Also

|B0((w1,W1), (w2,W2), (w3,W3))| (2.4)

≤ C‖(w1,W1)‖m1‖(w2,W2)‖m2+1‖(w3
δ1 ,W3

δ2)‖m3
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for all (w1, W1) ∈ Hm1(Ω), (w2,W2) ∈ Hm2+1(Ω), (w3, W3) ∈ Hm3(Ω) and

m1 + m2 + m3 ≥ d

2
, if mi 6= d

2
for all i = 1, . . . , d,

m1 + m2 + m3 >
d

2
, if mi =

d

2
for any of i = 1, . . . , d.

In terms of V, H, A ,B(·) we can rewrite (1.7) as

d

dt
(w,W ) + A (w,W )(t) + B((w, W )(t)) = (f

δ1
, curl gδ2), t ∈ (0, T ),

(w, W )(0) = (uδ1
0 , B

δ2

0 ),
(2.5)

where (f , curl g) = P (f, curl g), and P : L2(Ω) → H is the Hodge projection.

Definition 2.1. Let (u0
δ1 , B0

δ2) ∈ H, f
δ1

, curl gδ2 ∈ L2(0, T ;V ′). The mea-
surable functions w, W : [0, T ] × Ω → R3 are the weak solutions of (2.5) if w,W ∈
L2(0, T ;V ) ∩ L∞(0, T ;H), and w, W satisfy
∫

Ω

w(t)φdx +
∫ t

0

∫

Ω

1
Re
∇w(τ)∇φ + w(τ) · ∇w(τ)

δ1
φ− SW (τ) · ∇W (τ)

δ1
φ dxdτ

=
∫

Ω

u0
δ1φdx +

∫ t

0

∫

Ω

f(τ)
δ1

φdxdτ, (2.6)
∫

Ω

W (t)ψdx +
∫ t

0

∫

Ω

1
Rem

∇W (τ)∇ψ + w(τ) · ∇W (τ)
δ2

ψ −W (τ) · ∇w(τ)
δ2

ψ dxdτ

=
∫

Ω

B0
δ2

ψdx +
∫ t

0

∫

Ω

curl g(τ)
δ2

ψ dxdτ,

∀t ∈ [0, T ), φ, ψ ∈ D(Ω).
Also, it is easy to show that for any u, v ∈ H1(Ω) with ∇ · u = ∇ · v = 0, the

following identity holds

∇× (u× v) = v · ∇u− u · ∇v. (2.7)

2.2. Stability and existence for the model. The first result states that the
weak solution of the MHD LES model (1.7) exists globally in time, for large data and
general Re, Rem > 0 and that it satisfies an energy equality while initial data and the
source terms are smooth enough.

Theorem 2.2. Let δ1, δ2 > 0 be fixed. For any (u0
δ1 , B0

δ2) ∈ V and (f
δ1
, curl gδ2)

∈ L2(0, T ; H), there exists a unique weak solution w, W to (1.7). The weak solu-
tion also belongs to L∞(0, T ; H1(Ω)) ∩ L2(0, T ; H2(Ω)) and wt,Wt ∈ L2((0, T )× Ω).
Moreover, the following energy equality holds for t ∈ [0, T ]:

M (t) +
∫ t

0

N (τ)dτ = M (0) +
∫ t

0

P(τ)dτ, (2.8)

where

M (t)=
δ1

2

2
‖∇w(t, ·)‖20 +

1
2
‖w(t, ·)‖20 +

δ2
2S

2
‖∇W (t, ·)‖20 +

S

2
‖W (t, ·)‖20,

N (t)=
δ1

2

Re
‖∆w(t, ·)‖20+

1
Re
‖∇w(t, ·)‖20+

δ2
2S

Rem
‖∆W (t, ·)‖20+

S

Rem
‖∇W (t, ·)‖20, (2.9)

P(t)=(f(t), w(t)) + S(curl g(t),W (t)).
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We shall use the semigroup approach proposed in [6] for the Navier-Stokes equa-
tions, based on the machinery of nonlinear differential equations of accretive type in
Banach spaces.

Let us define the modified nonlinearity BN (·) : V → V by setting

BN (w,W ) =

{
B(w,W ) if ‖(w, W )‖1 ≤ N,(

N
‖(w,W )‖1

)2

B(w, W ) if ‖(w, W )‖1 > N.
(2.10)

By (2.4) we have for the case of ‖(w1,W1)‖1, ‖(w2,W2)‖1 ≤ N

|〈BN (w1,W1)−BN (w2,W2), (w1 − w2, W1 −W2)〉|
= |B0((w1 − w2,W1 −W2), (w1,W1), (w1 − w2,W1 −W2)|

+ B0((w2,W2), (w1 − w2,W1 −W2), (w1 − w2, W1 −W2)|
≤ C‖(w1 − w2,W1 −W2)‖1/2‖(w1,W1)‖1‖(w1 − w2

δ1 , W1 −W2
δ2)‖1

≤ ν

2
‖(w1 − w2,W1 −W2)‖21 + CN‖(w1 − w2,W1 −W2)‖20,

where ν = inf{1/Re, S/Rem}.
In the case of ‖(wi,Wi)‖1 > N we have

|〈BN (w1,W1)−BN (w2,W2), (w1 − w2,W1 −W2)〉|

=
N2

‖(w1,W1)‖21
B0((w1 − w2,W1 −W2), (w1,W1), (w1 − w2,W1 −W2))

+
(

N2

‖(w1,W1)‖21
− N2

‖(w2,W2)‖21

)
B0((w2,W2), (w2,W2), (w1 − w2,W1 −W2))

≤ CN‖(w1 − w2,W1 −W2)‖3/2
1 ‖(w1 − w2, W1 −W2)‖1/2

0

+ CN‖(w1 − w2,W1 −W2)‖21
≤ ν

2
‖(w1 − w2, W1 −W2)‖21 + CN‖(w1 − w2, W1 −W2)‖20.

For the case of ‖(w1,W1)‖1 > N, ‖(w2,W2)‖1 ≤ N (similar estimates are obtained
when ‖(w1,W1)‖1 ≤ N, ‖(w2, W2)‖1 > N) we have

|〈BN (w1,W1)−BN (w2,W2), (w1 − w2,W1 −W2)〉|

=
N2

‖(w1,W1)‖21
B0((w1 − w2,W1 −W2), (w1, W1), (w1 − w2,W1 −W2))

−
(

1− N2

‖(w1,W1)‖21

)
B0((w2,W2), (w2, W2), (w1 − w2,W1 −W2))

≤ CN‖(w1 − w2,W1 −W2)‖3/2
1 ‖(w1 − w2,W1 −W2)‖1/2

0

+ CN‖(w1−w2,W1−W2)‖1‖(w1−w2, W1−W2)‖1/2

≤ ν

2
‖(w1 − w2,W1 −W2)‖21 + CN‖(w1 − w2,W1 −W2)‖20.

Combining all the cases above we conclude that

|〈BN (w1,W1)−BN (w2,W2), (w1 − w2,W1 −W2)〉| (2.11)

≤ ν

2
‖(w1 − w2, W1 −W2)‖21 + CN‖(w1 − w2, W1 −W2)‖20.
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The operator BN is continuous from V to V ′. Indeed, as above we have (using (2.4)
with m1 = 1, m2 = 0, m3 = 1 )

|〈BN (w1, W1)−BN (w2,W2), (w3,W3)〉| (2.12)
≤ |B0 ((w1 − w2,W1 −W2), (w1,W1), (w3,W3))|

+ |B0 ((w2,W2), (w1 − w2,W1 −W2), (w3,W3))|
≤ CN‖(w1 − w2, W1 −W2)‖1‖(w3,W3)‖1.

Now consider the operator ΓN : D(ΓN ) → H defined by

ΓN = A + BN , D(ΓN ) = D(A ).

Here we used (2.4) with m1 = 1,m2 = 1/2,m3 = 0 and interpolation results (see e.g.
[14, 35, 12]) to show that

‖BN (w,W )‖0 ≤ C‖(w,W )‖3/2
1 ‖A (w, W )‖1/2

0 ≤ CN ‖A (w, W )‖1/2
0 . (2.13)

Lemma 2.3. There exists αN > 0 such that ΓN + αNI is m-accretive (maximal
monotone) in H ×H.

Proof. By (2.11) we have that

((ΓN + λ)(w1,W1)− (ΓN + λ)(w2,W2), (w1 − w2, W1 −W2)) (2.14)

≥ ν

2
‖(w1 − w2, W1 −W2)‖21, for all (wi,Wi) ∈ D(ΓN ),

for λ ≥ CN . Next we consider the operator

FN (w, W ) = A (w, W ) + BN (w,W ) + αN (w,W ), for all (w, W ) ∈ D(FN ),

with

D(FN ) = {(w, W ) ∈ V ; A (w, W ) + BN (w, W ) ∈ H}.
By (2.12) and (2.14) we see that FN is monotone, coercive and continuous from V
to V ′. We infer that FN is maximal monotone from V to V ′ and the restriction to
H is maximal monotone on H with the domain D(FN ) ⊇ D(A ) (see e.g. [9, 4]).
Moreover, we have D(FN ) = D(A ). For this we use the perturbation theorem for
nonlinear m-accretive operators and split FN into a continuous and a ω-m-accretive
operator on H

F 1
N = (1− ε

2
)A , D(F 1

N ) = D(A ),

F 2
N =

ε

2
A + BN (·) + αNI, D(F 2

N ) = {(w, W ) ∈ V, F 2
N (w, W ) ∈ H}.

As seen above by (2.13) we have
∥∥F 2

N (w, W )
∥∥

0
≤ ε

2
‖A (w, W )‖0 + ‖BN (w, W )‖0 + αN‖(w,W )‖0

≤ ε‖A (w, W )‖0 + αN‖(w,W )‖0 +
C2

N

2ε
, for all (w,W ) ∈ D(F 1

N ) = D(A ),

where 0 < ε < 1.
Since F 1

N +F 2
N = ΓN +αNI we infer that ΓN +αNI with domain D(A ) is m-accretive

in H as claimed.
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Proof. [Proof of Theorem 2.2] As a consequence of Lemma 2.3 (see, e.g., [4, 5]) we
have that for (u0

δ1 , B0
δ2) ∈ D(A ) and (f

δ1
, curl gδ2) ∈ W 1,1([0, T ],H) the equation

d

dt
(w, W ) + A (w, W )(t) + BN ((w, W )(t)) = (f

δ1
, curl gδ2), t ∈ (0, T ),

(w, W )(0) = (u0
δ1 , B0

δ2),
(2.15)

has a unique strong solution (wN ,WN ) ∈ W 1,∞([0, T ]; H) ∩ L∞(0, T ;D(A )).
By a density argument (see, e.g., [5, 24]) it can be shown that if (u0

δ1 , B0
δ2) ∈

H and (f
δ1

, curl gδ2) ∈ L2(0, T, V ′) then there exist absolute continuous functions
(wN ,WN ) : [0, T ] → V ′ that satisfy (wN ,WN ) ∈ C([0, T ]; H) ∩ L2(0, T : V ) ∩
W 1,2([0, T ], V ′) and (2.15) a.e. in (0, T ), where d/dt is considered in the strong
topology of V ′.

First, we show that D(A ) is dense in H. Indeed, if (w, W ) ∈ H we set (wε,Wε) =
(I + εΓN )−1(w, W ), where I is the unity operator in H. Multiplying the equation

(wε,Wε) + εΓN (wε,Wε) = (w,W )

by (wε,Wε) it follows by (2.3), (2.11) that

‖(wε,Wε)‖20 + 2εν‖(wε, Wε)‖21 ≤ ‖(w,W )‖20
and by (2.10)

‖(wε − w, Wε −W )‖−1 = ε‖Γε(wε,Wε)‖−1 ≤ εN‖(wε,Wε)‖1/2
0 ‖(wε, Wε)‖1/2

1 .

Hence, {(wε,Wε)} is bounded in H and (wε,Wε) → (w, W ) in V ′ as ε → 0. Therefore,
(wε, Wε) ⇀ (w, W ) in H as ε → 0, which implies that D(ΓN ) is dense in H.

Secondly, let (u0
δ1 , B0

δ2) ∈ H and (f
δ1

, curl gδ2) ∈ L2(0, T, V ′). Then there are
sequences {(u0

δ1
n , B0

δ2

n )} ⊂ D(ΓN ), {(f δ1

n , curl gδ2
n )} ⊂ W 1,1([0, T ];H) such that

(u0
δ1
n , B0

δ2

n ) → (u0
δ1 , B0

δ2) in H,

(f
δ1

n , curl gδ2
n ) → (f

δ1
, curl gδ2) in L2(0, T ; V ′),

as n →∞. Let (wn
N ,Wn

N ) ∈ W 1,∞([0, T ];H) be the solution to problem (2.15) where
(w,W )(0) = (u0

δ1
n , B0

δ2

n ) and (f
δ1

, curl gδ2) = (f
δ1

n , curl gδ2
n ). By (2.14) we have

d

dt
‖(wn

N − wm
N ,Wn

N −Wm
N )‖20 +

ν

2
‖(wn

N − wm
N ,Wn

N −Wm
N )‖21

≤ 2CN‖(wn
N − wm

N , Wn
N −Wm

N )‖20 +
2
ν
‖(f δ1

n − f
δ1

m , curl(gδ2
n − gδ2

m))‖2−1,

for a.e. t ∈ (0, T ). By the Gronwall inequality we obtain

‖(wn
N − wm

N ,Wn
N −Wm

N )(t)‖20 ≤ e2CN t‖(u0
δ1
n − u0

δ1
m , B0

δ2

n −B0
δ2

m)‖20
+

2e2CN t

ν

∫ t

0

‖(f δ1

n − f
δ1

m , curl(gδ2
n − gδ2

m))(τ)‖2−1dτ.

Hence

(wN (t),WN (t)) = lim
n→∞

(wn
N (t),Wn

N (t))
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exists in H uniformly in t on [0, T ]. Similarly we obtain

‖wn
N (t)‖20 + ‖Wn

N (t)‖20 +
∫ t

0

(
1

Re
(‖∇wn

N (s)‖20 +
S

Rem
(‖curl Wn

N (s)‖20
)

ds

≤ CN

[
‖u0

δ1
n ‖20 + ‖B0

δ2

n ‖20 +
∫ t

0

(
‖f δ1

n (s)‖2−1 + ‖curl gδ2
n (s)‖2−1

)
ds

]
,

and
∫ T

0

∥∥∥∥
d

dt
(wn

N ,Wn
N )(t)

∥∥∥∥
2

−1

dt

≤ CN

[
‖u0

δ1
n ‖20 + ‖B0

δ2

n ‖20 +
∫ t

0

(
‖f δ1

n (s)‖2−1 + ‖curl gδ2
n (s)‖2−1

)
ds

]
.

Hence on a sequence we have

(wn
N ,Wn

N ) → (wN ,WN ) weakly in L2(0, T ; V ),
d

dt
(wn

N ,Wn
N ) → d

dt
(wN ,WN ) weakly in L2(0, T ; V ′),

where d(wN ,WN )/dt is considered in the sense of V ′-valued distributions on (0, T ).
We proved that (wN , WN ) ∈ C([0, T ];H) ∩ L2(0, T ; V ) ∩W 1,2([0, T ]; V ′).

It remains to prove that (wN ,WN ) satisfies the equation (2.15) a.e. on (0, T ).
Let (w,W ) ∈ V be arbitrary but fixed. We multiply the equation

d

dt
(wn

N ,Wn
N ) + ΓN (wn

N ,Wn
N ) = (f

δ1

n , curl gδ2
n ), a.e. t ∈ (0, T ),

by (wn
N − w, Wn

N −W ), integrate on (s, t) and get

1
2

(
‖(wn

N (t),Wn
N (t))− (w,W )‖20 − ‖(wn

N (s),Wn
N (s))− (w, W )‖20

)

≤
∫ t

s

〈(f δ1

n (τ), curl gδ2
n (τ))− ΓN (w, W ), (wn

N (τ),Wn
N (τ))− (w, W )〉dτ.

After we let n →∞ we get
〈

(wN (t),WN (t))− (wN (s),WN (s))
t− s

, (wN (s),WN (s))− (w, W )
〉

(2.16)

≤ 1
t− s

∫ t

s

〈(f δ1(τ), curl gδ2(τ))− ΓN (w,W ), (wN (τ), WN (τ))− (w, W )〉dτ.

Let t0 denote a point at which (wN ,WN ) is differentiable and

(f
δ1(t0), curl gδ2(t0)) = lim

h→0

1
h

∫ t0+h

t0

(f
δ1(h), curl gδ2(h))dh.

Then by (2.16) we have
〈

d(wN ,WN )
dt

(t0)− (f
δ1

, curl gδ2)(t0) + ΓN (w,W ), (wN , WN )(t0)− (w,W )
〉
≤ 0.
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Since (w,W ) is arbitrary in V and ΓN is maximal monotone in V × V ′ we conclude
that

d(wN ,WN )
dt

(t0) + ΓN (wN ,WN )(t0) = (f
δ1

, curl gδ2)(t0).

If we multiply (2.15) by (Aδ1wN , SAδ2WN ), use (2.3) and integrate in time we
obtain

1
2

(‖wN (t)‖20 + S‖WN (t)‖20
)

+
δ1

2

2
‖∇wN (t)‖20 +

δ2
2S

2
‖curlWN (t)‖20

+
∫ t

0

(
1

Re
(‖∇wN (s)‖20 + δ1

2‖∆wN (s)‖20)

+
S

Rem
(‖curlWN (s)‖20 + δ2

2‖curl curl WN (s)‖20)
)

ds

=
1
2

(
‖u0

δ1‖20 + S‖B0
δ2‖20

)
+

δ1
2

2
‖∇u0

δ1‖20 +
δ2

2S

2
‖curl B0

δ2‖20

+
∫ t

0

(
‖fδ1(s)‖−1‖wN (s)‖1 + S‖curl gδ2(s)‖−1‖WN (s)‖1

)
ds.

Using the Cauchy-Schwarz and Gronwall inequalities this implies

‖(wN ,WN )(t)‖1 ≤ Cδ1,δ2 for all t ∈ (0, T ),

where Cδ1,δ2 is independent of N . In particular, for N sufficiently large it follows from
(2.10) that BN = B and (wN ,WN ) = (w,W ) is a solution to (1.7).

In the following we prove the uniqueness of the weak solution. Let (w1,W1) and
(w2,W2) be two solutions of the system (2.5) and set ϕ = w1 − w2, Φ = B1 − B2.
Thus (ϕ,Φ) is a solution to the problem

d

dt
(ϕ,Φ) + A (ϕ,Φ)(t) = −B((w1,W1)(t)) + B((w2, W2)(t)), t ∈ (0, T ),

(ϕ,Φ)(0) = (0, 0).

We take (Aδ1ϕ, SAδ2Φ) as test function, integrate in space, use the incompressibility
condition (2.3) and the estimate (2.4) to get

1
2

d

dt

(‖ϕ‖20 + δ1
2‖∇ϕ‖20 + S‖Φ‖20 + Sδ2

2‖∇Φ‖20
)

+
1

Re
(‖∇ϕ‖20 + δ2

1‖∆ϕ‖20
)

+
S

Rem

(‖∇Φ‖20 + δ2
2‖∆Φ‖20

)

= B0((ϕ,Φ), (w1,W1), (Aδ1ϕ, SAδ2Φ))

≤ C‖(w1,W1)‖0‖(ϕ,Φ)‖1/2
0 ‖(∇ϕ,∇Φ)‖3/2

0

≤ Cδ1,δ2‖(w1, W1)‖0
(‖ϕ‖20 + δ1

2‖∇ϕ‖20 + S‖Φ‖20 + Sδ2
2‖∇Φ‖20

)
.

Applying the Gronwall’s lemma we deduce that (ϕ,Φ) vanishes for all t ∈ [0, T ], and
hence the uniqueness of the solution.

Remark 2.1. The pressure is recovered from the weak solution via the classical
DeRham theorem (see [23]).
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2.3. Regularity.
Theorem 2.4. Let m ∈ N, (u0, B0) ∈ V ∩ Hm−1(Ω) and (f, curl g) ∈ L2(0, T ;

Hm−1(Ω)). Then there exists a unique solution w, W, q to the equation (1.7) such that

(w, W ) ∈ L∞(0, T ; Hm+1(Ω)) ∩ L2(0, T ;Hm+2(Ω)),

q ∈ L2(0, T ; Hm(Ω)).

Proof. The result is already proved when m = 0 in Theorem 2.2. For any m ∈ N∗,
we assume that

(w, W ) ∈ L∞(0, T ;Hm(Ω)) ∩ L2(0, T ;Hm+1(Ω)) (2.17)

so it remains to prove

(Dmw,DmW ) ∈ L∞(0, T ; H1(Ω)) ∩ L2(0, T ; H2(Ω)),

where Dm denotes any partial derivative of total order m. We take the mth derivative
of (1.7) and have

(Dmw)t − 1
Re

∆(Dmw) + Dm(w · ∇w)
δ1 − SDm(W · ∇W )

δ1 = Dmf
δ1

,

(DmW )t +
1

Rem
∇×∇× (DmW ) + Dm(w · ∇W )

δ2 −Dm(W · ∇w)
δ2 = ∇×Dmg

δ2
,

∇ · (Dmw) = 0,∇ · (DmW ) = 0,

Dmw(0, ·) = Dmu0
δ1 , DmW (0, ·) = DmB0

δ2
,

with periodic boundary conditions and zero mean, and the initial conditions with zero
divergence and mean. Taking Aδ1D

mw, Aδ1D
mW as test functions we obtain

1
2

d

dt

(‖Dmw‖20 + δ1
2‖∇Dmw‖20 + S‖DmW‖20 + Sδ2

2‖∇DmW‖20
)

(2.18)

+
1

Re
(‖∇Dmw‖20 + δ2

1‖∆Dmw‖20
)

+
1

Rem

(‖∇DmW‖20 + δ2
2‖∆DmW‖20

)

=
∫

Ω

(DmfDmw +∇× gDmW ) dx−X ,

where

X =
∫

Ω

(
Dm(w ·∇w)−SDm(W ·∇W )

)
Dmw +

(
Dm(w ·∇W )−Dm(W ·∇w)

)
DmWdx.

Now we apply (2.4) and use the induction assumption (2.17)

X =
∑

|α|≤m

(
m
α

) 3∑

i,j=1

∫

Ω

DαwiD
m−αDiwjD

mwj − SDαWiD
m−αDiWjD

mwj

−DαwiD
m−αDiWjD

mWj −DαWiD
m−αDiwjD

mWj

≤ ‖w‖3/2
m+1‖w‖1/2

m+2‖w‖m + ‖W‖3/2
m+1‖W‖1/2

m+2‖w‖m

+ ‖w‖m+1‖W‖1/2
m+1‖W‖1/2

m+2‖W‖m + ‖W‖3/2
m+1‖W‖1/2

m+2‖W‖m.

Integrating (2.18) on (0, T ), using the Cauchy-Schwarz and Hölder inequalities, and
the assumption (2.17) we obtain the desired result for w,W . We conclude the proof
mentioning that the regularity of the pressure term q is obtained via classical methods,
see e.g. [34, 3].
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3. Accuracy of the model.
We will address first the question of consistency error, i.e., we show in Theorem

3.1 that the solution of the closed model (1.7) converges to a weak solution of the
MHD equations (1.1) when δ1, δ2 go to zero. This proves that the model is consistent
as δ1, δ2 → 0.
Let τu, τB , τBu denote the model’s consistency errors

τu = uδ1uδ1 − uu, τB = B
δ2

B
δ2 −BB, τBu = B

δ2
uδ1 −Bu, (3.1)

where u, B is a solution of the MHD equations obtained as a limit of a subsequence
of the sequence wδ1 ,Wδ2 .
We will also prove in Theorem 3.2 that ‖uδ1−w‖L∞(0,T ;L2(Q)), ‖Bδ2−W‖L∞(0,T ;L2(Q))

are bounded by ‖τu‖L2(QT ), ‖τB‖L2(QT ), ‖τBu‖L2(QT ).

3.1. Limit consistency of the model.
Theorem 3.1. There exist two sequences δn

1 , δn
2 → 0 as n → 0 such that

(wδn
1
,Wδn

2
, qδn

1
) → (u,B, p) as δn

1 , δn
2 → 0,

where (u,B, p) ∈ L∞(0, T ;H) ∩ L2(0, t;V ) × L
4
3 (0, T ;L2(Ω)) is a weak solution of

the MHD equations (1.1). The sequences {wδn
1
}n∈N, {Wδn

2
}n∈N converge strongly to

u,B in L
4
3 (0, T ;L2(Ω)) and weakly in L2(0, T ; H1(Ω)), respectively, while {qδn

1
}n∈N

converges weakly to p in L
4
3 (0, T ;L2(Ω)).

Proof. The proof follows that of Theorem 3.1 in [22], and is an easy consequence
of Theorem 3.2 and Proposition 3.4; we will sketch it for the reader’s convenience.

3.2. Verifiability of the model.
Theorem 3.2. Suppose that the true solution of (1.1) satisfies the regularity

condition (u,B) ∈ L4(0, T ;V ). Then e = uδ1 − w, E = B
δ2 −W satisfy

‖e(t)‖20 + S‖E(t)‖20 +
∫ t

0

(
1

Re
‖∇e(s)‖20 +

S

Rem
‖curlE(s)‖20

)
ds

≤ CΦ(t)
∫ t

0

(
Re‖τu(s) + SτB(s)‖20 + Rem‖τBu(s)− τBu

T (s)‖20
)
ds,

(3.2)

where Φ(t) = exp
{

Re3
∫ t

0
‖∇u‖40ds, Rem

3
∫ t

0
‖∇u‖40ds + RemRe2

∫ t

0
‖∇B‖40

}
.

Proof. The errors e = uδ1 − w, E = B
δ2 −W satisfy in variational sense

et +∇ · (uδ1uδ1 − ww
δ1

)− 1
Re

∆e + S∇ · (Bδ2
B

δ2 −WW
δ1

) +∇(pδ1 − q)

= ∇ · (τ δ1
u + Sτ δ1

B ),

Et +
1

Rem
curl curl E +∇ · (Bδ2

uδ1 −Ww
δ2

)−∇ · (uδ1B
δ2 − wW

δ2

)

= ∇ · (τ δ2
Bu − τ δ2

Bu
T ),
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and ∇·e = ∇·E = 0, e(0) = E(0) = 0. Taking the inner product with (Aδ1e, SAδ2E)
we get as in (2.8) the energy estimate

1
2

d

dt

(‖e‖20 + S‖E‖20 + δ2
1‖∇e‖20 + δ2

2S‖curl E‖20
)

+
1

Re
‖∇e‖20 +

S

Rem
‖curl E‖20 +

δ2
1

Re
‖∆e‖20 +

δ2
2S

Rem
‖curl curl E‖20

+
∫

Ω

(
∇ · (uδ1uδ1 − ww)e + S∇ · (Bδ2

B
δ2 −WW )e

+ S∇ · (Bδ2
uδ1 −Ww)E − S∇ · (uδ1B

δ2 − wW )E
)
dx

= −
∫

Ω

(
(τu + SτB) · ∇e + S(τBu − τBu

T ) · ∇E
)
dx

≤ 1
2Re

‖∇e‖20 +
S

2Rem
‖curl E‖20 +

Re
2
‖τu + SτB‖20 +

Rem

2S
‖τBu − τBu

T ‖20.

Since uδ1uδ1 − ww = euδ1 + we, B
δ2

B
δ2 − WW = EB

δ2 + WE, B
δ2

uδ1 − Ww =
Euδ1 + We, uδ1B

δ2 −wW = eB
δ1 + wE, and

∫
Ω
∇ · (we)edx =

∫
Ω
∇ · (WE)Edx = 0

we have
d

dt

(‖e‖20 + S‖E‖20 + δ2
1‖∇e‖20 + Sδ2

2‖curl E‖20
)

+
1

Re
‖∇e‖20 +

S

Rem
‖curl E‖20 +

δ2
1

Re
‖∆e‖20 +

δ2
2S

Rem
‖curl curl E‖20

≤
∫

Ω

(
− e · ∇uδ1e− S∇ · (EB

δ2)e− S∇ · (Euδ1)E + Se · ∇B
δ2

E
)
dx

+ Re‖τu + SτB‖20 + Rem‖τBu − τBu
T ‖20

≤ C
(
‖∇e‖3/2

0 ‖e‖1/2
0 ‖∇uδ1‖0 + 2S‖E‖1/2

0 ‖∇E‖1/2
0 ‖∇B

δ2‖0‖∇e‖0
+ S‖E‖1/2

0 ‖∇E‖3/2
0 ‖∇uδ1‖0

)
+ Re‖τu + SτB‖20 + Rem‖τBu − τBu

T ‖20.

Using ab ≤ εa4/3 + Cε−3b4 we obtain

d

dt

(‖e‖20 + S‖E‖20 + δ2
1‖∇e‖20 + Sδ2

2‖curl E‖20
)

+
1

Re
‖∇e‖20 +

S

Rem
‖curl E‖20 +

δ2
1

Re
‖∆e‖20 +

δ2
2S

Rem
‖curl curl E‖20

≤ C
(
Re3‖e‖20‖∇uδ1‖40 + RemRe2‖E‖20‖∇B

δ2‖40 + Rem
3‖E‖20‖∇uδ1‖40

)

+ Re‖τu + SτB‖20 + Rem‖τBu − τBu
T ‖20

and by the Gronwall inequality we deduce

‖e(t)‖20 + S‖E(t)‖20 +
∫ t

0

(
1

Re
‖∇e(s)‖20 +

S

Rem
‖curl E(s)‖20

)
ds

≤ CΨ(t)
∫ t

0

(
Re‖τu(s) + SτB(s)‖20 + Rem‖τBu(s)− τBu

T (s)‖20
)
ds,

where

Ψ(t) = exp
{

Re3

∫ t

0

‖∇uδ1‖40ds, Rem
3

∫ t

0

‖∇uδ1‖40ds + RemRe2

∫ t

0

‖∇B
δ2‖40ds

}
.
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Using the stability bounds ‖∇uδ1‖0 ≤ ‖∇u‖0, ‖∇B
δ2‖0 ≤ ‖∇B‖0 we conclude the

proof.

3.3. Consistency error estimate. Here we shall give bounds on the consis-
tency errors (3.1) as δ1, δ2 → 0 in L1((0, T )× Ω) and L2((0, T )× Ω).

Proposition 3.3. Let us assume that (f, curl g) ∈ L2(0, T ;V ′). Then the fol-
lowing holds

‖τu‖L1(0,T ;L1(Ω)) ≤ 23/2δ1T
1/2Re1/2E (T ),

‖τB‖L1(0,T ;L1(Ω)) ≤ 23/2δ2T
1/2 Rem

1/2

S
E (T ), (3.3)

‖τBu‖L1(0,T ;L1(Ω)) ≤ 21/2T 1/2 1
S

(δ1Re1/2 + δ2Rem
1/2)E (T ),

where

E (T ) =
(
‖u0‖20 + S‖B0‖20 + Re‖f‖2L2(0,T ;H−1(Ω)) +

Rem

S
‖curl g‖2L2(0,T ;H−1(Ω))

)
.

Proof. Using the stability bounds we have

‖τu‖L1(0,T ;L1(Ω)) ≤ ‖u + uδ1‖L2(0,T ;L2(Ω))‖uδ1 − u‖L2(0,T ;L2(Ω))

≤ 2‖u‖L2(0,T ;L2(Ω))

√
2δ1‖∇u‖L2(0,T ;L2(Ω)).

Similarly

‖τB‖L1(0,T ;L1(Ω)) ≤ ‖B + B
δ2‖L2(0,T ;L2(Ω))‖Bδ2 −B‖L2(0,T ;L2(Ω))

≤ 2‖B‖L2(0,T ;L2(Ω))

√
2δ2‖∇B‖L2(0,T ;L2(Ω)),

‖τBu‖L1(0,T ;L1(Ω)) ≤ ‖Bδ2 −B‖L2(Q)‖uδ1‖L2(Q) + ‖B‖L2(Q)‖uδ1 − u‖L2(Q)

≤
√

2δ2‖∇B‖L2(Q)‖u‖L2(Q) +
√

2δ1‖∇u‖L2(Q)‖B‖L2(Q).

The classical energy estimates for the MHD system (1.1) will yield now (3.3).
Assuming more regularity on (u,B) leads to the sharper bounds on the consistency

errors.
Remark 3.1. Let (u,B) ∈ L2(0, T ;H2(Ω)). Then

‖τu‖L1(0,T ;L1(Ω)) ≤ Cδ2
1 ,

‖τB‖L1(0,T ;L1(Ω)) ≤ Cδ2
2 ,

‖τBu‖L1(0,T ;L1(Ω)) ≤ C(δ2
1 + δ2

2),

where C = C(T, Re, Rem, ‖(u,B)‖L2(0,T ;L2(Ω)), ‖(u,B)‖L2(0,T ;H2(Ω))).
Proof. The result is obtained by following the proof of Proposition 3.3 and using

the bounds

‖uδ1 − u‖L2(0,T ;L2(Ω)) ≤ δ2
1‖∆u‖L2(0,T ;L2(Ω)),

‖Bδ2 −B‖L2(0,T ;L2(Ω)) ≤ δ2
2‖∆B‖L2(0,T ;L2(Ω)).
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Next we estimate the L2-norms of the consistency errors τu, τB , τBu, which were
used in Theorem 3.2 to estimate the filtering errors e, E.

Proposition 3.4. Let u, B be a solution of the MHD equations (1.1) and assume
that

(u,B) ∈ L4((0, T )× Ω) ∩ L2(0, T ; H2(Ω)).

Then we have

‖τu‖L2(Q) ≤ Cδ1,

‖τB‖L2(Q) ≤ Cδ2,

‖τBu‖L2(Q) ≤ C(δ1 + δ2),

where C = C(‖(u,B)‖L4((0,T )×Ω), ‖(u,B)‖L2(0,T ;H2(Ω))).
Proof. As in the proof of Proposition 3.3, using the stability bounds we have

‖τu‖L2(Q) ≤ 2‖u‖L4(Q)‖uδ1 − u‖L4(Q)

≤ 23/2‖u‖L4(Q)

(∫ T

0

‖uδ1 − u‖L2(Ω)‖∇(uδ1 − u)‖3L2(Ω)dt

)1/4

≤ 23/2‖u‖L4(Q)

(∫ T

0

4δ4
1‖∇u‖L2(Ω)‖∆u‖3L2(Ω)dt

)1/4

≤ 4δ1‖u‖L4(Q)‖u‖L2(0,T ;H1(Ω))‖u‖L2(0,T ;H2(Ω)).

Similarly we deduce

‖τB‖L2(Q) ≤ 4δ2‖B‖L4(Q)‖B‖L2(0,T ;H1(Ω))‖B‖L2(0,T ;H2(Ω)),

and

‖τBu‖L2(Q) ≤ ‖u‖L4(Q)‖Bδ2 −B‖L4(Q) + ‖B‖L4(Q)‖uδ2 − u‖L4(Q)

≤ 2δ2‖u‖L4(Q)‖B‖L2(0,T ;H1(Ω))‖B‖L2(0,T ;H2(Ω))

+ 2δ1‖B‖L4(Q)‖u‖L2(0,T ;H1(Ω))‖u‖L2(0,T ;H2(Ω)).

As in Remark 3.1, assuming extra regularity on (u,B) leads to the sharper bounds.
Remark 3.2. Let

(u,B) ∈ L4((0, T )× Ω) ∩ L4(0, T ; H2(Ω)).

Then

‖τu‖L2(Q) ≤ Cδ2
1 ,

‖τB‖L2(Q) ≤ Cδ2
2 ,

‖τBu‖L2(Q) ≤ C(δ2
1 + δ2

2),

where C = C(‖(u,B)‖L4((0,T )×Ω), ‖(u,B)‖L4(0,T ;H2(Ω))).
The proof repeats the one of Remark 3.1.
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4. Conservation laws.
As our model is some sort of a regularizing numerical scheme, we would like to

make sure that the model inherits some of the original properties of the 3D MHD
equations.

It is well known that kinetic energy and helicity are critical in the organization
of the flow.

The energy E = 1
2

∫
Ω
(u(x) · u(x) + SB(x) · B(x))dx, the cross helicity HC =

1
2

∫
Ω
(u(x) ·B(x))dx and the magnetic helicity HM = 1

2

∫
Ω
(A(x) ·B(x))dx (where A is

the vector potential, B = ∇×A) are the three invariants of the MHD equations (1.1)
in the absence of kinematic viscosity and magnetic diffusivity ( 1

Re = 1
Rem

= 0).
Introduce the characteristic quantities of the model

ELES =
1
2
[(Aδ1w,w) + S(Aδ2W,W )],

HC,LES =
1
2
(Aδ1w,Aδ2W ),

and

HM,LES =
1
2
(Aδ2W,Aδ2), where Aδ2 = A−1

δ2
A.

This section is devoted to proving that these quantities are conserved by (1.7)
with the periodic boundary conditions and 1

Re = 1
Rem

= 0. Also, note that

ELES → E, HC,LES → HC , HM,LES → HM , as δ1,2 → 0.

Theorem 4.1 (Conservation Laws). The following conservation laws hold, ∀T >
0

ELES(T ) = ELES(0), (4.1)

HC,LES(T ) = HC,LES(0) + C(T ) max
i=1,2

δ2
i , (4.2)

and

HM,LES(T ) = HM,LES(0). (4.3)

Note that the cross helicity HC,LES of the model is not conserved exactly, but it
possesses two important properties:

HC,LES → HC as δ1,2 → 0,

and

HC,LES(T ) → HC,LES(0) as N increases.

Proof. Start by proving (4.1). Consider (1.7) with 1
Re = 1

Rem
= 0. Multiply (1.7a)

by Aδ1w, and multiply (1.7b) by SAδ2W . Integrating both equations over Ω gives

1
2

d

dt
(Aδ1w, w) = S((∇×W )×W,w), (4.4)

16



1
2
S

d

dt
(Aδ2W,W )− S(W · ∇w, W ) = 0. (4.5)

Use the identity

((∇× v)× u,w) = (u · ∇v, w)− (w · ∇v, u). (4.6)

Add (4.4) and (4.5). Using (4.6) leads to

1
2

d

dt
[(Aδ1w, w) + S(Aδ2W,W )]

= S(W · ∇W,w)− S(w · ∇W,W ) + S(W · ∇w, W ).

Hence

1
2

d

dt
[(Aδ1w, w) + S(Aδ2W,W )] = 0, (4.7)

which proves (4.1).
To prove (4.2), multiply (1.7a) by Aδ1W , and multiply (1.7b) by Aδ2w. Integrat-

ing both equations over Ω gives

(
∂Aδ1w

∂t
,W ) + (w · ∇w, W ) = 0, (4.8)

(
∂Aδ2W

∂t
, w) + (w · ∇W,w) = 0. (4.9)

Add (4.8) and (4.9); the identity (u · ∇v, w) = −(u · ∇w, v) implies

(
∂Aδ1w

∂t
, W ) + (

∂Aδ2W

∂t
,w) = 0. (4.10)

It follows from (1.8) that

w = Aδ1w + δ2
1∆w, (4.11)

W = Aδ2W + δ2
2∆W.

Then (4.10) gives

(
∂Aδ1w

∂t
,Aδ2W ) + (

∂Aδ2W

∂t
,Aδ1w) (4.12)

= (
∂Aδ1w

∂t
, δ2

2∆W ) + (
∂Aδ2W

∂t
, δ2

1∆w).

Hence,

d

dt
(Aδ1w,Aδ2W ) = δ2

2(
∂Aδ1w

∂t
,∆W ) (4.13)

+ δ2
1(

∂Aδ2W

∂t
, ∆w),

which proves (4.2).
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Next, we prove (4.3) by multiplying (1.7b) by Aδ2A
δ2 , and integrating over Ω.

This gives

1
2

d

dt
(∇×Aδ2A

δ2
,Aδ2) (4.14)

+ (w · ∇W,Aδ2)− (W · ∇w,Aδ2) = 0.

Since the cross-product of two vectors is orthogonal to each of them,

((∇× Aδ2)× w,∇× Aδ2) = 0.

It follows from (4.15) and (4.6) that

(w · ∇Aδ2
,∇× Aδ2) = ((∇× Aδ2) · ∇Aδ2

, w). (4.15)

Since W = ∇× Aδ2 , we obtain from (4.14) and (4.15) that (4.3) holds.

5. Alfvén waves. In this section we prove that our model possesses a very im-
portant property of the MHD: the ability of the magnetic field to transmit transverse
inertial waves - Alfvén waves. We follow the argument typically used to prove the
existence of Alfvén waves in MHD, see, e.g., [11].

Using the density ρ and permeability µ, we write the equations of the model (1.7)
in the form

wt +∇ · (wwT
δ1

) +∇pδ1 =
1
ρµ

(∇×W )×W
δ1 − ν∇× (∇× w), (5.1a)

∂W

∂t
= ∇× (w ×W )

δ2 − η∇× (∇×W ), (5.1b)

∇ · w = 0, ∇ ·W = 0, (5.1c)

where ν = 1
Re , η = 1

Rem
.

Assume a uniform, steady magnetic field W0, perturbed by a small velocity field
w. We denote the perturbations in current density and magnetic field by jmodel and
Wp, with

∇×Wp = µjmodel. (5.2)

Also, the vorticity of the model is

ωmodel = ∇× w. (5.3)

Since w · ∇w is quadratic in the small quantity w, it can be neglected in the
Navier-Stokes equation (5.1a), and therefore

∂w

∂t
+∇pδ1 =

1
ρµ

(∇×Wp)×W0
δ1 − ν∇× (∇× w). (5.4)

The leading order terms in the induction equation (5.1b) are

∂Wp

∂t
= ∇× (w ×W0)

δ2 − η∇× (∇×Wp). (5.5)

18



Using (5.2), we rewrite (5.4) as

∂w

∂t
+∇pδ1 =

1
ρ
jmodel ×W0

δ1 + ν∆w. (5.6)

Take curl of (5.6) and use the identity (2.7). Since ∇W0 = 0, we obtain from (5.3)
that

∂ωmodel

∂t
=

1
ρ
W0 · ∇jmodel

δ1 + ν∆ωmodel. (5.7)

Taking curl of (5.5) and using (5.2),(5.3) yields

µ
∂jmodel

∂t
= W0 · ∇ωmodel

δ2 + ηµ∆jmodel. (5.8)

Divide (5.8) by µ to obtain

∂jmodel

∂t
=

1
µ

W0 · ∇ωmodel
δ2 + η∆jmodel. (5.9)

We now eliminate jmodel from (5.7) by taking the time derivative of (5.7) and substi-
tuting for ∂jmodel

∂t using (5.9). This yields

∂2ωmodel

∂t2
=

1
ρ
W0 · ∇

( 1
µ

W0 · ∇ωmodel
δ2 + η∆jmodel

)δ1

+ ν∆
∂ωmodel

∂t
. (5.10)

The linearity of A−1
δ1

implies

∂2ωmodel

∂t2
=

1
ρµ

W0 · ∇(W0 · ∇ωmodel
δ2)

δ1

(5.11)

+
η

ρ
W0 · ∇(∆jmodel)

δ1 + ν∆
∂ωmodel

∂t
.

In order to eliminate the term containing ∆jmodel from (5.11), we take the Laplacian
of (5.7):

∆
∂ωmodel

∂t
=

1
ρ
W0 · ∇(∆jmodel)

δ1 + ν∆2ωmodel. (5.12)

It follows from (5.11)-(5.12) that

∂2ωmodel

∂t2
=

1
ρµ

W0 · ∇(W0 · ∇ωmodel
δ2)

δ1

(5.13)

+(η + ν)∆
∂ωmodel

∂t
− ην∆2ωmodel.

Next we look for the plane-wave solutions of the form

ωmodel ∼ ω0e
i(k·x−θt), (5.14)

where k is the wavenumber. It immediately follows from (5.14) that

∂ωmodel

∂t
= −iθωmodel, (5.15)

∂2ωmodel

∂t2
= −θ2ωmodel,

∆
∂ωmodel

∂t
= iθk2ωmodel,

∆2(ωmodel) = k4ωmodel.
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Substitute (5.14) into the wave equation (5.13). Using (5.15) gives

−θ2ωmodel =
1
ρµ

W0 · ∇(W0 · ∇ωmodel
δ2)

δ1

(5.16)

+(η + ν)iθk2ωmodel − ηνk4ωmodel.

It follows from (1.8) that

W0 · ∇ωmodel
δ2 = W0 · ∇ωmodel + O(δ2

2), (5.17)

W0 · ∇(W0 · ∇ωmodel
δ2)

δ1

= (W0 · ∇)2ωmodel + O(δ2
1) + O(δ2

2).

Thus we obtain from (5.16),(5.17) that

−θ2ωmodel =
1
ρµ

(W0 · ∇)2ωmodel + (η + ν)iθk2ωmodel (5.18)

− ηνk4ωmodel + O(δ2
1 + δ2

2).

It follows from (5.14) that

(W0 · ∇)2ωmodel = −W 2
0 k2
||ωmodel, (5.19)

where k|| is the component of k parallel to W0. Hence, (5.18),(5.19) imply

−θ2ωmodel = −
W 2

0 k2
||

ρµ
ωmodel + (η + ν)iθk2ωmodel (5.20)

− ηνk4ωmodel + O(δ2
1 + δ2

2).

This gives

−θ2 = −
W 2

0 k2
||

ρµ
+ (η + ν)iθk2 − ηνk4 + O(δ2

1 + δ2
2). (5.21)

Solving this quadratic equation for θ gives the dispersion relationship

θ = − (η + ν)k2

2
i±

(
√

W 2
0 k2
||

ρµ
− (ν − η)2k4

4
+ O(δ2

1 + δ2
2)

)
. (5.22)

Hence, for a perfect fluid (ν = η = 0) we obtain

θ = ±ṽak||,

ṽa = va + O(δ2
1 + δ2

2),

where va is the Alfvén velocity W0/
√

ρµ.
When ν = 0 and η is small (i.e. for high Rem) we have

θ = ±ṽak|| −
ηk2

2
i,

which represents a transverse wave with a group velocity equal to ±va + O(δ2
1 + δ2

2).
We conclude that our model (1.7) preserves the Alfvén waves and the group

velocity of the waves ṽa tends to the true Alfvén velocity va as the radii tend to zero.
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