1. Integrate the following
(a) $\int \frac{3 x+1}{x^{3}+2 x^{2}+x} d x$
(b) $\int \cos ^{3} x \sin x d x$
(c) $\int \sqrt{x} \ln x d x \quad x>0$
2. The population of a certain species of fish in a pond can be estimated by the differential equation

$$
\frac{d P}{d t}=.05 P(600-P)
$$

and the slope field looks like:

(a) If in the Spring, the pond is initially stocked with 150 fish. What is the maximum capacity of fish in this pond? On the slope field shown, draw the curve of $P(t)$ detailing any changes in concavity and horizontal asymtotes.
(b) Solve this initial value differential equation for $P(t)$.

3. Determine the volume of the solid generated by rotating the region bounded by the x-axis, $x=2$ and $f(x)=x^{3}+x$ about the y-axis (pictured above).
4. Determine the volume of the solid generated by rotating the region bounded by the x-axis, $x=2$ and $f(x)=x^{3}+x$ about the x-axis (pictured above).

5. Determine the area of one petal of the three-petal rose, $r(\theta)=\sin (3 \theta)$ as shown.
6. Determine the tangent vector to this polar curve, $r(\theta)=\sin (3 \theta)$ at $\theta=\frac{\pi}{3}$.
7. Determine the arc length of the cycloid on $0 \leq t \leq 2 \pi$ described by

$$
\vec{r}(t)=\langle t-\sin t, 1-\cos t\rangle
$$

8. Determine the mass and the center of mass of a $2-\mathrm{m}$ rod whose density varies linearly from $3.2 \mathrm{~kg} / \mathrm{m}$ to $6.8 \mathrm{~kg} / \mathrm{m}$.
9. Evaluate the following improper integral if it converges. If it diverges, show reason for divergence.
(a) $\int_{0}^{\infty} \frac{4}{x^{2}+1} d x$
(b) $\int_{1}^{4} \frac{4}{(x-1)^{2}} d x$
(c) $\int_{0}^{\infty} \frac{4 x}{x^{2}+1} d x$
10. Decide whether each of the following infinite series converges or diverges, citing an appropriate test and justifying your conclusion.
(a) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2^{n}}{n!}$
(b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+19 n}}$
(c) $\sum_{n=0}^{\infty} \frac{9^{2 n-1}}{4^{4 n+2}}$
(d) $\sum_{n=2}^{\infty} \frac{3 n-1}{n^{3}-4}$
(e) $\sum_{n=1}^{\infty} \frac{2^{n}}{n^{20}}$
11. Find the interval and the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{(x+3)^{n}}{(n+1) \cdot 2^{n}}$.
12. Find the fourth-degree Taylor polynomial for $f(x)=\ln (1+x)$ centered on $a=3$.
13. Consider the three points $A(3,1,0), B(2,0,-1)$, and $C(0,2,3)$.
(a) Find an equation of the plane determined by A, B, and C.
(b) Find the area of the parallelogram with vertices A, B, and C.
(c) Find the volume of the parallelogram with vertices A, B, C, and $D(-1,0,1)$.
(d) Find the projection of $\overrightarrow{A B}$ onto $\overrightarrow{A C}$.
(e) Find the angle between $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
14. The position of a particle at time t is given by $\vec{r}(t)$. Find the velocity, speed and acceleration of the particle at time $t=1$.
15. Let L be the linear function given by:

$$
L\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
-2 & 1 & 0 \\
2 & 1 & 1 \\
3 & 2 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

and let S be the line described by

$$
\vec{r}(t)=\langle 5,0,2\rangle+t \cdot\langle 4,5,2\rangle .
$$

Find an equation for the line $L(S)$.

