
HIGH ACCURACY METHOD FOR TURBULENT FLOW PROBLEMS

M. GUNZBURGER1,3 AND A. LABOVSKY2,3 ∗

Abstract. We present a method of high order temporal and spatial accuracy for flow problems
with high Reynolds number. The method presented is stable, computationally cheap and gives
an accurate approximation to the quantities sought. The direct numerical simulation of turbulent
flows is computationally expensive or not even feasible. Hence, the method employs turbulence
modeling. The two key ingredients are the temporal deferred correction, combined with the family
of Approximate Deconvolution models, which allows for arbitrarily high order of accuracy in both
spatial and temporal variables. We prove stability and accuracy for the two-step method; the method
is shown to be second order accurate in time and in the filtering width.

Key words. turbulence modeling, deferred correction, approximate deconvolution, high accu-
racy.

1. Introduction. Direct numerical simulation of a 3d turbulent flow is often not
computationally economical or even feasible. On the other hand, the largest structures
in the flow (containing most of the flow’s energy) are responsible for much of the
mixing and most of the flow’s momentum transport. This led to various numerical
regularizations; one of these is Large Eddy Simulation (LES) [S01], [J04], [BIL06]. It
is based on the idea that the flow can be represented by a collection of scales with
different sizes, and instead of trying to approximate all of them down to the smallest
one, one defines a filter width δ > 0 and computes only the scales of size bigger than δ
(large scales), while the effect of the small scales on the large scales is modeled. This
reduces the number of degrees of freedom in a simulation and represents accurately
the large structures in the flow.

Many different LES regularizations have been proposed and studied; we consider
the family of Approximate Deconvolution Models (ADMs), which allow for arbitrar-
ily high spatial accuracy. These models were introduced by Stolz and Adams in [AS]
and extensively studied - see, e.g., [SAK, MM07, LL06, LaTr07, LaTr08, DE06]. In
addition to having other advantages, the ADMs were applied in different areas, in-
cluding the magnetohydrodynamics and compressible Navier-Stokes equations. The
high spatial accuracy was achieved, but the time discretization was always performed
by a low order backward Euler method or a Crank-Nicolson method, which introduces
non-physical oscillations. But since solving the Navier-Stokes equations is computa-
tionally expensive even with turbulence models, one usually cannot choose the time
step significantly smaller than the mesh size. Hence, one of the main advantages of
the ADMs - the increased spatial accuracy - cannot be taken full advantage of, un-
less it is combined with a high accuracy time discretization. The proposed method
also needs to be unconditionally stable and allow for explicit-implicit implementations
with different time scales.

To that end, we employ the spectral deferred correction (SDC) method, proposed
for stiff ODEs by Dutt et al., [DGR00] and further developed by Minion et al., (see
[M03, M04, BLM03] and the references therein). The SDC methods were studied and
compared to intrinsically high-order methods such as additive Runge-Kutta methods
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and linear multistep methods based on BDFs, with conclusion that the SDC methods
are at least comparable to the latter. In addition, achieving high accuracy for the
turbulent NSE using Runge-Kutta-based methods is very expensive, and the BDF-
based methods typically don’t perform well in problems where relevant time scales
associated with different terms in the equation are widely different (see, e.g., [BLM03]
for an example of advection-diffusion-reaction problem, where the SDC is the best
choice of high accuracy temporal discretization).

In a ”classical” understanding, the deferred correction approach to solving ODEs
is based on replacing the original ODE with the corresponding Picard integral equa-
tion, discretizing the time interval, solving the integral equation approximately and
then correcting the solution by solving a sequence of error equations on the same grid
with the same scheme (see [DGR00] and [M03] for the detailed mathematical presen-
tation of SDC). In the case of turbulence modeling, however, we face a new problem:
the traditional Method Of Lines doesn’t lead to the equation of the form

ϕt = F (t, ϕ(t))

as in the typical SDC setting. In the case of turbulence modeling with the approximate
deconvolution models employed, both the energy and the energy dissipation of the
flow are modified, therefore yielding

ϕt +Aϕt = F (t, ϕ(t)).

We perform full numerical analysis of the method, proving both theoretically and
computationally that the increased accuracy of classical SDC methods is achieved in
the case of turbulent flow modeling as well. Therefore, we obtain an efficient method
that gives a stable and high accuracy approximation to a solution of turbulent Navier-
Stokes equations. The efficiency of the method is obtained by utilizing a turbulent
model with high spatial accuracy and significantly less number of degrees of freedom
than in the case of direct numerical simulations; and we also achieve high temporal
accuracy by applying a stable and computationally cheap Backward Euler method.

We begin by introducing the simplest approximate deconvolution model of tur-
bulence (see, e.g., [MM07]). For that, a filtering operator needs to be chosen, which
commutes with differentiation under the periodic boundary conditions4. Throughout
this paper, we shall use the selfadjoint filtering operator A = I − δ2∆ defined in
Section 2.

The model, written in the traditional variational formulation, seeks (w, p) ∈
((X

∩
H2(Ω)), Q) such that for any (v, q) ∈ ((X

∩
H2(Ω)), Q)

(Awt, v) + ν(A∇w,∇v) + b∗(w,w; v)− (p,∇ · v) = (f, v), (1.1)

(∇ · w, q) = 0,

where w approximates the averaged velocity ū. Note, however, that with the given
choice of the filtering operator A we get a fourth order term νδ2(∆w,∆v) in (1.1).
In order to avoid using C1 elements, we follow [MM07] and employ the mixed varia-
tional formulation: find (wh, ζh, qh) ∈ (Xh, Xh, Qh) such that for any (vh, ξh, χh) ∈
(Xh, Xh, Qh)

4In order to keep the analysis from becoming too technical, we assume periodic boundary condi-
tions; however, in the computational section we consider the wave propagation model and numerically
demonstrate that the theoretical results hold even in the case of Dirichlet boundary conditions.
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(wh
t , v

h) + δ2(∇wh
t ,∇vh) + ν(∇wh,∇vh) + νδ2(∇ζh,∇vh) (1.2)

+b∗(wh, wh; vh)− (qh,∇ · vh) = (f, vh),

(∇wh,∇ξh) = (ζh, ξh),

(∇ · wh, χh) = 0.

Based on this mixed formulation ADM, we now proceed to formulating the high
order accurate method, utilizing the deferred correction approach. The two-step de-
ferred correction method computes (wh

1 , q
h
1 ) and (wh

2 , q
h
2 ) - two consecutive approxi-

mations for the averaged velocity and averaged pressure (ū, p̄). These approximations

satisfy the following equations for (wh,n+1
1 , ζh,n+1

1 , qh,n+1
1 ), (wh,n+1

2 , ζh,n+1
2 , qh,n+1

2 ) ∈
(Xh, Xh, Qh),∀(vh, ξh, χh) ∈ (Xh, Xh, Qh) at t = tn+1, n ≥ 0, with k := ∆t =
ti+1 − ti:

(
wh,n+1

1 − wh,n
1

k
, vh) + δ2(∇(

wh,n+1
1 − wh,n

1

k
),∇vh) + ν(∇wh,n+1

1 ,∇vh) (1.3a)

+ νδ2(∇ζh,n+1
1 ,∇vh) + b∗(wh,n+1

1 , wh,n+1
1 , vh)− (qh,n+1

1 ,∇ · vh) = (f(tn+1), v
h),

(
wh,n+1

2 − wh,n
2

k
, vh) + δ2(∇(

wh,n+1
2 − wh,n

2

k
),∇vh) + ν(∇wh,n+1

2 ,∇vh) (1.3b)

+ νδ2(∇ζh,n+1
2 ,∇vh) + b∗(wh,n+1

2 , wh,n+1
2 , vh)− (qh,n+1

2 ,∇ · vh)

= (
f(tn+1) + f(tn)

2
, vh) +

ν

2
k(∇(

wh,n+1
1 − wh,n

1

k
),∇vh)

+
ν

2
δ2k(∇(

ζh,n+1
1 − ζh,n1

k
),∇vh) +

1

2
(b∗(wh,n+1

1 , wh,n+1
1 , vh)− b∗(wh,n

1 , wh,n
1 , vh)),

(∇wh,n+1
j ,∇ξh) = (ζh,n+1

j , ξh), j = 1, 2, (1.3c)

(∇ · wh,n+1
j , χh) = 0, j = 1, 2. (1.3d)

where b∗(·, ·, ·) is the explicitely skew-symmetrized trilinear form, defined below. Note
that the second step utilizes the same Backward Euler time discretization as in the
first step; only the right hand side is modified by a known quantity (a known solution
from the first step). This results in the computational attractiveness of the method -
computing two low order accurate approximations is much less costly (especially for
very stiff problems) than computing a higher order approximation once.

The initial value approximations are taken to be wh,0
1 = wh,0

2 = ūs
0, where us

0 is
the modified Stokes projection of u0 onto the space V h of discretely divergence-free
functions (this projection and this space are defined in section 2).

The paper is organized as follows. In Section 2 we introduce the necessary nota-
tions and preliminary results. In Sections 3 and 4 we consider the first and second
approximations (respectively) to the averaged true solution. In Section 3 we prove
unconditional stability and accuracy of the first (backward Euler) approximation; we
then use these results in Section 4 to verify stability and increased accuracy of the
second (correction step) approximation.

2. Mathematical preliminaries and notations. Throughout this paper the
norm ∥ · ∥ will denote the usual L2(Ω)-norm of scalars, vectors and tensors, induced
by the usual L2 inner-product, denoted by (·, ·). The space that velocity (at time t)
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belongs to, is

X = H1
0 (Ω)

d = {v ∈ L2(Ω)d : ∇v ∈ L2(Ω)d×d and v = 0 on ∂Ω}.

with the norm ∥v∥X = ∥∇v∥. The space dual to X, is equipped with the norm

∥f∥−1 = sup
v∈X

(f, v)

∥∇v∥
.

The pressure (at time t) is sought in the space

Q = L2
0(Ω) = {q : q ∈ L2(Ω),

∫
Ω

q(x)dx = 0}.

Also introduce the space of weakly divergence-free functions

X ⊃ V = {v ∈ X : (∇ · v, q) = 0,∀q ∈ Q}.

For measurable v : [0, T ] → X, we define

∥v∥Lp(0,T ;X) = (

∫ T

0

∥v(t)∥pXdt)
1
p , 1 ≤ p < ∞,

and

∥v∥L∞(0,T ;X) = ess sup
0≤t≤T

∥v(t)∥X .

Define the trilinear form on X ×X ×X

b(u, v, w) =

∫
Ω

u · ∇v · wdx.

The following lemma is also necessary for the analysis
Lemma 2.1. There exist finite constants M = M(d) and N = N(d) s.t. M ≥ N

and

M = sup
u,v,w∈X

b(u, v, w)

∥∇u∥∥∇v∥∥∇w∥
< ∞ , N = sup

u,v,w∈V

b(u, v, w)

∥∇u∥∥∇v∥∥∇w∥
< ∞.

The proof can be found, for example, in [GR79]. The corresponding constants Mh

and Nh are defined by replacing X by the finite element space Xh ⊂ X and V by
V h ⊂ X, which will be defined below. Note that M ≥ max(Mh, N,Nh) and that as
h → 0, Nh → N and Mh → M (see [GR79]).

Throughout the paper, we shall assume that the velocity-pressure finite element
spaces Xh ⊂ X and Qh ⊂ Q are conforming, have typical approximation properties
of finite element spaces commonly in use, and satisfy the discrete inf-sup, or LBBh,
condition

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
∥∇vh∥∥qh∥

≥ βh > 0, (2.1)

where βh is bounded away from zero uniformly in h. Examples of such spaces can be
found in [GR79]. We shall consider Xh ⊂ X, Qh ⊂ Q to be spaces of continuous
piecewise polynomials of degree r and r − 1, respectively, with r ≥ 1.
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The space of discretely divergence-free functions is defined as follows

V h = {vh ∈ Xh : (qh,∇ · vh) = 0,∀qh ∈ Qh}.

The idea of approximate deconvolution modeling is based on the definition and
properties of the following operator.

Definition 2.2 (Approximate Deconvolution Operator). For a fixed finite N ,
define the N th approximate deconvolution operator GN by

GNϕ =
N∑

n=0

(I −A−1
δ )nϕ,

where the averaging operator A−1
δ is the differential filter: given ϕ ∈ L2

0(Ω), ϕ
δ ∈

H2(Ω) ∩ L2
0(Ω) is the unique solution of

Aδϕ
δ
:= −δ2∆ϕ

δ
+ ϕ

δ
= ϕ in Ω, (2.2)

subject to periodic boundary conditions. Under periodic boundary conditions, this
averaging operator commutes with differentiation.

Lemma 2.3. The operator Gi
N is compact, positive, and is an asymptotic inverse

to the filter A−1
δ , i.e., for very smooth ϕ and as δ → 0 satisfies

ϕ = GNϕ
δ
+ (−1)N+1δ2N+2∆N+1A

−(N+1)
δ ϕ. (2.3)

The proof of Lemma 2.3 can be found in [DE06].
We also define the following norm, induced by the deconvolution operator A:

∥ϕ∥2A = ∥ϕ∥2 + δ2∥∇ϕ∥2.

In the analysis we use the properties of the following Modified Stokes Projection
(see [MM07]).

Definition 2.4 (Modified Stokes Projection). Define the Stokes projection op-
erator PS: (X,X,Q) → (Xh, Xh, Qh), PS(u, ζ, p) = (ũ, ζ̃, p̃), satisfying

ν(∇(u− ũ),∇vh) + νδ2(∇(ζ − ζ̃),∇vh) + (p− p̃,∇ · vh) = 0, (2.4)

(∇(u− ũ),∇ξh) = (ζ − ζ̃, ξh),

(∇ · (u− ũ), qh) = 0,

for any vh ∈ Xh, ξh ∈ Xh, qh ∈ Qh.
In (V h, Xh, Qh) this formulation reads: given (u, ζ, p) ∈ (X,X,Q), find (ũ, ζ̃) ∈

(V h, Xh) satisfying

ν(∇(u− ũ),∇vh) + νδ2(∇(ζ − ζ̃),∇vh) + (p− qh,∇ · vh) = 0, (2.5)

(∇(u− ũ),∇ξh) = (ζ − ζ̃, ξh)

for any vh ∈ V h, ξh ∈ Xh, qh ∈ Qh.
We give without proof the stability and accuracy results for the Modified Stokes

projection (2.5). The proof can be found in [MM07]. Note also that the usual choice
for the filtering width is δ = h.
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Proposition 2.5 (Stability of the Stokes projection). Let ũ, ζ̃ satisfy (2.5) for
the given u, ζ. The following bound holds

ν∥∇ũ∥2 + νδ2∥ζ̃∥2 ≤ C(ν(1 + δ2h−2)∥∇u∥2 + νδ2∥ζ∥2 (2.6)

+ν−1 inf
qh∈Qh

∥p− qh∥2).

(2.7)

In the error analysis we shall use the error estimate of the Stokes projection (2.5).
Proposition 2.6 (Error estimate for Stokes Projection). Suppose the discrete

inf-sup condition (2.1) holds. Then the error in the Stokes Projection satisfies

ν∥∇(u− ũ)∥2 + νδ2∥ζ − ζ̃∥2 (2.8)

≤ C[ν(1 + δ2h−2) inf
vh∈V h

∥∇(u− vh)∥2 + νδ2(1 + δ2h−2) inf
ξh∈Xh

∥ζ − ξh∥2

+ν−1 inf
qh∈Qh

∥p− qh∥2],

where C is a constant independent of h and Re.
Define the explicitly skew-symmetrized trilinear form

b∗(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v).

The following estimate is easy to prove (see, e.g., [GR79]): there exists a constant
C = C(Ω) such that

|b∗(u, v, w)| ≤ C(Ω)∥∇u∥∥∇v∥∥∇w∥. (2.9)

The proofs will require the sharper bound on the nonlinearity. This upper bound
is improvable in R2.

Lemma 2.7 (The sharper bound on the nonlinear term). Let Ω ⊂ Rd, d = 2, 3.
For all u, v, w ∈ X

|b∗(u, v, w)| ≤ C(Ω)
√

∥u∥∥∇u∥∥∇v∥∥∇w∥.

Proof. See [GR79].
We will also need the following inequalities: for any u ∈ V

inf
v∈V h

∥∇(u− v)∥ ≤ C(Ω) inf
v∈Xh

∥∇(u− v)∥, (2.10)

inf
v∈V h

∥u− v∥ ≤ C(Ω) inf
v∈Xh

∥∇(u− v)∥. (2.11)

The proof of (2.10) can be found, e.g., in [GR79], and (2.11) follows from the Poincare-
Friedrich’s inequality and (2.10).

Define also the number of time steps N := T
k .

We conclude the preliminaries by formulating the discrete Gronwall’s lemma, see,
e.g. [HR90]
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Lemma 2.8. Let k,B, and aµ, bµ, cµ, γµ, for integers µ ≥ 0, be nonnegative
numbers such that:

an + k
n∑

µ=0

bµ ≤ k
n∑

µ=0

γµaµ + k
n∑

µ=0

cµ +B for n ≥ 0.

Suppose that kγµ < 1 for all µ, and set σµ = (1− kγµ)
−1. Then

an + k
n∑

µ=0

bµ ≤ ek
∑n

µ=0 σµγµ · [k
n∑

µ=0

cµ +B].

3. Stability and accuracy of the first approximate solution. In this sec-
tion we investigate the first approximate solution wh

1 , satisfying (1.3a). We prove the
unconditional stability of the solution and we perform the error analysis. We also

prove the error estimate for the time difference of the error ∥ ū(ti)−wh,i
1

k ∥, which is
needed for the analysis of the correction step.

3.1. Stability of the Velocity. We start by proving the unconditional stability
of the first approximation wh

1 , satisfying (1.3a).
Theorem 3.1 (Stability of the first approximation). Let wh

1 satisfy (1.3a). Let
f ∈ L2(0, T ;H−1(Ω)). Then for n = 0, ..., N − 1

∥wh,n+1
1 ∥2A + νkΣn

i=0∥∇wh,i+1
1 ∥2 + νδ2kΣn

i=0∥ζ
h,i+1
1 ∥2

≤ ∥wh,0
1 ∥2A +

1

ν
kΣn

i=0∥f(ti+1)∥2−1.

Proof. Let vh = wh,n+1
1 ∈ V h in (1.3a); let also ξh = ζh,n+1

1 , j = 1 in (1.3c).
Since b∗(u, v, v) = 0, we obtain

∥wh,n+1
1 ∥2 − (wh,n

1 , wh,n+1
1 )

k
+ δ2

∥∇wh,n+1
1 ∥2 − (∇wh,n

1 ,∇wh,n+1
1 )

k
(3.1)

+ν∥∇wh,n+1
1 ∥2 + νδ2∥ζh,n+1

1 ∥2 − (qh,n+1
1 ,∇ · wh,n+1

1 ) = (f(tn+1), w
h,n+1
1 ).

Since qh,n+1
1 ∈ Qh and wh,n+1

1 ∈ V h, the pressure term in (3.1) vanishes. Apply
Cauchy-Schwartz and Young’s inequalities; or the term in the right hand side use the
definition of the dual norm.

∥wh,n+1
1 ∥2 − ∥wh,n

1 ∥2

2k
+ δ2

∥∇wh,n+1
1 ∥2 − ∥∇wh,n

1 ∥2

2k
(3.2)

+
ν

2
∥∇wh,n+1

1 ∥2 + νδ2∥ζh,n+1
1 ∥2 ≤ 1

2ν
∥f(tn+1)∥2−1.

Summing (3.2) over all time levels and multiplying by 2k completes the proof.

3.2. Error estimates. In this section we explore the error estimates in approx-
imating the averaged NSE velocity ū by the solution wh

1 of (1.3a). We also derive an

estimate for the time difference of the error
ei+1
1 −ei1

k . This result will be used in the
following section.

Before we proceed to proving an estimate of the error ū − w1, let’s look at the
variational formulation of the averaged momentum equation, satisfied by the averaged
velocity ū.
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(ūt, v) + ν(∇ū,∇v) + b∗(ū, ū; v)− (p̄,∇ · v) (3.3)

= (f̄ , v) + b∗(ū, ū; v)− b∗(u, u; v).

Applying the exact deconvolution operator A = (I − δ2∆) to (3.3) we obtain

(A(
ū(tn+1)− ū(tn)

k
), v) + ν(∇ū(tn+1),∇v) + νδ2(∇ζ(tn+1),∇v) (3.4)

+b∗(ū(tn+1), ū(tn+1); v)− (p(tn+1),∇ · v) = (f(tn+1), v)

+(b∗(ū(tn+1), ū(tn+1); v)− b∗(u(tn+1), u(tn+1); v))

+(A(
ū(tn+1)− ū(tn)

k
− ūt(tn+1)), v),

(∇ū(tn+1),∇ξh) = (ζ(tn+1), ξ
h), ∀ξh ∈ Xh.

We are now ready to prove the accuracy of the first approximation.

Theorem 3.2. Let the time step satisfy k < ν3

maxi=0,1,..,N ∥∇ū(ti)∥4 . Let also ū ∈
L2(0, T ;H3(Ω)) and ūtt ∈ L2(0, T ;H1(Ω)). Then the error in the first approximation
satisfies

∥ū(tn+1)− wh,n+1
1 ∥2A + νk

n∑
i=0

∥∇(ū(ti+1)− wh,i+1
1 )∥2 (3.5)

+νδ2k

n∑
i=0

∥ζ(ti+1)− ζh,i+1
1 ∥2 ≤ C(ν, ū)(k2 + δ4

+k
n∑

i=0

((1 + δ2h−2) inf
v∈V h

∥∇(ū(ti)− vi)∥2 + inf
q∈Qh

∥p(ti)− qi∥2)).

Proof. Subtract (1.3a) from (3.4). Decompose the error ei1 = ū(ti) − wh,i
1 =

ū(ti)− w̃i+ w̃i−wh,i
1 = ηi+ϕi, where w̃i is some approximation of ū(ti) in Vh. Then:

(A(
ϕn+1 − ϕn

k
), v) + ν(∇ϕn+1,∇v) (3.6)

+νδ2(∇(ζ(tn+1)− ζh,n+1
1 ),∇v) = −(A(

ηn+1 − ηn

k
), v)

−ν(∇ηn+1,∇v)− b∗(ū(tn+1), ū(tn+1); v) + b∗(wh,n+1
1 , wh,n+1

1 , v)

+(b∗(ū(tn+1), ū(tn+1); v)− b∗(u(tn+1), u(tn+1); v))

−(p(tn+1)− qh,n+1
1 ,∇ · v) + (A(

ū(tn+1)− ū(tn)

k
− ūt(tn+1)), v),

(∇ϕn+1,∇ξh) + (∇ηn+1,∇ξh) = (ζ(tn+1)− ζh,n+1
1 , ξh).

Choose w̃n+1 to be the Modified Stokes Projection of ū(tn+1), with ζ̃n+1 being the

Modified Stokes Projection of ζ(tn+1). Choose v = ϕn+1 ∈ Vh and ξh = ζ̃n+1−ζh,n+1
1

in (3.6). Apply the Young’s inequality to the first term in the left hand side; using
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the definition of Modified Stokes Projection (2.5) gives

∥ϕn+1∥2A − ∥ϕn∥2A
2k

+ ν∥∇ϕn+1∥2 (3.7)

+νδ2(∇(ζ̃n+1 − ζh,n+1
1 ),∇ϕn+1) ≤ −(

ηn+1 − ηn

k
, ϕn+1)

−δ2(∇
(
ηn+1 − ηn

k

)
,∇ϕn+1)− νδ2(∆ηn+1,∆ϕn+1)

−b∗(ū(tn+1), ū(tn+1);ϕ
n+1) + b∗(wh,n+1

1 , ū(tn+1);ϕ
n+1)

−b∗(wh,n+1
1 , ū(tn+1);ϕ

n+1) + b∗(wh,n+1
1 , wh,n+1

1 ;ϕn+1)

+(b∗(ū(tn+1), ū(tn+1);ϕ
n+1)− b∗(u(tn+1), u(tn+1);ϕ

n+1))

+(
ū(tn+1)− ū(tn)

k
− ūt(tn+1), ϕ

n+1)

+δ2(∇
(
ū(tn+1)− ū(tn)

k
− ūt(tn+1)

)
,∇ϕn+1),

(∇ϕn+1,∇(ζ̃n+1 − ζh,n+1
1 )) = (ζ̃n+1 − ζh,n+1

1 , ζ̃n+1 − ζh,n+1
1 ).

The first four nonlinear terms in the right hand side of (3.7) can be written as

−b∗(ϕn+1, ū(tn+1);ϕ
n+1)− b∗(ηn+1, ū(tn+1);ϕ

n+1)− b∗(wh,n+1
1 , ηn+1;ϕn+1).

We bound the first nonlinear term using Lemma 2.7 and the generalized Young’s
inequality:

|b∗(ϕn+1, ū(tn+1);ϕ
n+1)| ≤ ∥ϕn+1∥ 1

2 ∥∇ū(tn+1)∥∥∇ϕn+1∥ 3
2 (3.8)

≤ ϵ1ν∥∇ϕn+1∥2 + ν−3∥∇ū(tn+1)∥4∥ϕn+1∥2,

for some ϵ1 ∈ (0, 1). The other two nonlinear terms are bounded using (2.9):

|b∗(ηn+1, ū(tn+1);ϕ
n+1) + b∗(wh,n+1

1 , ηn+1;ϕn+1)| ≤ ϵ2ν∥∇ϕn+1∥2 (3.9)

+Cν−1∥∇ū(tn+1)∥2∥∇ηn+1∥2 + Cν−1∥∇wh,n+1
1 ∥2∥∇ηn+1∥2

for some ϵ2 ∈ (0, 1).

The last two nonlinear terms of (3.7) are also bounded using (2.9) as follows:

b∗(ū(tn+1), ū(tn+1);ϕ
n+1)− b∗(u(tn+1), u(tn+1);ϕ

n+1) (3.10)

= b∗(ū(tn+1), ū(tn+1);ϕ
n+1)− b∗(u(tn+1), ū(tn+1);ϕ

n+1)

+b∗(u(tn+1), ū(tn+1);ϕ
n+1)− b∗(u(tn+1), ū(tn+1);ϕ

n+1)

= δ2(b∗(∆ū(tn+1), ū(tn+1);ϕ
n+1) + b∗(ū(tn+1),∆ū(tn+1);ϕ

n+1))

≤ ϵ2ν∥∇ϕn+1∥2 + Cν−1δ4∥∇3ū(tn+1)∥2∥∇ū(tn+1)∥2.

Plug the bounds (3.8)-(3.10) into (3.7) and use the last equality of (3.7); apply
Young’s inequality, multiply both sides of (3.7) by 2k and sum over the time levels to
obtain
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∥ϕn+1∥2A + 2(1− ϵ1 − ϵ2)νk

n∑
i=0

(
∥∇ϕi+1∥2 + δ2∥ζ̃n+1 − ζh,n+1

1 ∥2
)

(3.11)

≤ Ck
n∑

i=0

(∥ri+1∥2A + ∥ (ū(ti+1)− w̃i+1)− (ū(ti)− w̃i)

k
∥2A

+ν−1∥∇(ū(ti+1)− w̃i+1)∥2 + ν−2 max
i=0,1,..,n

∥∇(ū(ti+1)− w̃i+1)∥2)

+ν−3k
n∑

i=0

∥∇ū(ti+1)∥4∥ϕi+1∥2,

where ri+1 = ū(ti+1)−ū(ti)
k − ūt(ti+1). Finally, notice that

∥ri+1∥2A ≤ Ck2∥ūtt(ti+1)∥2A.

Choose ϵ2 = 1−ϵ1
2 . Use the bound k < ν3

maxi=0,1,..,N ∥∇ū(ti)∥4 and apply the discrete

Gronwall’s lemma 2.8; using the triangle inequality and the error estimate of the
Modified Stokes Projection 2.6 completes the proof.

3.3. Error estimates for time difference. We now proceed to deriving an

error estimate for the time difference
ei+1
1 −ei1

k =
(ū(ti+1)−wh,i+1

1 )−(ū(ti)−wh,i
1 )

k , which
will be used in the error analysis of the correction step approximation wh

2 . The main
result of this subsection is the following

Theorem 3.3. Let the conditions of Theorem 3.2 be satisfied. Let also ūt ∈
L2(0, T ;H3(Ω)) and ūttt ∈ L2(0, T ;H1(Ω)). Then

∥e
n+1
1 − en1

k
∥2A + νk

n∑
i=0

∥∇(
en+1
1 − en1

k
)∥2 (3.12)

+νδ2k

n∑
i=0

∥ (ζ(ti+1)− ζh,i+1
1 )− (ζ(ti)− ζh,i1 )

k
∥2

≤ C(ν, ū)(k2 + δ4

+k

n∑
i=0

( inf
v∈V h

∥∇ (ū(ti+1)− vi+1)− (ū(ti)− vi)

k
∥2

+ inf
q∈Qh

∥ (p(ti+1)− qi+1)− (p(ti)− qi)

k
∥2))

Proof. Consider (3.6) at the (n+1) time level. Choose v = ϕn+1−ϕn

k = sn+1 ∈ Vh,

where the error is decomposed as in the previous proof: ei1 = ū(ti)−wh,i
1 = ū(ti)−w̃i+

w̃i −wh,i
1 = ηi +ϕi. As in the previous proof, choose w̃n+1 to be the Modified Stokes

Projection of ū(tn+1), with ζ̃n+1 being the Modified Stokes Projection of ζ(tn+1).

Take ξh = (ζ̃n+1−ζh,n+1
1 )−(ζ̃n−ζh,n1 ). Then consider (3.6) at the previous (n-th) time

level and make the same choice v = sn+1 ∈ Vh and ξh = (ζ̃n+1−ζh,n+1
1 )−(ζ̃n−ζh,n1 ) ∈

Xh. Subtracting the two equations and utilizing the definition of Modified Stokes
Projection yields:
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(A(sn+1 − sn), sn+1) + νk(∇sn+1,∇sn+1) (3.13)

+νδ2(∇((ζ̃n+1 − ζh,n+1
1 )− (ζ̃n − ζh,n1 )),∇sn+1)

= −(A(
ηn+1 − 2ηn + ηn−1

k
), sn+1)

−b∗(ū(tn+1), ū(tn+1); s
n+1) + b∗(wh,n+1

1 , wh,n+1
1 , sn+1)

+b∗(ū(tn), ū(tn); s
n+1)− b∗(wh,n

1 , wh,n
1 , sn+1)

+(b∗(ū(tn+1), ū(tn+1); s
n+1)− b∗(u(tn+1), u(tn+1); s

n+1))

−(b∗(ū(tn), ū(tn); s
n+1)− b∗(u(tn), u(tn); s

n+1))

+k(A(
ū(tn+1)− 2ū(tn) + ū(tn−1)

k2
− ūt(tn+1)− ūt(tn)

k
), sn+1),

k(∇((ζ̃n+1 − ζh,n+1
1 )− (ζ̃n − ζh,n1 )),∇sn+1)

= ((ζ̃n+1 − ζh,n+1
1 )− (ζ̃n − ζh,n1 ), (ζ̃n+1 − ζh,n+1

1 )− (ζ̃n − ζh,n1 )).

Using the last equality of (3.13), we rewrite (3.13) as

(A(sn+1 − sn), sn+1) + νk(∇sn+1,∇sn+1) (3.14)

+νδ2k∥ (ζ̃
n+1 − ζh,n+1

1 )− (ζ̃n − ζh,n1 )

k
∥2

= −(A(
ηn+1 − 2ηn + ηn−1

k
), sn+1)

−b∗(ū(tn+1), ū(tn+1); s
n+1) + b∗(wh,n+1

1 , wh,n+1
1 , sn+1)

+b∗(ū(tn), ū(tn); s
n+1)− b∗(wh,n

1 , wh,n
1 , sn+1)

+(b∗(ū(tn+1), ū(tn+1); s
n+1)− b∗(u(tn+1), u(tn+1); s

n+1))

−(b∗(ū(tn), ū(tn); s
n+1)− b∗(u(tn), u(tn); s

n+1))

+k(A(
ū(tn+1)− 2ū(tn) + ū(tn−1)

k2
− ūt(tn+1)− ūt(tn)

k
), sn+1).

The first four nonlinear terms in the right hand side of (3.14) can be written as

−b∗(ū(tn+1), ū(tn+1); s
n+1) + b∗(wh,n+1

1 , wh,n+1
1 , sn+1) (3.15)

+b∗(ū(tn), ū(tn); s
n+1)− b∗(wh,n

1 , wh,n
1 , sn+1)

= −b∗(en+1
1 , ū(tn+1); s

n+1)− b∗(wh,n+1
1 , en+1

1 , sn+1)

+b∗(en1 , ū(tn); s
n+1) + b∗(wh,n

1 , en1 , s
n+1).

Add and subtract b∗(en1 , ū(tn+1); s
n+1) and b∗(wh,n+1

1 , en1 , s
n+1). We can now
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rewrite the right hand side of (3.15) as

−kb∗(sn+1, ū(tn); s
n+1)− kb∗(

ηn+1 − ηn

k
, ū(tn); s

n+1) (3.16)

−kb∗(en1 ,
ū(tn+1)− ū(tn)

k
; sn+1)

−kb∗(wh,n+1
1 ,

ηn+1 − ηn

k
; sn+1)

+kb∗(
ū(tn+1)− ū(tn)

k
, en1 , s

n+1)− kb∗(
ηn+1 − ηn

k
, en1 ; s

n+1)

−kb∗(sn+1, en1 ; s
n+1).

All the terms in (3.16) are bounded using (2.9), except for the first and the last
terms, which require using the result of Lemma 2.7 and the general Young’s inequality.
In order to simplify the proof, we omit the exact derivation of the bounds; they are
obtained in a similar manner to the proof of Theorem 3.2 and require the regularity
of the averaged true solution ū and the accuracy result of Theorem 3.2. However, the
last term of 3.16 requires additional attention.

kb∗(sn+1, en1 ; s
n+1) ≤ k∥sn+1∥ 1

2 ∥en1∥∥∇sn+1∥ 3
2 (3.17)

≤ ϵνk∥sn+1∥2 + Cν−3k∥∇en1∥4∥∇sn+1∥2.

In order to be able to use the discrete Gronwall’s lemma later, we need k∥∇en1∥4 ≤
O(1). We prove this using the result of Theorem 3.2 and the inverse inequality
∥∇en1∥ ≤ Ch−1∥∇en1∥. The latter is verified by using the corresponding property of
the space Xh (assumption, widely used in the literature) and the accuracy result for
the Stokes projection. We obtain from Theorem 3.2 that

k∥∇en1∥4 =
(k∥∇en1∥2)2

k
≤ k3 +

h4r

k
, (3.18)

where r is the degree of piecewise polynomials in Xh. Also,

k∥∇en1∥4 ≤ Ckh−4∥en1∥4 ≤ C(
k5

h4
+

kδ8

h4
+ kh4(r−1)). (3.19)

The degree of piecewise polynomials in Xh is strictly positive, since the discrete
inf-sup condition is not satisfied otherwise. If k

h4r ≤ 1, use the bound (3.19), otherwise
use (3.18). In any case, we obtain that k∥∇en1∥4 ≤ C.

Finally, following (3.10), we bound the last four nonlinear terms of (3.14) as

(b∗(ū(tn+1), ū(tn+1); s
n+1)− b∗(u(tn+1), u(tn+1); s

n+1)) (3.20)

−(b∗(ū(tn), ū(tn); s
n+1)− b∗(u(tn), u(tn); s

n+1))

= δ2(b∗(∆ū(tn+1), ū(tn+1); s
n+1) + b∗(ū(tn+1),∆ū(tn+1); s

n+1))

−δ2(b∗(∆ū(tn), ū(tn); s
n+1)− b∗(ū(tn),∆ū(tn); s

n+1))

≤ ϵ2νk∥∇ϕn+1∥2

+Cν−1δ4k∥∇3ū(tn+1)∥2∥∇(
ū(tn+1)− ū(tn)

k
)∥2

+Cν−1δ4k∥∇3(
ū(tn+1)− ū(tn)

k
)∥2∥∇ū(tn+1)∥2.
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Sum (3.14) over the time levels and use the bounds derived for the nonlinear
terms. As before, at each time level choose the approximation w̃i to be the modified
Stokes projection of the averaged solution ū(ti) onto Xh. Using the Young’s inequality
yields

∥sn+1∥2A + νk

n∑
i=0

∥∇si+1∥2 (3.21)

+νδ2k
n∑

i=0

∥ (ζ̃
i+1 − ζh,i+1

1 )− (ζ̃i − ζh,i1 )

k
∥2

≤ Ck
n∑

i=0

(∥ri+1∥2A

+∥ (ū(ti+1)− w̃i+1)− 2(ū(ti)− w̃i) + (ū(ti−1)− w̃i−1)

k2
∥2A

+∥∇ei1∥2) + ν−3k
n∑

i=0

∥∇ei+1
1 )∥4∥si+1∥2,

where ri+1 = ū(tn+1)−2ū(tn)+ū(tn−1)
k2 − ūt(tn+1)−ūt(tn)

k . Notice also that

∥ri+1∥2A ≤ Ck2∥ūttt(ti+1)∥2A.

We now need a bound on s1 = ϕ1−ϕ0

k . For that, consider (3.6) at the time level

n = 0. Choose v = s1; also, choosing the initial approximations wh,0
1 = wh,0

2 to be the
modified Stokes projections of ū(0) onto Xh leads to ϕ0 = 0, e01 = η0, ∥e01∥ ≤ Chr+1.

We also choose ζh,01 to be the Modified Stokes Projection of ζ(0); take ξh = ζ̃1 − ζh,11

and use the definition of the Modified Stokes Projection to obtain

(As1, s1) + ν(∇ϕ1,∇s1) (3.22)

+νδ2(∇(ζ̃1 − ζh,11 ),∇s1) = −(A(
η1 − η0

k
), s1)

−b∗(ū(t1), ū(t1); s
1) + b∗(wh,1

1 , wh,1
1 , s1)

+(b∗(ū(t1), ū(t1); v)− b∗(u(t1), u(t1); s
1))

+(A(
ū(t1)− ū(t0)

k
− ūt(t1)), s

1),

k(∇s1,∇(ζ̃1 − ζh,11 )) = (ζ̃1 − ζh,11 , ζ̃1 − ζh,11 ).

Bounding the nonlinear terms as in the general case and using the fact that
ϕ0 = 0, ζ̃0 − ζh,01 = 0, we obtain that

∥s1∥2A + νk∥∇s1∥2 + νδ2k∥ (ζ̃
1 − ζh,11 )− (ζ̃0 − ζh,01 )

k
∥2 (3.23)

≤ ∥η
1 − η0

k
∥2A + ∥ ū(t1)− ū(t0)

k
− ūt(t1)∥2A + k∥∇e11∥2 + h2r.

Insert this result in (3.21) and use the discrete Gronwall’s lemma. Using the
triangle inequality completes the proof.
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4. Stability and accuracy of the second approximation. In this section
we investigate the correction step solution wh

2 , satisfying (1.3b). We prove stability
and increased accuracy of the solution, therefore deriving a stable method of high
temporal and spatial accuracy for solving turbulent Navier-Stokes equations.

4.1. Stability of the second approximation. Theorem 4.1 (Stability of the
second approximation). Let wh

2 satisfy (1.3b). Let the conditions of Theorems 3.1 and
3.2 be satisfied. Then for n = 0, ..., N − 1

∥wh,n+1
2 ∥2A + νkΣn

i=0∥∇wh,i+1
2 ∥2 + νδ2kΣn

i=0∥ζ
h,i+1
2 ∥2

≤ ∥wh,0
2 ∥2A + Cν−2kΣn

i=0∥
f(ti+1) + f(ti)

2
∥2−1.

Proof. Take vh = wh,n+1
2 in (1.3b); let also ξh = ζh,n+1

2 , j = 2 in (1.3c) to obtain

(A(
wh,n+1

2 − wh,n
2

k
), wh,n+1

2 ) + ν(∇wh,n+1
2 ,∇wh,n+1

2 ) (4.1)

+νδ2(∇ζh,n+1
2 ,∇wh,n+1

2 ) = (
f(tn+1) + f(tn)

2
, wh,n+1

2 )

+
ν

2
k(∇(

wh,n+1
1 − wh,n

1

k
),∇wh,n+1

2 ) +
ν

2
δ2k(∇(

ζh,n+1
1 − ζh,n1

k
),∇wh,n+1

2 )

+
1

2
b∗(wh,n+1

1 , wh,n+1
1 ;wh,n+1

2 )− 1

2
b∗(wh,n

1 , wh,n
1 ;wh,n+1

2 ),

(∇wh,n+1
2 ,∇ζh,n+1

2 ) = (ζh,n+1
2 , ζh,n+1

2 ).

The nonlinear terms in (4.1) are bounded by using (2.9) and Young’s inequality:

1

2
b∗(wh,n+1

1 , wh,n+1
1 ;wh,n+1

2 )− 1

2
b∗(wh,n

1 , wh,n
1 ;wh,n+1

2 )(4.2)

=
1

2
k(b∗(

wh,n+1
1 − wh,n

1

k
,wh,n+1

1 ;wh,n+1
2 ) + b∗(wh,n

1 ,
wh,n+1

1 − wh,n
1

k
;wh,n+1

2 ))

≤ ϵν∥∇wh,n+1
2 ∥2 + Cν−1k(k∥∇wh,n+1

1 ∥2

+k∥∇(
ū(tn+1)− ū(tn)

k
)∥2 + k∥∇(

en+1
1 − en1

k
)∥2).

Writing

∥∇(
wh,n+1

1 − wh,n
1

k
)∥2 ≤ ∥∇(

en+1
1 − en1

k
)∥2 + ∥∇(

ū(tn+1)− ū(tn)

k
)∥2,

∥∇(
ζh,n+1
1 − ζh,n1

k
)∥2

≤ ∥∇(
(ζ(tn+1)− ζh,n+1

1 )− (ζ(tn)− ζh,n1 )

k
)∥2 + ∥∇(

ζ(tn+1)− ζ(tn)

k
)∥2,

and using the result of Theorem 3.3 completes the proof.
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4.2. Accuracy of the correction step approximation. Rewrite the averaged
momentum equation as follows:

(A(
ū(tn+1)− ū(tn)

k
), v) + ν(∇ū(tn+1),∇v) (4.3)

+νδ2(∇ζ(tn+1),∇v) + b∗(ū(tn+1), ū(tn+1); v)

−(
p(tn+1) + p(tn)

2
,∇ · v) = (

f(tn+1) + f(tn)

2
, v)

+
ν

2
k(∇(

ū(tn+1)− ū(tn)

k
),∇v) +

ν

2
δ2k(∇(

ζ(tn+1)− ζ(tn)

k
),∇v)

+
1

2
(b∗(ū(tn+1), ū(tn+1); v)− b∗(ū(tn), ū(tn); v))

+[
1

2
(b∗(ū(tn+1), ū(tn+1); v) + b∗(ū(tn), ū(tn); v))

−b∗(u(tn+ 1
2
), u(tn+ 1

2
); v)] + (A(

ū(tn+1)− ū(tn)

k
− ūt(tn+ 1

2
)), v),

(∇ū(tn+1),∇ξh) = (ζ(tn+1), ξ
h), ∀ξh ∈ Xh.

Notice that the last term in the right hand side is second order accurate; compare
to the last term in (3.4). The main result of the error analysis in this paper is:

Theorem 4.2. Let the assumptions of Theorem 3.3 be satisfied. Then the error
in the second approximation satisfies

∥ū(tn+1)− wh,n+1
2 ∥2A + νk

n∑
i=0

∥∇(ū(ti+1)− wh,i+1
2 )∥2 (4.4)

+νδ2k
n∑

i=0

∥ζ(ti+1)− ζh,i+1
2 ∥2

≤ C(ν, ū)(k4 + δ4 + δ2k
n∑

i=0

inf
χ∈Xh

∥ζ(ti)− χi∥2

+k
n∑

i=0

( inf
v∈V h

∥∇(ū(ti)− vi)∥2 + inf
q∈Qh

∥p(ti)− qi∥2))
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Proof. Subtract (1.3b) from (4.3) and denote ei2 = ū(ti)− wh,i
2 to obtain

(A(
en+1
2 − en2

k
), v) + ν(∇en+1

2 ,∇v) (4.5)

+νδ2(∇(ζ(tn+1)− ζh,n+1
2 ),∇v)

+b∗(ū(tn+1), ū(tn+1); v)− b∗(wh,n+1
2 , wh,n+1

2 ; v)

−(
p(tn+1) + p(tn)

2
− qh,n+1

2 ,∇ · v) = ν

2
k(∇(

en+1
1 − en1

k
),∇v)

+
ν

2
δ2k(∇(

(ζ(tn+1)− ζh,n+1
1 )− (ζ(tn)− ζh,n1 )

k
),∇v)

+
1

2
(b∗(ū(tn+1), ū(tn+1); v)− b∗(ū(tn), ū(tn); v))

−1

2
(b∗(wh,n+1

1 , wh,n+1
1 ; v)− b∗(wh,n

1 , wh,n
1 ; v))

+(
1

2
(b∗(ū(tn+1), ū(tn+1); v) + b∗(ū(tn), ū(tn); v))− b∗(u(tn+ 1

2
), u(tn+ 1

2
); v))

+(A(
ū(tn+1)− ū(tn)

k
− ūt(tn+ 1

2
)), v),

(∇en+1
2 ,∇ξh) = (ζ(tn+1)− ζh,n+1

2 , ξh), ∀ξh ∈ Xh.

The proof is similar to that of Theorem 3.2. However, the last term of (4.5) will
now give the error of the order O(k2), whereas the corresponding term in (3.6) was
first order accurate. There are also the new terms

ν

2
k(∇(

en+1
1 − en1

k
),∇v) and

ν

2
δ2k(∇(

(ζ(tn+1)− ζh,n+1
1 )− (ζ(tn)− ζh,n1 )

k
),∇v);

they yield an error of the order

O(k∥∇(
en+1
1 − en1

k
)∥+ δ2k∥ (ζ(tn+1)− ζh,n+1

1 )− (ζ(tn)− ζh,n1 )

k
∥).

It is easy to verify that the last three nonlinear terms in (4.5) give the error of the
order O(k2 + δ2). The other four nonlinear terms are treated similar to the proofs of
Theorems 3.2 and 3.3. This leads to

∥ū(tn+1)− wh,n+1
2 ∥2A + νk

n∑
i=0

∥∇(ū(ti+1)− wh,i+1
2 )∥2(4.6)

+νδ2k

n∑
i=0

∥ζ(ti+1)− ζh,i+1
2 ∥2

≤ C(ν, ū)(k2∥∇(
en+1
1 − en1

k
)∥2 + k2δ2∥ (ζ(tn+1)− ζh,n+1

1 )− (ζ(tn)− ζh,n1 )

k
∥2

+k4 + δ4 + k
n∑

i=0

( inf
v∈V h

∥∇(ū(ti)− vi)∥2 + inf
q∈Qh

∥p(ti)− qi∥2))

Using the result of Theorem 3.3 completes the proof.
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5. Computational results. In this section we present computational results
for the approximate deconvolution model with increased time accuracy. We consider
a well-known test problem for the NSE: the two-dimensional wave propagation (con-
sidered on a unit square). A Galerkin finite element method is employed, using the
Taylor-Hood elements. The results presented were obtained by using the software
FreeFEM ++.

The known solution to the non-averaged NSE in this test problem is

u =

(
0.75 + 0.25 cos(2π(x− t)) sin(2π(y − t))e−8π2t/Re

0.75− 0.25 sin(2π(x− t)) cos(2π(y − t))e−8π2t/Re

)
,

p = − 1

64
(cos(4π(x− t)) + cos(4π(y − t)))e−16π2t/Re.

We compare the average of this known solution to a solution obtained by our
model with the two-dimensional deferred correction and the zeroth order approximate
deconvolution employed. It follows from the theoretical results that an error of the
order O((∆t)2 + δ2 + h2) is obtained when approximating the averaged true solution
ū by the model solution w. For testing the higher accuracy one would need to employ
the finite element spaces of higher degree polynomials.

We take the filtering width δ = h to verify the acclaimed second order accuracy
of the model; this is also a typical choice of filtering widths in real life applications.
We also let ∆t = h. The table below demonstrates the first order accuracy of the first
approximation and the second order accuracy of the correction step approximation.

Table 5.1
Approximating the average solution, Re = 105, T = 1.

h ∥ū− w1∥L2(0,T ;L2(Ω)) rate ∥ū− w2∥L2(0,T ;L2(Ω)) rate
1/16 0.013047 0.0131178
1/32 0.00584342 1.16 0.00417758 1.65
1/64 0.00309312 0.92 0.00114869 1.86
1/128 0.00167765 0.88 0.00029897 1.94

Hence, the computational results verify the claimed accuracy of the model. The
method proves to be computationally attractive: the number of spacial degrees of
freedom is moderate even for h = 1/128, and the second order of temporal accuracy is
achieved by simply solving the problem twice. Note also, that although the theoretical
results were obtained only for the periodic boundary conditions, we have successfully
applied the model to the problem with Dirichlet boundary conditions.
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