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Abstract. The Analysis of Variance (ANOVA) expansion is often used to represent multivariate
functions in high dimensions. Using the anchored (Dirac) ANOVA expansion results in a substantially
reduced cost of evaluation of such functions. However, this approach has two significant flaws. First,
the accuracy of the approximation is sensitive to the choice of the anchor point, which is hard to make
á priori. Secondly, when the number of the parameters is large, the construction of the ANOVA
expansion becomes prohibitively expansive. In this case, efforts were made to recognize which input
dimensions have the largest effect upon the output, and the ANOVA expansion was built using only
these important inputs and their interactions. However, we show that such a simplification can
result in a loss of accuracy, since unimportant inputs often have important interactions. We propose
a method for representation of multivariate functions, which does not depend on the choice of the
anchor point, and tracks all the important inputs and important interactions, therefore constructing
the expansion with the exact minimum of the needed terms. We also provide an example of a real
life application where our method is not only computationally attractive, but it is the only approach
capable of approximating the given multivariate function with the expected accuracy.

Key words. analysis of variance, important inputs, interactions, screening, multivariate func-
tions

1. Introduction. Realistic simulations of complex systems governed by nonlin-
ear partial differential equations must account for “noisy” features of modeled phe-
nomena, such as material properties, coefficients, domain geometry, excitations and
boundary data. “Noise” can be understood as uncertainties in the specification of the
physical model. In real life applications one often knows only the statistical properties
of the problem’s parameters, which results in the usage of stochastic partial differ-
ential equations. Also, in many of the applications the number of random variables
is high; therefore one has to represent and integrate functions on a high-dimensional
set of parameters. An elegant way of representing such functions is the Analysis of
Variance expansion (ANOVA), also used in different reports under the name HDMR
(high-dimensional model representation).

The idea of ANOVA (see Section 3 for the exact definition) is to expand the given
multivariate function in terms of

• constant functions
• univariate functions
• bivariate functions
• etc.

In many applications the number of random parameters is prohibitively large, making
the ANOVA expansion technique inefficient. Some recent advances have been made
in trying to separate the important variables and then build the higher-order terms of
the expansion, using only the important dimensions. A large body of work was done
in this direction by Ma and Zabaras, [4]. To date, all the reports on this topic propose
to only include the variables in the ANOVA expansion based on their importance; the
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unimportant variables are automatically omitted from all terms of ANOVA. However,
one can easily construct an example to show that two unimportant variables can have
an important interaction, e.g., f(x1, x2, x3) = 1

N2 sin(Nx1x2) + sin(x3). For large
values of N the only important variable is x3. But if we disregard the unimportant
variables x1 and x2, we will miss the effects of their important interaction.

We propose a new method of singling out the important variables, based not
only on their input, but also on the importance of their interaction. With our new
proposed technique, we will be able to decide which variables to keep in each term of
the ANOVA expansion of a function. This is crucial for two reasons. First, this allows
us to reduce the number of variables to the necessary minimum - therefore reducing
the dimension of the space over which we integrate. Secondly, we will now be able to
add or remove variables from this minimum set, and we can do it for each term in the
expansion. This is also very important, since some variables that are important for
the first term of the ANOVA expansion, might not be important in the second term,
and vice versa. Our approach will guarantee that the exact minimum of necessary
calculations will be performed in computing the ANOVA expansion (and the related
notion of the effective dimension) of a multivariate function. It will also guarantee,
that all the important effects be captured.

We also address another pressing issue of the anchored ANOVA in its current
form: the high sensitivity of the approximation error to the choice of the reference
point. Such sensitivity is inacceptible in many applications, especially since the correct
choice of the reference point is hard (or impossible) to make á priori. It is shown
in [12, 10] that an incorrect choice of the reference point can lead to an unacceptible
approximation error, and a class of problems with such high sensitivity to the choice
of the reference point is discussed. We also point out, that with the incorrect choice
of the reference point the approximation error of the truncated ANOVA expansion
might even increase when more terms are included in the truncated expansion.

To that end, we propose to use the screening method prior to constructing the an-
chored ANOVA expansion of a multivariate function. The resulting anchored ANOVA
with screening will not depend on the choice of the reference point; this approach will
also allow to gain more insight into the importance of the separate inputs and their
interactions, mixing well with our previous idea of tracking the important interac-
tions. We also point out that the number r of sampling points needed for screening is
always kept small, r = 4, 5, 6 even for problems with very large number of stochastic
dimensions, [15, 11]. We will show in this report that the proposed method is com-
putationally attractive, gives more information about the multivariate function, and
there are many real life applications where the existing versions of anchored ANOVA
expansion cannot be used, while our method is still applicable. In particular, in Sec-
tion 3.3 we consider the dynamo action in magnetohydrodynamic flow. The current
approach to describe the mechanism of full nonlinear dynamo involves the mean field
theory with the first-order smoothing approximation. It has been argued recently,
that some of currently omitted effects have to be included in the existing models of
dynamo. We apply our method to get an insight into the dynamo mechanism by com-
paring the importance of different inputs and their interactions. The existing methods
utilizing anchored ANOVA expansion cannot be applied to this problem, since all the
separate inputs are equally unimportant (compared to their interactions). Thus, one
would have to either resolve all the dimensions by some type of sparse grid collocation,
which is prohibitively expensive even for 2−D magnetohydrodynamics, or truncate
the ANOVA expansion after the zeroth term, thus approximating the multivariate
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function by its value at the reference point - and the large approximation error will
disallow to reveal any information about what affects the dynamo mechanism.

2. Previous Work. When solving partial differential equations with random
inputs, there often arises a problem of integrating multivariate functions. These are
the integrals that can involve hundreds or even thousands of variables. The typical
approach is to approximate the high-dimensional integrals by sampling the integrand
functions at many points in the integration domain. However, the number of sample
points needed to approximate the integrals with acceptable accuracy, increases expo-
nentially as the dimension increases. This is known as the curse of dimensionality
- see, e.g., [7] and the references therein. To further complicate the issue, in most
of the real life applications leading to PDEs with random inputs, the underlying de-
terministic problem is also computationally expensive to solve. Thus, the number of
sampling points must be reduced dramatically, and such methods as Monte Carlo or
Quazi Monte Carlo are no longer affordable to use.

This has motivated a large body of research in stochastic collocation and sparse
grids. In [9] the authors consider the solution of elliptic PDEs with random co-
efficients and forcing terms (input data of the model); they especially address the
situation where the input data are assumed to depend on a moderately large number
of random variables. They propose an anisotropic Sparse Grid Stochastic Collocation,
which consists of a Galerkin approximation in the space variables and a collocation,
in probability space, on sparse tensor product grids utilizing either Clenshaw-Curtis
or Gaussian knots. The authors show that for moderately large dimensional prob-
lems, the sparse grid approach with a properly chosen anisotropy is superior to the
Monte Carlo-type methods. In [6] the authors introduce the multi-element probabilis-
tic collocation method; the method is applied to the two-dimensional Navier-Stokes
equations with random inputs, in up to 50 stochastic dimensions. Naturally, the
number of samples is limited in this setting, since solving the inderlying deterministic
problem is costly. The authors show numerically, that while the convergence rate of
their method deteriorates in 50 dimensions, the error in the mean and variance is
two orders of magnitude lower than the error obtained with the Monte Carlo method
using only a small number of samples.

Recently, many papers were written, focusing on one elegant way of representing
functions depending on a high-dimensional set of parameters - the analysis-of-variance,
ANOVA, expansion. ANOVA expansions are exact and contain a finite number of
terms, while truncations of ANOVA expansions may provide good approximations
with fewer terms. These expansions are constructed in such way, that the relation-
ship between the sets of input and output variables is captured, and the hierarchy
of correlations among the input variables is revealed. Namely, each new term of the
ANOVA expansion contains the higher-order correlated effects of the input variables.
Depending on the way that one determines the component functions (typically, as
one chooses between the Lebesgue or Dirac measure to be used) there are two types
of ANOVA expansions: Lebesgue ANOVA and anchored ANOVA - both defined in
Section 3. In [8] the authors study the general approximation properties of ANOVA
expansions for functionals of solutions of nonlinear partial differential equations. The
authors demonstrate via numerical examples that whenever truncated ANOVA ex-
pansions of functionals provide accurate approximations, optimizers found through a
simple surrogate optimization strategy are also relatively accurate. This study was
successfully conducted in the framework of Lebesgue ANOVA - although this involves
high dimensional integration even for the zeroth term of the expansion, and therefore
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it is impractical in most of the applications. The alternative approach, the anchored
ANOVA, is discussed, e.g., in [5], where the authors discuss the sensitivity of the
approximation error to the choice of the reference point. The authors explain that
the reference (or anchor) point plays an essential role in the overall efficiency and
accuracy of the expansion. They discuss several different techniques of choosing the
reference point, including it being randomly chosen in the high-dimensional space, or
being a trial point with the output closest to mean of the function computed from a
moderate number of quasi-random points, as in [12, 10]. They also consider the choice
based on the optimal weights in quasi Monte Carlo methods, and conclude that this
approach should only be suggested for problems that allow dimensional variable sepa-
ration. The authors themselves suggest the reference point to be always taken as the
center point of a sparse grid quadrature associated with the integration. This comes
at no extra computational cost and is shown to perform better than most alternatives.
However, this choice also isn’t universally applicable and, as the authors say, there is
no easy and straightforward way to correctly make this choice for general functions.

It was argued by Rabitz et al., [14], that quite often in high-dimensional models
small subsets of input variables have the main impact upon the output. In that case,
if one could take advantage of this fact by constructing a model representation that
allows for solving (possibly several) low-dimensional problem instead of the original
high-dimensional problem, it would alleviate the curse of dimensionality. Also, the
ANOVA expansion of multivariate functions (or, by another terminology, HDMR - the
high dimensional model representation) appears to be the natural candidate for such
representation, since its terms are organized to reveal the hierarchy of correlations be-
tween the inputs. It is no surprise, therefore, that a substantial body of literature has
appeared lately, addressing the issue of separating the important variables, and using
only these subsets of important inputs in the multivariate function representations.

In [15] Morris proposed an effective screening sensitivity measure to identify the
few important factors in models with many factors. His screening method was based
on computing a number of elementary effects for each input, and then averaging them
to assess the effect that the given input has upon the output. However, this global
method is still rarely used, and the local methods such as One Factor at a Time
(OAT) screening techniques are employed instead. The modification of the Morris’s
screening method was introduced in [11] - and Saltelli insists in this and his other
papers that the OAT sensitivity techniques should not be used.

In [4] Ma and Zabaras develop a computational algorithm aiming to solve stochas-
tic problems in high dimensions. This paper can be considered the current state-of-
the-art result, as the authors introduce an adaptive anchored ANOVA expansion,
to find the (first order) important inputs and then construct higher-order terms of
ANOVA involving only these important inputs. The authors then incorporate the
adaptive sparse grid collocation (ASGC) method to solve the resulting lower dimen-
sional problems. They choose the anchor point to be the mean of the random input
vector. In order to find the important dimensions in the first term of anchored ANOVA
expansion (i.e. the separate inputs that have the most effect upon the output) the
authors always construct the zeroth- and first-order ANOVA expansion and define
the weights which measure the effect that each separate input has upon the output.
If some weights are larger than the predefined threshold, the corresponding inputs
are considered important. Then only these dimensions can be present in the terms
of the expansion. Namely, if the important dimensions are {1, 3, 5} then only the
higher-order terms {13}, {15}, {35}, and {135} are considered. The ASGC method
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is used to resolve the important dimensions.

Several barriers to further progress still remain, when one tries to model a mul-
tivariate function in high dimensions. First, the dependence on the choice of the
reference point should be avoided. No matter how sophisticated the algorithm for
singling out the important dimensions, if the choice of the reference point is incorrect,
the approximation error can be unacceptable and the constructed expansion will be
inaccurate. Also, the incorrect choice of the reference point can affect the choice of
the important dimensions: e.g., in [4] the corresponding weights depend on the value
of the multivariate function at the reference point - thus choosing a different reference
point may lead to treating another dimensions as important.

Secondly, it is easy to construct an example showing that an interaction of two
inputs can have an important effect upon the output, even if one or even both of
these inputs are not considered important (i.e. when the effect of these separate
inputs upon the output is small). One such example was given in Section 1. Another
example from a real life application (magnetohydrodynamics) will be considered in
Section 3.3, where small perturbations of velocity and magnetic field are treated as
noise. The corresponding random variables have small effects upon the output - the
mean magnetic field. However, their interaction is responsible for the mechanism of
full nonlinear dynamo. In this situation none of the separate inputs are important -
but some of their interactions are, and therefore the existing approaches that utilize
the anchored ANOVA expansion aren’t applicable.

We propose a method that overcomes both of these barriers. First, we avoid
the problem of choosing the reference point, by introducing the anchored ANOVA
with screening. Secondly, we approach the problem of recognizing the important
dimensions differently; by approximating not only the first, but also second mixed
partial derivatives of the multivariate function at the screening points we are now able
to find exactly which separate inputs are important and which interactions (possibly of
unimportant inputs) are important as well. Thus we know exactly which dimensions
need to be resolved by a sparse grid collocation method to construct an efficient and
accurate truncation of the ANOVA expansion. We also obtain (without any extra
computational cost) an approximation to the truncated ANOVA expansion, from
which an information can be gained about the effects that separate inputs and their
interactions have upon the output.

3. Analysis of Variance (ANOVA). The Lebesgue ANOVA expansion is used
to represent multivariate functions in such a way, that every new term in the expansion
captures higher-order interactions of the input variables.

Let P = 1, ..., p; for any subset of (ordered) coordinate indices T ⊆ P , let |T |
denote the cardinality of T , let α⃗T ∈ R|T | denote the |T |-vector containing the com-

ponents of the vector α⃗T ∈ Rp indexed by T , and let A
|T |
T denote the |T |-dimensional

unit hypercube which is the projection of the p-dimensional unit hypercube Ap onto
the coordinates indexed by T . Any function g ∈ L2(Ap) may be written as the
ANOVA expansion

g(α⃗) = g0 +
∑
T⊆P

gT (α⃗T ), (3.1)

where the terms in the expansion are determined recursively by
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gT (α⃗T ) =

∫
Ap−|T |

g(α⃗)dα⃗P\T −
∑
V⊆T

gV (α⃗V )− g0, (3.2)

starting with

g0 =

∫
Ap

g(α⃗)dα⃗. (3.3)

The Lebesgue ANOVA expansion is useful in different settings, including the
computation of global sensitivity by measuring the contribution of variance of each
component function to the overall variance. However, constructing such expansion
involves the evaluation of high-dimensional integrals, even for the zeroth term. It is
therefore computationally expensive and impractical.

The Dirac measure is used in real life applications instead of the Lebesgue mea-
sure, leading to the anchored ANOVA (also called cut-HDMR) expansion. Consider a
multivariate function f(Ȳ ) = f(Y1, Y2, .., Yk) defined on a k-dimensional unit hyper-
cube. Following the notation of [4], one chooses a reference point Ȳ = (Ȳ1, Ȳ2, .., Ȳk)
and constructs the anchored ANOVA expansion:

f(Y) = f0 +
k∑

i=1

fi(Yi) +
∑

1≤i1<i2≤k

fi1i2(Yi1 , Yi2) (3.4)

+ · · ·+
∑

1≤i1<···<is≤k

fi1···is(Yi1 , ..., Yis) + · · ·+ f12···k(Y1, ..., Yk),

where

f0 = f(Ȳ), fi(Yi) = f(Y)|Y=Ȳ\Yi
− f0, (3.5)

fij(Yi, Yj) = f(Y)|Y=Ȳ\{Yi,Yj} − fi(Yi)− fj(Yj)− f0, ...

The notation Y = Ȳ\Yu means that the components of Y other than those indices
that belong to the set u are set equal to those of the reference point. This expansion
only involves function evaluations at reference points, and high-dimensional integra-
tion is not needed, making the anchored ANOVA a much more efficient tool in real
life computations.

3.1. Screening. Anchored ANOVA in its current form has two serious flaws,
which we address here. First, the convergence properties of anchored ANOVA depend
(sometimes heavily) on the choice of the reference point. It was shown in [12, 10]
that a wrong choice of a reference point may lead to an unacceptable approximation
error. To this end, we propose to use another technique instead of using an arbitrary
reference point. We suggest that the anchored ANOVA expansion must be preceded by
a screening method - the one originally introduced by Morris [15], or its modification
by Campolongo, Cariboni and Saltelli, [11]. For our purposes, we will use the following
formulation of Morris’s screening method.

Consider the case where the region of interest is a k-dimensional unit hypercube
Ω, with a regular k-dimensional p-level grid. For a function f(x) = f(x1, x2, .., xk)
define the elementary effect of xi as
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di(x) =
f(x1, x2, .., xi−1, xi + h, xi+1, .., xk)− f(x)

h
, (3.6)

where the increment is taken to be equal to the mesh size, h = 1
p−1 .

To generate an economical random sampling, we now construct a (k + 1)-by-k
sampling matrix B, Bij ∈ {0, 1}, such that for every column j = 1, 2, .., k there are
two rows of B that differ only in their j-th entries. For example,

B =


0 0 0 · · · 0
1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0
· · · · · · · · · · · · · · ·
1 1 1 · · · 1


For a design matrix hB each experiment would provide k elementary effects, based

on k + 1 runs. These selections are not random, but a randomization algorithm for
the sampling matrix was also given by Morris in [15]; however, the screening method
above in sufficient for the demonstration of our approach.

Notice that the number of experiments (i.e. the number of elementary effects for
each input) is small, r = 4, 5, 6, even for sampling the hypercubes in high dimensions,
e.g. for k = 20, 50, 100. Note also, that the total number of needed samples of the
k-dimensional space depends on both r and k, since we will be taking samples not
only in these r points, but also in the neighborhood of each point.

Introducing the anchored ANOVA with screening, we change the formulation
(3.4)− (3.5) to

f(Y) =
1

r

r∑
m=1

[fm
0 +

k∑
i=1

fm
i (Yi) +

∑
1≤i1<i2≤k

fm
i1i2(Yi1 , Yi2) (3.7)

+ · · ·+
∑

1≤i1<···<is≤k

fm
i1···is(Yi1 , ..., Yis) + · · ·+ fm

12···k(Y1, ..., Yk)],

where

fm
0 = f(Ym), fm

i (Yi) = f(Y)|Y=Ym\Yi
− fm

0 , (3.8)

fm
ij (Yi, Yj) = f(Y)|Y=Ym\{Yi,Yj} − fm

i (Yi)− fm
j (Yj)− fm

0 , ...

Here Ym, m = 1, .., r are the sampling points from the screening algorithm, and we
again point out that the number of these points is small, r ∈ {4, 5, 6}, even for large
values of k.

A clear advantage of using the screening method is that now the anchored ANOVA
expansion becomes stable - in a sense that it is not sensitive to the choice of the refer-
ence point, which is hard to make á priori. Prescreening also reduces the approxima-
tion error of the anchored ANOVA; The cost of these improvements seems to be the
increased amount of runs needed, which is prohibitive when the underlying determin-
istic PDE is hard to solve. However, we will show that the anchored ANOVA with
screening is a strategically different approach, which in many real life applications can
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even reduce the number of the needed solves of the deterministic problem. Moreover,
we will demonstrate a complex real life application, where the anchored ANOVA is
too computationally expensive or cannot be applied even when the number of random
variables is small - and the anchored ANOVA with screening still works and captures
all the important effects of the physical model.

3.2. Capturing Important Interactions. We address now the second issue of
the existing approach to ANOVA (Lebesgue or anchored). Very often in high dimen-
sional models there exist small subsets of input variables that have the main impact
on the output. The idea of capturing which input variables are more ”important”
(i.e. have the larger impact on the output) has been investigated since Morris in [15]
proposed to compute the elementary effects for each input, and then average them to
assess the overall importance of the input. There have been many investigation on the
subject of important variables, see, e.g., [14, 12, 4] and references therein. However,
none of the existing methods goes beyond evaluating the separate effects of different
inputs upon the output - and there are many situations where this could lead to either
missing the important properties of the modeled problem, or to a method which is
too computationally expensive.

Consider now the proposed expansion of a multivariate function f(Y1, Y2, .., Yk)
- the anchored ANOVA with prescreening, given by (3.7) − (3.8). Following [15], we
distinguish four different scenarios: for any pointY = (Y1, Y2, .., Yk) in the hypercube,
the value ∂f

∂Yi
|Y may be approximately

(a) zero over all values of Y,
(b) a nonzero constant over all values of Y,
(c) a nonconstant function of Yi, or
(d) a nonconstant function of one or more Yj , j ̸= i.
These cases are understood as follows: (a) the input Yi doesn’t affect the output,

(b) the effects of Yi of f are linear and additive - therefore we add Yi to the set of
the important variables, (c) the effect of Yi on f is nonlinear, and (d) Yi is involved
in interaction with another inputs.

To the best of our knowledge, all the existing methods can only be used in the
cases (a) and (b) - i.e., for assessing the importance of the inputs based on their linear
effect on the output. It is usually argued (see, e.g., the recently proposed method in
[4]) that only the two important variables can have important interactions, therefore
only such interactions need to be tracked. However, one can demonstrate that a
problem can be modeled incorrectly when the effects of the interactions are omitted
in such manner. For instance, consider a function

f(x1, x2, x3) =
1

N2
sin(Nx1x2) + sin(x3).

For large values of N the only important variable (based on separate effects of
different inputs upon the output) is x3. Therefore, if we were to use the existing meth-
ods and construct the anchored ANOVA with the adaptive technique, as proposed in
[4] (which is the latest and the most advanced effort to treat important variables dif-
ferently in the anchored ANOVA), we would have left only two terms in the anchored
ANOVA expansion (3.4). Namely, this would lead to the approximation

f(x) = f0 + f3(x3). (3.9)
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Therefore, when constructing the anisotropic sparse grid collocation method based
on (3.9), one would try to resolve the x3-dimension only. However, by taking the mixed

partial derivative ∂f2

∂x1∂x2
one can verify that the unimportant variables x1, x2 have an

important interaction, which needs to be tracked in order to capture the effects of the
modeled problem.

This simple example shows that the case (d) must be addressed - i.e., the im-
portance of interactions of different inputs must be also assessed. Notice also, that
not only has this issue not been addressed before, but it cannot even be resolved
within the mainframe of existing methods. Even the convergence properties of an-
chored ANOVA are sensitive to the choice of the reference point. This dependence on
the choice of the reference point becomes even heavier as one tries to determine the
important variables, since this is based on approximating the first partial derivatives
at the reference point. Since our approach to assessing the importance of interac-
tions will involve second mixed partial derivatives, using the anchored ANOVA in its
current form will be restricted to a small class of problems where the given choice
of a reference point is justified. As was discussed in [12, 10], the correct choice of a
reference point can rarely be made á priori.

We propose to track not only the important variables, but also the variables
with important interactions, therefore keeping only the necessary summands in the
first three terms of ANOVA, and at not same time not loosing any properties of
the modeled problem by throwing away the summands which affect the output. In
order to decide which interactions are important, we propose to compute the finite

difference approximations of second mixed partial derivatives of the form ∂f2

∂Yi∂Yj
,

i, j = 1, ..k, i < j. Note that the anchored ANOVA with screening is employed.
Hence, we propose the following algorithm for approximating the multivariate function
f(Y) = f(Y1, .., Yk):

Algorithm 3.1.
(1) Use screening method by Morris [15] or Campolongo, Cariboni and Saltelli

[11] for the random sampling of the k-dimensional hypercube Ω. At this stage, we will
need to solve the underlying deterministic equations r times, r = 4, 5, 6.

(2) Following the screening method, compute the elementary effects of each in-
put; for that, the multivariate function f needs to be evaluated at rk points: given
each point Ym ∈ Ω, m = 1, .., r, we evaluate f(Ym + hei), i = 1, .., k. Here
ei = (0, 0, .., 0, 1, 0, .., 0) is the unit vector with its i-th component equal to one. The
step h is taken to be the mesh size of the screening method used. Note that the values
f(Ym) where obtained at the previous step of the algorithm.

(3) Given a predefined threshold value ϵ1, we call the i-th input important and keep
the corresponding summand in the second term of anchored ANOVA with screening,
if

r∑
m=1

|f(Y
m + hei)− f(Ym)

h
| ≥ rϵ1. (3.10)

(4) In order to find important interactions, we need to find f(Ym + hei + hej),

i, j = 1, ..k, i < j. Therefore, at this step of the algorithm r k(k−1)
2 function evaluations

are needed.
(5) Given a predefined threshold value ϵ2, we call the interaction of the ij-th inputs

important and keep the corresponding summand in the third term of anchored ANOVA
with screening, if
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r∑
m=1

|f(Y
m + hei + hej)− f(Ym + hei)− f(Ym + hei) + f(Ym)

h2
| ≥ rϵ2.(3.11)

The total number of function evaluations needed is r(1 + k + k(k−1)
2 ); however,

at this cost we not only reduce the number of summands in the first three ANOVA
terms to a minimum, but we are now able to capture all the key properties of the
modeled problem. We now discuss the advantages of the proposed approach.

• There is no averaging of elementary effects in our algorithm, which is usually
the case when screening methods are used to estimate the importance of
separate inputs.

• No weights need to be computed to determine the importance of inputs or
their interactions; at the same time, if needed, the weights can be easily added
to the algorithm.

• The sensitivity of the expansion to the choice of the reference point is eluded.
Not only this improves the approximation error of ANOVA expansion, but
in many problems this also allows for the smaller effective dimension, and
therefore the shorter truncation of the expansion.

• The function evaluations, although sometimes costly, can allow for the sig-
nificant reduction of the number of summands in the second and, more im-
portantly, third term of (3.7). Thus, when the construction of truncated
ANOVA expansion is followed by some type of anisotropic sparse grid collo-
cation method, the number of dimensions that need to be resolved is signifi-
cantly lowered. This will be demonstrated by an example in Section 3.3.

• If the underlying deterministic problem is too computationally expensive,
one sometimes cannot afford to resolve even the important dimensions. In
that case, the gathered information can be intelligently used to construct an
approximation to the multivariate function (or any functionals of interest) as
follows:

f(Y) ≈ 1

r

r∑
m=1

[fm
0 +

∑
i∈S1

fm
i (Yi) +

∑
(i1,i2)∈S2

fm
i1i2(Yi1 , Yi2)], (3.12)

where S1 is the set of important inputs, S2 is the set of important interactions,
and

fm
0 = f(Ym), fm

i (Yi) = f(Ym + hei)− fm
0 , (3.13)

fm
ij (Yi, Yj) = f(Ym + hei + hej)− fm

i (Yi)− fm
j (Yj)− fm

0 .

Note that two unimportant inputs can have an important interaction. Note
also, that even when values of k are moderate, the number of needed function

evaluations r(1 + k + k(k−1)
2 ) is small compared to the number of function

evaluations needed in a sparse grid collocation method, even when the number
of important dimensions is reduced.

3.3. Computational Verification. It is unrealistic to make an assumption
that in most of the real life applications the multivariate functions can be accurately
approximated by the sum of constant and univariate functions. This would mean
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that the ANOVA expansion can always be truncated after the second term and still
accurately represent the multivariate function sought - and this is not usually the
case. In particular, it was verified computationally in [8] that the summands in the
third term of ANOVA are of the same order of magnitude as are those in the second
term. In other words, the interactions among the inputs have the same effect upon the
output, as do the separate inputs. This was calculated for the Laplace equation with
small perturbation, and the number of random variables was kept as low as k = 4.
As follows from the numerical data given in [8], the existing approaches to ANOVA
expansion are costly even in this simple application, since all of the dimensions need to
be resolved by some type of sparse grid technique, which is computationally expensive
even for low values of k, and the adaptive anchored ANOVA described in [4], cannot
be used effectively because the interactions of unimportant inputs also turn out to be
important.

One of the areas of applications where our approach is not simply more effective
than the existing ones, but is also the only one usable, is the modeling of turbulent
fluid flows. Turbulence modeling in the setting of PDEs with random inputs has
been a subject of several recent investigation - see, e.g., [1] and references therein.
Typically these are settings where the underlying deterministic PDEs are expensive
to solve even in the presence of turbulence modeling; also, the uncertainty can occur
in the boundary data, coefficients, domain geometry and excitations, which can lead
to moderate-to-high values of k. Hence, one has to try to gather as much information
as possible about the importance of separate inputs and their interactions, in order
to reduce the number of dimensions needed to be resolved. One cannot assume á
priori that only the first two terms in the ANOVA expansion must be kept after the
truncation, since many of the physical properties of turbulent fluid flows are subtle
and cannot be captured when the ANOVA expansion is truncated too early.

We will not stop here and consider an even more complicated system of PDEs -
namely, the magnetohydrodynamic (MHD) flow. When this flow becomes turbulent,
all the problems of turbulent modeling of the Navier-Stokes equations are magnified
many times over - see, e.g., [2, 3]. At the same time, the idea of breaking the sought
quantity (for instance, the velocity field u or the magnetic field B) into the sum of
its mean and fluctuations, and then treating the fluctuations as noise, can be tested
on a simpler application than turbulence. However, the example considered below is
chosen so that it could lead to applying our approach in turbulence modeling.

We now consider the mechanism of dynamo in MHD. Assuming the fluid to be
viscous and incompressible, the governing equations of MHD are the Navier-Stokes
equations of fluid dynamics and Maxwell’s equations of electromagnetism, coupled
via the Lorentz force and Ohm’s law. Let Ω = (0, L)3 be the flow domain, and
u(t,x), p(t,x),B(t,x) be the velocity, pressure, and the magnetic field of the flow,
driven by the velocity body force f and magnetic field force curlg. Then u, p,B
satisfy the MHD equations:

ut +∇ · (uuT )− 1

Re
∆u+

S

2
∇(B ·B)− S∇ · (BBT ) +∇p = f ,

Bt +
1

Rem
curl(curlB) + curl (B× u) = curlg,

∇ · u = 0,∇ ·B = 0,

(3.14)
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in Q = (0, T )× Ω, with the initial data:

u(0,x) = u0(x), B(0,x) = B0(x) in Ω, (3.15)

and with periodic boundary conditions (with zero mean):

Φ(t,x+ Lei) = Φ(t,x), i = 1, 2, 3,

∫
Ω

Φ(t,x)dx = 0, (3.16)

for Φ = u,u0, p,B,B0, f ,g.
Here Re, Rem, and S are nondimensional constants that characterize the flow:

the Reynolds number, the magnetic Reynolds number and the coupling number, re-
spectively.

The dynamo theory proposes a mechanism, by which an electrically conducting
fluid can maintain a magnetic field. In particular, the dynamo action of the turbu-
lent motion can overcome the Ohmic dissipation thus providing for growing magnetic
fields. When the velocity field is affected by the Lorentz forces, it leads to the coupled
system of equations, as in (3.14). In that case, fully nonlinear (hydromagnetic) dy-
namos appear, which need to be modeled. Numerical models employed in simulation
of fully nonlinear dynamos, use different assumptions about the system, sometimes
very restricting. Most of the approaches to modeling dynamos utilize the mean field
dynamo theory: the velocity and magnetic fields are represented as sums of their
mean parts and fluctuations,

u = u+ u′,B = B+ b′, and also p = p+ p′,

where the overbar denotes spatially or statistically averaged long-scale fields (a com-
mon approach is to use spatial ensemble averaging), and u′ and b′ are small-scale
perturbations. The small-scale fields have zero averages, while their products in gen-
eral do not.

However, there are many MHD applications where the traditional mean field
dynamo theories cannot be applied, since they use the first-order smoothing approx-
imation, see [13] and the references therein. Hence, in these applications it is not
known exactly which effects should be accounted for in the dynamo theory. In par-
ticular, this can happen when the condition Rem ≪ 1 is violated (which occurs in a
number of the MHD applications, including astrophysics).

There has been a controversy regarding which effects to take into consideration
when modeling dynamos. For instance, it is argued in [13] that the generally neglected
Hall term in the two-fluid MHD may have a profound effect on the dynamo action. To
that end, we propose to use our method to discover the mechanisms involved, and the
effects that need to be accounted for. We suggest to treat the system (3.14) as PDEs
with random input variables. Namely, we will treat u′ and b′ as noise - therefore,
we get six random variables if the MHD flow is three-dimensional, and four random
variables in the case of the 2−D MHD. We then use the proposed anchored ANOVA
with screening to determine which of the random variables and which interactions
have the largest effect upon the mean long-scale magnetic field B. We also test the
assumption that the output B is affected the most by the interaction of the random
inputs, and not the separate inputs themselves; in particular, a term u′ × b′ is known
to give rise to an additional electromotive force in Ohm’s law for the mean fields, [16].
If that is the case, then all the existing approaches, including the adaptive anchored
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ANOVA of [4], are ineffective: if all the separate inputs are unimportant, the anchored
ANOVA expansion has to be either truncated at the zeroth (mean value) term, or
all the dimensions have to be resolved - which is too computationally expensive for
systems like (3.14).

We consider a two-dimensional MHD flow, governed by (3.14) with the coupling
number S = 1, in Ω = [0, 1] × [0, 1]. The Reynolds and magnetic Reynolds numbers
are Re = Rem = 1; the final time is T = 0.1, with the time step proportional to the
spatial mesh size d, ∆t = 0.1d. The right hand side and the boundary conditions of
the deterministic problem are chosen so that its solution is a traveling wave, with the
magnetic field increasing in time:

u =

(
0.75 + 0.25 cos(2π(x− t)) sin(2π(y − t))e−8π2tRe−1

0.75− 0.25 sin(2π(x− t)) cos(2π(y − t))e−8π2tRe−1

)
,

p = − 1

64
(cos(4π(x− t)) + cos(4π(y − t)))e−16π2tRe−1

,

B =

(
y3et

x3et

)
.

The small perturbations u′
1, u

′
2, b

′
1, b

′
2 are added through the boundary conditions;

namely, u1|∂Ω1 = u1|∂Ω1 + α1ϵΦ1, u2|∂Ω2 = u2|∂Ω2 + α2ϵΦ2, b1|∂Ω3 = b1|∂Ω3 + α3ϵΦ3,
b2|∂Ω4 = b2|∂Ω4 + α4ϵΦ4. Here

∂Ω1 = {(x, y)|x = 0, 0 ≤ y ≤ 1},
∂Ω2 = {(x, y)|0 ≤ x ≤ 1, y = 1},
∂Ω3 = {(x, y)|x = 1, 0 ≤ y ≤ 1},
∂Ω4 = {(x, y)|0 ≤ x ≤ 1, y = 0}.

Hence, the four random variables, corresponding to the perturbations u′
1, u

′
2, b

′
1, b

′
2,

are sought in the parameter space Γ4 = {(α1, α2, α3, α4)} ⊂ [0, 1]4. We take ϵ = 0.001,
and the parabolic inflows

Φ1(x, y) = ϵy(1− y), Φ2(x, y) = −ϵx(1− x),

Φ3(x, y) = −Φ1(x, y), Φ4(x, y) = −Φ2(x, y).

We now follow Algorithm 3.1: introduce a regular 4-dimensional p-level grid on

Γ4, letting p = 4 and ∆ = p/2
p−1 = 2

3 . Using the 5 × 4 sampling matrix ∆B, we pick

three sampling points in Γ4, r = 3. Thus, the total number of sampling needed for the

proposed ANOVA with screening is r(1 + k + k(k−1)
2 ) = 33. The increment h in the

stochastic dimensions is taken small, h = 0.1. Following (3.10)-(3.11), we measure the
effects of the small perturbations u′

1, u
′
2, b

′
1, b

′
2 and their interactions upon the mean

long-scale magnetic field B - see Figure 3.1.
We have repeated the computations for three successive refinements of the spatial

mesh - verifying the results of Figure 3.1. Notice that the separate inputs u′
1, u

′
2, b

′
1 are

equally unimportant. Thus, the existing methods (e.g., [4]) will either construct the
ANOVA expansion consisting only of the zeroth term, resulting in an unacceptably
inaccurate approximation, or all four stochastic dimensions would need to be resolved
by some sparse grid technique, resulting in a large number of needed deterministic
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Fig. 3.1. Importance of small perturbations of magnetic and velocity fields and their interactions

solves (n4, where n is the number of sparse grid points in each dimension). Our
method is not only computationally attractive (only 33 samples were computed), but
it also sheds light into the mechanism of dynamo, showing that although the only
important separate perturbation is b′2, but the interactions of {u′

2, b
′
1}, {u′

2, b
′
2} and

especially {b′1, b′2} are the most important. The obtained results can already be used as
an approximation of the multivariate function B, and they can also be used to decide
which dimensions should be resolved by the sparse grid technique - in this case the
first dimension can be omitted. Finally, our example demonstrates that the important
and unimportant variables can have an important interaction (e.g., the inputs 3 and
4), and even the interaction of two unimportant variables (e.g., the inputs 2 and 3)
can be important.

The advantages of the proposed method can be clearly seen even when the number
of parameters is small. It was demonstrated in the example above, that sometimes the
proposed method can be applied without any additional sampling, so that the sparse
grid methods can be avoided. Furthermore, even with the sparse grid collocation
methods employed, the proposed method reduces the amount of sampling necessary; if
the 5-level sparse grid method is used with the previous versions of anchored ANOVA,
the number of solves needed is 54 = 625, whereas the same 5-level sparse grid technique

combined with the proposed method results in 3(1 + 4 + 4(4−1)
2 ) + 53 = 158 solves

needed. The economy in the number of solves of the underlying deterministic problem
is noticeable even for the problem with four random inputs; the attractiveness of the
proposed method will increase as the number of random variables is increased.

4. Future work. The proposed method can be further developed in several
aspects. First, we will compare the anchored ANOVA with screening to the differ-
ent strategies of choosing the anchor point in the anchored ANOVA,[5]. We aim to
demonstrate the smaller approximation error when using the anchored ANOVA with
screening. These results need to be tested on different types of problems, see [12].

The proposed Algorithm 3.1 for the anchored ANOVA with screening should be
compared to the existing computational methodologies - e.g., that of [4]. The compar-
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ison criteria should include the computational time needed, the number of samples
taken in the high dimensional stochastic space, and the accuracy of the resulting
ANOVA expansion. We will also investigate the class of problems, where our method
is the only one available. An example of such problems is the one discussed in Section
3.3. The result of this extensive research should summarize the advantages of our
method: smaller approximation error; better quality of the approximation, including
capturing the effects of important interactions of the inputs upon the output; and
in many cases, the overall computational attractiveness of our method, including the
class of problems where there is no alternative to the proposed Algorithm 3.1, as in
the MHD dynamo problem discussed above.

We also aim to investigate (both theoretically and numerically) the idea that the
underlying deterministic problem can be simplified at the stage when the anchored
ANOVA with screening is used to highlight the important inputs and interactions.
Then the important dimensions are resolved by an ASGC-type method with the orig-
inal, nonsimplified underlying problem. This will result in significant reduction of
computational expenses; in particular, the underlying discretized deterministic PDE
can be solved on a much coarser mesh and over a smaller period of time - at the
stage when the important dimensions are sought. This idea is crucial if one wants to
reduce the computational cost of the method, and we take advantage of the flexibility
of the proposed algorithm. Not only the method can be used on its own, but it can
be naturally combined with the sparse grid collocation technique. In the latter case,
the ANOVA with screening is used as a predictor of which dimensions are important
(either by themselves or in an interaction) and need to be further resolved by the
ASGC method. If a multivariate function f depends on k = 200 variables and our
method is used to find that only 100 of these variables have significant effect upon
the output f , then one only needs to sample the domain r(1 + 200 + 200·199

2 ) + n100

times instead of n200 times (here n is the number of ASGC sampling points in each
dimension, and r is the number of samples in screening, r = 4, 5, 6). We will be in-

vestigating whether these first r(1 + k + k(k−1)
2 ) samples can be taken of a simplified

deterministic problem.
When applying Algorithm 3.1 to approximating multivariate functions, one can

encounter the situation where two unimportant variables have an important inter-
action (see, e.g., inputs 2 and 3 in Figure 3.1). This leads to another new area of
potential research: we will look into the improvements on the existing sparse grid
techniques. For instance, suppose that we use the ANOVA with screening as a pre-
dictor of important dimensions and then employ an ASGC method; if the dimensions
xi and xj are unimportant but have an important interaction, they need to be resolved
by the sparse grid method. However, the number of sampling points in these direc-
tions can be reduced, if they are rearranged along the line xi = xj . The creation the
dimension-selective sparse grid collocation methods will allow for the reduced number
of sample points in the unimportant dimensions (but with important interactions).
We will show that the accuracy of the method is comparable to that of the existing
sparse grid collocation techniques, but the effectiveness of the new method is improved
due to the smaller number of the (rearranged) sample points.
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