1. Integrate the following

(a)
$$\int \cos^5 x \sin x \, dx$$

(b)
$$\int \frac{x-1}{x^2-1} \, dx$$

(c)
$$\int \frac{x+3}{x^2-1} \, dx$$

(d)
$$\int \sqrt{x} \ln x \, dx$$

(e)
$$\int \frac{x}{\sqrt{2+3x^2}} \, dx$$

(f)
$$\int x \cos x \, dx$$

2. Evaluate the definite integrals:

(a)
$$\int_{3}^{4} \frac{5x-2}{x^{2}-4} dx$$

(b) $\int_{1}^{e^{2}} \frac{\ln^{2} x}{x} dx$
(c) $\int_{0}^{1/2} \frac{1}{1-x^{2}} dx$
(d) $\int_{0}^{1} x^{3} \ln x dx$
(e) $\int_{0}^{1} x\sqrt{1+x^{2}} dx$
(f) $\int_{0}^{\infty} te^{-t} dt$

3. Solve the initial value problems:

(a)
$$\frac{dy}{dx} = 2x\sqrt{1-y^2}$$
 $y(0) = 1/2.$
(b) $\frac{dy}{dx} = x + xy^2$ $y(0) = 1$

4. Use the washer method to calculate the volume of the solid of revolution that is generated by revolving the region bounded by the curves y = x and $y = -x^2 + 5x$ about the x-axis.

- 5. Use the shell method to calculate the volume of the solid of revolution which is generated by the region bounded by the curves $y = e^{-x}$, x = 0, and x = 2, about the *y*-axis.
- 6. Determine the volume V of the solid generated by rotating the region bounded by the curves y = 0, $y = x^2 + x$ and x = 2 about the x-axis.
- 7. Find the area A of one petal of the three-petal rose $r(\theta) = \sin 3\theta$.
- 8. Find the area A of the region R which lies in the first quadrant and is bounded by the polar curves $r(\theta) = \theta$ and $r(\theta) = \sin \theta$.
- 9. Find the area A and the centroid $(\overline{x}, \overline{y})$ of the infinite lamina that is bounded by the curves x = 0, y = 0, and $y = e^{-x}$.
- 10. A spherical tank of radius 10 ft is full of liquid of density ω lb/ft³. Find the work W done by pumping the liquid to the top of the tank.
- 11. A right circular tank of radius 4 ft and height 10 ft is half full of liquid whose density is $\omega \text{ lb/ft}^3$. Find the work W done by pumping the liquid to the top of the tank.
- 12. Find the arc-length L of the given curve C:
 - (a) C is the cycloid $\vec{x}(t) = \langle \cos t + t \sin t, \sin t t \cos t, 1 \rangle, 0 \le t \le \pi$
 - (b) C is the curve given by $\vec{x}(t) = \langle t \sin t, 1 \cos t, 2 \rangle, 0 \le t \le \pi$
 - (c) C is the planar curve given by $y = 3x^{2/3}, 0 \le x \le 8$.
 - (d) C is the planar curve given by $y = f(x), -2 \le x \le 3$ where

$$f(x) = \begin{cases} x+2 & x \le 0\\ x^{3/2}+2 & x \ge 0 \end{cases}$$

13. Evaluate the improper integral if it converges. If it diverges, show reason for divergence.

(a)
$$\int_{1}^{4} \frac{1}{(x-1)^{2}} dx$$

(b)
$$\int_{1}^{\infty} \frac{\ln x}{x} dx$$

(c)
$$\int_{e}^{\infty} \frac{1}{x \ln^{2} x} dx$$

(d)
$$\int_0^\infty \frac{x}{x^2 + 1} dx$$

(e) $\int_0^\infty \frac{x}{(x^2 + 1)^2} dx$
(f) $\int_0^1 \frac{1}{\sqrt{1 - x^2}} dx$

14. Determine whether the given infinite series is convergent or divergent. In case of convergence, specify if it is absolute or conditional. Justify your answers.

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{3n+2}{n^3+3}$$

(b) $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n^2+19n}}$
(c) $\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n+1}}{n^2+2}$
(d) $\sum_{n=1}^{\infty} \frac{\sqrt{n^2+3}}{2n^2+4}$
(e) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$
(f) $\sum_{n=1}^{\infty} \frac{2^n}{n^{24}}$

15. Find the sums of the given convergent series:

(a)
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{n!}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

(c)
$$\sum_{n=2}^{\infty} \left(\frac{e}{\pi}\right)$$

16. Find the interval of convergence for the following power series:

(a)
$$\sum_{n=0}^{\infty} \frac{(x+1)^n}{(n+1)3^n}$$
.
(b) $\sum_{n=1}^{\infty} \frac{n(x+1)^n}{(n+1)!}$.
(c) $\sum_{n=0}^{\infty} \frac{(2x+1)^n}{n+1}$.

- 17. Find the Maclaurin expansion for $f(x) = xe^x + e^{2x}$.
- 18. Find the Taylor expansion for $f(x) = e^{3x}$, centered on a = 2.
- 19. Find the Maclaurin expansion, together with its radius of convergence, R, for the given function f:

(a)
$$f(x) = \frac{x}{1-x}$$

(b) $f(x) = \frac{1}{(1+x)^2}$
(c) $f(x) = \ln(1+x)$.

20. Consider the three points A(3, 1, 0), B(2, 0, -1), and C(0, 2, 3).

- (a) Find an equation of the plane determined by A, B, and C.
- (b) Find the area of the parallelogram with vertices A, B, and C.
- (c) Find the volume of the parallelepiped with vertices A, B, C, and D(-1, 0, 1).
- (d) Find the projection of \vec{AB} onto \vec{AC} .
- (e) Find the angle between \vec{AB} and \vec{AC} .

21. Consider the line L which passes through the points P(-1, 4, 3) and Q(2, 1, 3). Find:

- (a) An equation for the line L.
- (b) An equation for the line that is perpendicular to L and passes through the point R(5, -2, 2).
- (c) An equation for the line that is parallel to L and passes through the point R(5, -2, 2).

22. Let T be the linear function given by:

$$T\left[\begin{array}{c} x\\ y\end{array}\right] = \left[\begin{array}{cc} -2 & 8\\ 1 & 3\end{array}\right] \left[\begin{array}{c} x\\ y\end{array}\right]$$

and let P be the parallelogram with vertices at (2, 1), (1, 4), and (4, 8). Find the area of the parallelogram T(P).

23. Let T be the linear function given by:

$$T\begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0\\ 2 & 1 & 1\\ 3 & 2 & -1 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix}$$

and let L be the line described by

$$\vec{r}(t) = \langle 5, 0, -2 \rangle + t \langle 4, 5, 2 \rangle.$$

Find an equation for the line T(L).

- 24. Consider the line L_1 described by $\vec{r}(t) = \langle -2t + 1, 4t, -3t 8 \rangle$, and the line L_2 described by $\vec{s}(t) = \langle t + 4, -3t 1, 2t 6 \rangle$.
 - (a) Show that L_1 and L_2 intersect, and find the point of intersection, $\vec{x_0}$.
 - (b) Using part (a), find an equation of the plane containing the lines L_1 and L_2 .
- 25. Consider the curve C, given by $\vec{r}(t) = \langle t \sin t, t \cos t, t \rangle$.
 - (a) Find the velocity vector \vec{v} and the acceleration vector \vec{a} , for each t.
 - (b) Find $v = ||\vec{v}||$ and $a = ||\vec{a}||$, for each t.
 - (c) Find the tangential component a_{τ} and the normal component a_n of \vec{a} , for each t.
 - (d) Use part (c) to find the curvature $\kappa = \kappa(t)$ for each t.
- 26. Consider the curve C, given by $\vec{r}(t) = \langle t \sin t, 1, 1 \cos t \rangle, 0 \le t \le 2\pi$. Find:
 - (a) $\vec{v}, \vec{a}, v = ||\vec{v}||, a = ||\vec{a}||, \text{ for } 0 \le t \le 2\pi.$
 - (b) a_{τ} and a_n , for $0 \le t \le 2\pi$.
 - (c) $\kappa = \kappa(t)$, for $0 \le t \le 2\pi$
 - (d) \vec{T} , \vec{N} , and $\vec{B} = \vec{T} \times \vec{N}$