- EE 5223 Homework #3A Due latest Tues Feb 4, 2025, 9am (Form team of 3, a least one BSEE and one MSEE student per team!)
  - H1.1) For the following circuit,  $v_1(t) = 120 \cos(\omega t + 0^\circ)$ ,  $v_2(t) = 120 \sin(\omega t + 60^\circ)$  and  $\mathbf{Z}_{12}^{\mathsf{I}} = 0.5 + \mathrm{j}0.5\Omega$ .

a) Convert  $v_1(t)$  and  $v_2(t)$  to their phasor equivalents  $V_1$  and  $V_2$ . According to the "sign convention" used to label the current and sources, classify the two sources as "active" or "passive."

b) Calculate  $I_{12}$ .

c) Calculate the complex power S consumed by source 2.

d) Calculate the complex power S produced by source 1.

e) In terms of generator or load, what are sources 1 & 2? Was the correct guess made in labeling current direction?

f) What is the power factor of source 2?



- H1.2) A 3-phase 480-Volt circuit has a positive-sequence Y-connected source and supplies a delta-connected load. The impedance of the lines between the source and load is negligible. The angle of  $V_{AB}$  is 0° and the phase impedance of the load is 20 j8 Ohms.
  - a) Draw the circuit. Label the value of the phase voltages at the source. Label nodes A, B, and C.

Label the line currents  $I_A$ ,  $I_B$ , and  $I_C$ . Label the L-L voltages at the load:  $V_{AB}$ ,  $V_{BC}$ , and  $V_{CA}$ . Label the phase currents at the load:  $I_{AB}$ ,  $I_{BC}$ , and  $I_{CA}$ .

- b) Determine the phasor values of the L-L voltages at the load. Draw the closed voltage phasor diagram for the system, showing all L-L and L-N voltages.
- c) Determine the phasor value of the line currents.
- d) Determine the phasor value of the phase currents in the source and the load.
- e) Calculate the complex power S that is consumed by the load and draw the power triangle.
- f) What is the power factor of the load?

- H1.3) A 3-phase 480-Volt circuit has a positive-sequence Y-connected source and supplies a delta-connected load. The impedance of the lines between the source and load is  $1/85^{\circ}$  Ohms. The angle of  $V_{AB}$  is 0° and the phase impedance of the load is  $30/40^{\circ}$  Ohms.
  - a) Draw the circuit. Label the value of the phase voltages at the source. Label nodes A, B, and C at source and A', B', and C' at load.
    Label the line currents I<sub>A</sub>, I<sub>B</sub>, and I<sub>C</sub>. Label L-L voltages at the load: V'<sub>AB</sub>, V'<sub>BC</sub>, and V'<sub>CA</sub>.
    Label the phase currents at the load: I<sub>AB</sub>, I<sub>BC</sub>, and I<sub>CA</sub>.
  - b) Convert the load to an equivalent Y-connected impedance and combine with the line impedances.
  - c) Determine the phasor values of the L-L voltages at the source. Draw the closed voltage phasor diagram for the system, showing all L-L and L-N voltages.
  - d) Using an A-N per phase equivalent, determine the phasor values of the line currents.
  - e) Determine the L-N and L-L voltages at the terminals of the delta load.
  - f) Determine the phasor value of the phase currents in the source and the load.
  - g) Calculate the complex power S that is consumed by the load and draw the power triangle.
  - h) What is the power factor of the load?

H1.4 A balanced  $3\phi \Delta$ -connected 4800V source supplies a balanced 208V Yconnected load through a Y- $\Delta$  transformer. Z = 4 - j2 $\Omega$  in each phase of the load.



a) Determine the following voltage and current magnitudes:



b) Draw closed phasor diagrams of the primary and secondary voltages, orienting all phasors to the nearest 30° angle. Label all phasors (i.e. V<sub>A</sub>, V<sub>AB</sub>, V<sub>a</sub>, V<sub>bc</sub>, etc.)

## PRIMARY VOLTAGES

SECONDARY VOLTAGES

c) Find the phasor values of the following:  $V_{\alpha}$ ,  $I_{\alpha}$ ,  $V_{A}$ , and  $I_{A}$ .

H1,5



- H2.1) A single-phase autotransformer has an input voltage of 1380 Volts and supplies a 277-Volt 15-kW load of PF = 0.8 lag. Assuming that the voltage at the load has a reference angle of zero degrees,
  - a) Draw the complete circuit, including source, transformer, and load. Label all voltages and currents. Show polarity markings on the transformer windings.
  - b) Determine the phasor value of the current flowing into the load.
  - c) Determine the phasor value of the currents in the 2 windings of the autotransformer, and specify the required voltage and current ratings for each of the windings.
  - d) What is that phase angle of the source voltage?
  - e) Calculate the volt-amp advantage of this particular transformer.
  - f) Explain what the volt-amp advantage is, by contrasting the performance and cost of this autotransformer with an equivalent 2-winding transformer.