# EE 5200 - Lecture 19

## **Topics for Today:**

- Announcements
- Matlab may be incorporated in upcoming Hmwks.
  - Office: EERC 614. Phone: 906.487.2857
- Recommended problems from Ch.6, solutions posted
  - Next: Transmission Lines as 2-port networks
    - •

Chapter 5 - Recap: Series Inductance of Transmission Lines

- Review of mutual inductance concepts recap
- Mutual inductance between 2 conductors
- Inductance matrix for group of conductors
  - ATPDraw Line Constants
- Traditional methods for per-phase parameters
- Geometric mean "averaging" of effective radius and phase spacing. Single-circuit, double-circuit.
  - Use of tables standard 1-foot phase spacing.

Chapter 6 - Shunt Capacitance Transmission Lines

- Fundamental definition of capacitance, C = Q/V
  - Capacitance between 2 conductors
- Capacitance to earth, image charges
- Capacitance of 3-phase overhead lines, [C] matrix.
- Geometric mean "averaging" of effective radius and phase spacing. Single-circuit, double-circuit.
  - Use of tables standard 1-foot phase spacing.

A term **project** shall be done in lieu of a final exam. The project you choose:

- must be of topical interest, and relate to course material of EE5200. 2 persons/team.

- must be new work (not copied from your previous courses or a past student's project).

- must demonstrate a graduate student level of mastery and **application** of the related

concepts and theories. [Note: this is <u>not</u> simply a term paper, but a **project**.] - is sufficiently researched, referenced, and documented, and also includes the in-depth analysis and evaluation of the concepts of the most key journal paper related to this work. - length of body of report: approximately 10 pages of text (not including figures, tables, or equations). All writing is your own original writing. No plagiarism. No self-plagiarism.

Time line and required submissions are as follows, add'l deliverables contribute to the grade of your term project, i.e. ~15-20% of your course grade. Schedule is:

- Week 6: submit short e-mail with idea(s) requesting instructor feedback.
- Week 7: submit formal outline of project and list of key references.
- Week 9: submit expanded outline of project and complete reference list \*.
- Week 11: Submit draft of journal paper analysis (JPA)
- Week 12: Demo working base case model, submit rough draft of project report \*
- Week 13: Submit final JPA and .ppt presentation \*
- Week 14: Submit final report/deliverable \*
- Finals week: be prepared to present/demonstrate project during final exam time-slot.

### \* graded milestone

### Report Outline:

### Front Matter:

- Title Page
- Executive Summary (not needed for initial draft)
- Table of Contents (use as "working outline")
- Statement of contributions by each team member, signed in agreement by all.

## Body of report (max 10 pages of text, plus figs):

- Introduction (brief overview of project: problem area, motivation, overview of project)
- Background
  - literature search, most important references
  - Presentation of key concepts connected with project
  - Identification of existing voids or weaknesses, and resulting opportunity
- Proposed Approach
  - Overview of basic idea that you will develop and implement
  - Development of applied math details
- Implementation (may be only partially complete in draft versions)
- Results (Expected Results in draft versions)
- Conclusions: salient points, cause-and-effect relationships, sensitivities, etc.
- Recommendations for Continued Work

## Supplemental Information:

- Reference List (IEEE format, numbered [1], [2], etc, in order of first author's last name)
- Appendices as required to document details

## Required format and layout:

- Font: 11-pt CG Times w/1.25-1.5 line spacing; or 10-pt comic or ariel w/1.0-1.25 line space
- Page layout: 1" margins, include page numbering within margin area.
- Use equation editor, number equations, call out references by number [1].

J 3-phas J Per-phase da-N Return 3 ろご J tologe L Š J よし しそのた Carson's Formuli ransmission Lines: 336 



IECTURE NO.5 Page / Of \_ Client Burns & M<sup>c</sup>Donnell NEERS - ARCHITECTS - CONSULTANTS Kansas City, Missouri Made By \_ Date \_\_\_\_\_ Project No. Checked By\_ Preliminary\_\_\_\_\_ Final Overhead T-line Configurations SEE "EPRIRED Rock" BOOK"  $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{3}$   $\frac{1}$ 3 = 2.4 KV = 34.5 KV34,5 34,5 7,200 10 CONDUCTORS - Were attention copper but are now aluminum (lighter, cheaper, less corona) AAC : All aluminum conductor All aluminum alloy conductor AAA ' Aluminum Conductor Steel Reinforced ACSR: ACAR: Aluminum Conductor Alloy Reinforced Aluminum Wound Air Core (Expanded ACSE) AWAC : Wire is stranded for strength - Steel carries mechanical load Al carries current

2\_\_\_\_\_Of \_\_ Page \_ Client Burns & M<sup>c</sup>Donnell ERS - ARCHITECTS - CONSUL Kansas City, Missouri Date Made By Project No. Checked By\_ Preliminary\_\_\_\_\_ Final Stevenson (pp.750-753) ( $lgmil= .7854 mil^{2}$ ) Look at table A.I in 1000 circular mills O 266.8 ACM = KCM Waxwing 18/1 2 layers Al, 1 steel 266.8 MCM Partrige 2 layers Al, 2 steel (115-kv otp) 26/7 24/7 795 MCM Cuckoo 2 layers Al, 2 steel (230-14 OTP) 12 ACH 3 layers Al, 2 stoel Bittern 1272 MCM 45/7 (345-KV Minukota) Total number of strands = 3x2-3x+1 x = no. 1 of layers R SAG Shunt CLEARANKE Plus : Mutual Indue tence and copacitance between lines. Stinate T-Line Parens Within 5-10%.

Page\_ S Of Client Burns & M<sup>c</sup>Donnell RS - ARCHITECTS - CONSUL Kansas City, Missouri Date \_\_\_\_\_ Project No. Made By Checked By Preliminary\_\_\_\_\_ Final RESISTANCE R = <u>PL</u> A <u>P= Resistivity</u> 2-CH<sup>2</sup> (RM) L = Length <del>FF</del> M A = Area CHIL M<sup>2</sup> From Physics  $/ Cmil = \frac{\pi d^2}{4}$ d = .001 in 01 Area in Circular mils =  $(dia in Mils)^2$ """" square inches =  $(area in circular mils)\frac{4}{77}$ Corrections to resistance: (add 2% to langth) D Spiraling:  $R = \frac{PL}{A}$  (1.02) 2) Temp Rise:  $R_2 = T + t_2$ R.  $T + t_1$ Ri= Ros @ t. A  $R_2 = Res = \frac{1}{2}$  $T = \frac{1}{2}$ Cu $T = \frac{1}{2}$ ALt, str in °C 3) Resistance & Current Density

Of Page \_\_\_\_ Burns & McDonnell Client RS - ARCHITECTS - CONSULTANTS Kansas City, Missouri \_\_ Date \_\_\_\_ Project No. \_ Made By \_ Checked By\_ Preliminary\_\_\_\_\_ Final For de current J= constant ) ( dc. current density is uniform across Cross section of conductor. For ac, & magnetic lines of force in center of conductor force current to outside surface. (Non-uniform flux distribution.) R L+AL Therefore, Rac > Rdc by about 1-10% @ 60HZ Use tables (p. () to get actual measured values REFF REFFECTIVE = Rac = PLOSS JL .: Resistance is no problem. use tables.

Page \_\_\_\_\_ Of \_\_\_\_\_ Client Burns & M<sup>c</sup>Donnell EERS - ARCHITECTS - CONSUL Kansas City, Missouri Date \_\_\_\_\_ Made By \_ Project No. Checked By \_ minary\_\_\_\_ Final INDUCTANCE - NOT AS EASY BUT TABLES CAN BE USED IN MANY CASES. Cases to Consider 1) Self inductance of single line. 2) Single phase groups of wires. 3) Mutual inductance with parallel phone lines, etc. 4) 30, Bundled conductors Going back to field theory - $2T = L \frac{di}{dt}$   $\vec{Y} = \frac{1}{3}\omega L \vec{T}$ L= CINKED BY I I 4 & I are in phase 7 @ = Flux Linked/M I = Current (mis) L = Inductance / unit longth A D= SB·JA B= Magnetic Flux Donsity NB/m<sup>2</sup> dA = Area in Sphare meters

6 Of Page Client Burns & M<sup>c</sup>Donnell NGINEERS - ARCHITECTS - CONSULTANTS Kansas City, Missouri Date \_\_\_\_\_ Made By Project No. Checked By Preliminary\_\_\_\_ = Mr Mo H B=MH H= Magnetic field intersity Mo = permeability of free Space = 477×10<sup>7</sup> H ds COSCHS · relative permeability yds for air H.JS Ξ IENCLOSED (Amperes Law)  $\overline{JS} =$ incremental length (dl or dx) to find L: (reversing preceding) Procedure i) Find H given I 2) Find B = usH 3) Find 2=4 linked (Wb) 4) Determine I 4a) L= 1 (internal) Self, inductance of single wire: EX: Case I: Length H.J. = I enclosed dø since It & Ja are in same direction,  $(\overline{H} \cdot \overline{J} = H_x(2\pi x) = I_x$ Ix = current encloses where by radius X

Page \_\_\_\_\_ Of \_\_\_ Client Burns & M<sup>c</sup>Donnell NEERS - ARCHITECTS - CONSULTANTS Kansas City, Missouri Made By Date Project No. Checked By \_\_\_\_ Preliminary\_\_\_\_\_ Final Assuming constant current density,  $I) \quad I_{X} = \frac{\mathcal{H}_{X}^{2}}{\mathcal{H}_{r^{2}}} I$ where I = total amount in conductor 2)  $H_x = \frac{I_x}{2\pi x}$ E from previous egu.  $H = \frac{Ix^2}{277x^2} = \begin{bmatrix} \frac{Tx}{277r^2} & \frac{A-T}{m} & \text{first part} \\ \hline 277xr^2 & m & \text{of procedure} \end{bmatrix}$ B= MoH = <u>MOXI</u> second part 27/r<sup>2</sup> of procedure satisfied. do = flux meter TADO 1 pigeotet Wb/m dq = MXI dx Wb/m  $\frac{\psi_{\text{LINKED}_{X}}}{\psi_{\text{LINKED}_{X}}} = \frac{\psi_{\text{T}X^{2}}}{\pi r^{2}} \text{ Wb}$  $d\Psi_{L} = \frac{M_{0} \times I}{2\pi r^{2}} dx \begin{pmatrix} 1 \\ 1 \\ \hline \end{pmatrix} \begin{pmatrix} \chi^{2} \\ \tau^{2} \end{pmatrix}$ of flux of turns)  $P_L = \int_0^r \frac{M_0 X^3 I(\text{Length})}{2 \pi r 4} dX = \frac{M_0 I(\text{Length})}{8\pi}$  $L = \frac{\Psi_L}{T} = \frac{M_o(Length)}{8\pi}$  | Solution.

| Burns & MCDonnell Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Page Of                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| ENGINEERS - ARCHITECTS - CONSULTANTS<br>Kansas City, Missouri Project No Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Made By                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Checked By                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Preliminary Final                      |
| Since No = 477 × 10-7 H/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |
| $L = \frac{477 \times 10^{-7}}{877} = \frac{1}{2} \times 10^{-7} H_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ín internal                            |
| = .05 mH/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n                                      |
| Note: Internal<br>A INDUCTANCE DOES NOT DEF<br>SIZE OF THE COND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | END ON THE                             |
| EX: CASE II - COAX (2-WIRE SY:<br>- Longth->1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STEM)                                  |
| Tout<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$<br>$J_{in}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = Iout<br>IENCLOSED<br>I<br>I<br>I I I |
| $H = \frac{1}{27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rr di la                               |
| $B = M_0 H = \frac{M_0 I}{2\pi r} \# 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
| $\psi = \int_{D_1}^{D_2} B \cdot dA = \frac{1}{2} \frac$ | $\frac{M_{o}I}{2\pi r}dr$              |
| $\psi = \frac{M_0 I}{2\pi} \log \frac{D_2}{D_1} = \frac{1}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
| $L_{12} = \frac{\psi}{I} = \frac{M_0 \text{ Longth}}{2\pi} \ln \frac{P_2}{P_1} = \int 2 \times 10^{-10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>7</sup> ln Dz H/m Answer          |

9 <sub>Of \_</sub> Page Client Burns & M<sup>c</sup>Donnell RS - ARCHITECTS - CON Kansas City, Missouri Date Made By Project No. Checked By\_ Preliminary\_\_\_\_\_ Final Two Wire System I enclosed Look at flux linked by I, LI = LINTERNAL + LEXTERNAL = muto IF D>>rfr between 122 Lient 2×10" lnp e mutial effect of cond 2 L1 int = ± × 10-7 H/m  $L_1 = 2 \times 10^7 \ln \frac{D}{r} + \frac{1}{2} \times 10^{-7}$  $= \left(\frac{1}{2} + 2 \ln \frac{D}{r_{i}}\right) \times 10^{-7} \text{ H/m}$ =  $2 \times 10^{-7} \left( \frac{1}{4} + \ln \frac{D}{E} \right)$ Substitute = ln et 4  $L_{1} = \left(2 \times 10^{-7}\right) \left(\ln \frac{D}{(r_{1}e^{-\gamma})}\right)$ .7788 = e-+ Substitute r' = re 1/4 = effective radius  $L_1 = 2 \times 10^7 \ln \frac{D}{r!}$ H/m

Page ( O Of Client Burns & M<sup>c</sup>Donnell ERS - ARCHITECTS - CONSULTANT Kansas City, Missouri Date \_\_\_\_\_ Project No. Made By \_ Checked By \_ Preliminary\_\_\_\_\_ Final Li = .7411 logio Pri mH/mile move radius of a ficticious Ξ conductor with no internal flux that has the same total inductance as the original conductor of radius So we multiply r x e = r, x, 7788 ta get r' - only for solid round Conductors. Note: May have to measure for stranded conductor. since the arrents Ф, are opposite L TOTAL For this wire loop circuit 2 LTOTAL = L, +L2 = (L1, 1AT+L the 15 where  $L_2 = 2 \times 10^7 \ln \frac{D}{\Gamma_2}$  $\frac{1}{10^{-7}}\left(\ln\frac{P}{r_2} + \ln\frac{P}{r_1}\right)$ = TOTAL 4×107 ln D H/m " S GMR 1.482 log. Vr. Ti mH/mile

Page \_\_\_\_\_ Of \_\_\_\_\_ Client Burns & M<sup>c</sup>Donnell INEERS - ARCHITECTS - CONSULTANTS Kansas City, Missouri Date \_\_\_\_\_ Project No. Made By Checked By\_ Preliminary\_\_\_\_\_ Final EX: 3 mile solid conductor 0.5" DIA Find XL @ 60 HZ & 2 ft spacing  $L = 1.482 \log_{10} \frac{2 ft}{r'} \frac{m H}{mile} (3 miles)$  $r' = -\frac{0.5''}{2} e^{-1/4} = .1947''$  $r' = (.1947'') (\frac{1}{12''}) = .016225 ft$ L= 1.482 (3) log, 2 = 9.296 mH  $X_c = 2760L$ = 377L = 3,504SL Summary L = Z×10-7 H/m wire Coax L= 2×107 ln - +/m ind between the conductors. 2 wires  $L_{TOTAL} = 4 \times 10^7 \, lm \frac{D}{\sqrt{r's'}} \, H'm$ solid wires only where r' = r, E'lt includes self inductance

Page 12 Of \_\_\_\_\_ Client Burns & M<sup>c</sup>Donnell GINEERS - ARCHITECTS - CONSULTANTS Kansas City, Missouri Date Made By \_ Project No. Checked By\_ Preliminary\_\_\_\_\_ Final \_ 2 wire loop 吾 For IMPORT  $I_1 = I_2$ I, LOAD Ir Earth 1:0 ground fault, there IF īs a  $\mathcal{I}_{i}$ Lood 1170 is incorrect calculated above L The 2 wire FLICKER with assumed spacing EX: For 2= .1945+ j.684 For 2 wire with earth return (like zero seguence) Z= ,652 + j2.7455 So must not have earth return to use the method in the book.

More Actailed Explanation of "Lecture No.5" ()  
Inductance 
$$L = \frac{7}{1}$$
  
A Cases: () Self-inductance of single line  
2) Single phase groups of wires.  
3) Mutual inductances from the lines  
4) 30, Bundled Conductors  
Field Theory Basics  
Current flowing in Conductor produces  
inagnetic field H (right house rule)  
100 meter  
100 meter

For a nonmagnetic conductor,  

$$B_{x} = M_{0} H_{x} = \frac{M_{0} I_{x}}{2\pi x} \qquad \text{Wb}/m^{2}$$
Ref  $I_{x} = \left(\frac{x}{r}\right)^{2} I$ 
  
SIGP 2
$$B_{x} = \frac{M_{0} \times I}{2\pi r^{2}} \qquad \text{Wb}/m^{2} \qquad \text{flux density}$$
Locking at flux d flowing three a slifterential eross section of conductor
  
Like sigle
$$C_{x} = \frac{M_{0} \times I}{2\pi r^{2}} \qquad \text{Wb}/m$$
  
Like sigle
$$C_{x} = \frac{M_{0} \times I}{r^{2} + r^{2}} \qquad \text{Wb}/m$$
  
The flux crossing strip dx × unit length,  $A = N \text{deduces}$ 
  
d d = B\_{x} dx \qquad \text{Wb}/m
  
The flux linked (contained) by concentric flux path of radius X is:
  
SIGP  $\frac{3}{2}$ 

$$d T = \left(\frac{x}{r}\right)^{2} d \Phi = \frac{M_{0} I}{2\pi r^{4}} \times^{3} d x$$
  
integrating
  
 $\frac{M_{0} I}{2\pi r^{4}} = \frac{M_{0} I}{2\pi r^{4}} \int_{0}^{x} d x$ 
  
 $= \frac{M_{0} I}{2\pi r^{4}} \left(\frac{pt}{4}\right) = \frac{M_{0} I}{2\pi r} \qquad \text{Wb}/m$ 

 $\frac{4\pi \times 15^7 I}{8\pi} = \frac{1}{2} \times 15^7 I$ Ĭ

Then,

$$L = \frac{7}{I} = \frac{1}{2} \times 10^7 H/m = .05 mH/m$$



Inductance for conductor 2  
is  

$$L_2 = 2 \times 16^7 \ln \frac{D}{r_2'} H'_{IM}$$
  
for define circuits  
 $L_{7074L} = L_1 + L_2$   
 $= 2 \times 10^7 \ln \frac{D^2}{r_1'r_2'} + \ln \frac{O}{r_2'}$   
 $= 2 \times 10^7 \ln \frac{D^2}{r_1'r_2'} + H'_{IM}$   
 $\frac{1.482 \log_{10} \frac{D}{Vr_1'r_2'}}{Vr_1'r_2'} + H'_{IM}$   
Note:  
 $\frac{1.482 \log_{10} \frac{D}{Vr_1'r_2'}}{Vr_1'r_2'} + H'_{IM}$   
Note:  
 $\frac{1.482 \log_{10} \frac{D}{Vr_1'r_2'}}{r_2'r_2'}$   
IN GENERAL,  
for Single phase multi-conductor line,  
 $\frac{O^4}{O}$   
 $\frac{O^4}{O}$   
 $\frac{O^4}{O}$   
 $\frac{O^4}{O}$   
 $\frac{O^4}{O}$   
 $L = 4 \times 10^7 \ln \frac{GMD}{GMR}$ 

$$GMR_{i} = \sqrt[n^{2}]{(D_{aa}, D_{ab}, D_{am})} \cdots (D_{ma}, D_{mb}, D_{mm})}$$
  
 $T_{a'}$ 
 $T_{a'}$ 
 $T_{a'}$ 
 $T_{a'}$ 

$$GMR_{2} = \frac{m^{2}}{\sqrt{D_{a'a'} D_{a'b'} - D_{a'm}}} - \frac{Dma' Dmb' - Dmm}{\sqrt{T_{a'}}}$$

$$L = \frac{2 \times 10^{7} M GMR}{GMR} + \frac{2 \times 10^{7} M GMR}{GMR_{2}}$$

$$L = 4 \times 10^{7} M GMR$$

$$GMR$$

$$\frac{Do examples}{Ex: 3 \text{ mile Solid cond 0.5" DIA}, 2-ft spacing.}$$

$$L = 3 \sqrt{1.482} \log_{10} \frac{2 \text{ feet}}{\binom{0.5}{2} \binom{12}{2} \binom{e^{1/4}}{2}} = \frac{9.296 \text{ mH}}{12}$$

$$K_{c} = 2760 L = 377 L = 3.504 DL$$



$$GMD = \sqrt[6]{Dad Dae DudDbe Dcd De}$$

$$Dad = Dbe = 9m$$

$$Dae = Dba = Dce = \sqrt{6^{2}+9^{2}} = \sqrt{177}m$$

$$Dcd = \sqrt{9^{2}+12^{2}} = 15m$$

$$@ @ @ @ \\
GMD = \sqrt[6]{92 \cdot 177^{3/2} \cdot 15} = 10.743m$$

$$GMR_{1} = \sqrt[9]{(.0025 e^{1/4})^{3} \times 6^{4} \times 12^{2}} = 0.48lm$$

$$GMR_{2} = \sqrt[4]{(.005 e^{-1/4})^{2} \times 6^{2}} = 0.153m$$

$$Lxy = 4x10^{-7}lm \frac{10.743}{\sqrt{481}\sqrt{153}} = 1.472 mH/m$$

$$(= 2.37 mH/mi)$$

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | LECT                             | URE NO. 6                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------|------------------------------|
| CALL CONSTRUCTION OF THE CONSTRUCT OF | Client                          | Data                             | Page Of                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                  | Checked By                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                  | Preliminary Final            |
| Stander.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TOTAL                           |                                  |                              |
| Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ped conductors                  | s (Bundled)                      |                              |
| What Hap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pens if:                        |                                  |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | а <u>е</u> GM                   | D o <sup>a'</sup>                | c' GMR2                      |
| Gpak<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | o <sup>d</sup> o <sup>n</sup>   | ۲<br>۵ - ۱                       | 2                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Condul                          |                                  |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONS                            |                                  | and c                        |
| Before,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | we neaded                       | D = distance                     | between conductors           |
| L, = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ?x10 <sup>?</sup> ln Dr         | r'= radius                       | of conductor                 |
| L =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2×157 lu GM<br>GR               | $\frac{D}{R} = 2 \times 10^{-7}$ | lu Dn<br>Ds                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                  |                              |
| GMD =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NN<br>V (Daa' Dab' Dac' ··· Dan | a'XDba' Dbb' Dbe' ··· Dbi        | nX···X Dna' Dnb'···· Dnm)    |
| $GMR_{i} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n (Daa Dob Dac Dan)(1           | Dba Dbb Dbn)(                    | · · X Dna Dnb Dnc · · · Dnn) |
| $D_{M} = GMD =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Geometric M                     | Can Stame                        | Distance                     |
| $D_{s} = GMR =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Geometric Med                   | an Radius                        | $D_{aa} = \Gamma_{a}^{1}$    |

3 <sub>Of \_</sub> Page \_\_\_\_ Client Burns & M<sup>c</sup>Donnell NEERS - ARCHITECTS - CONSULTANTS Kansas City, Missouri Date Made By \_ Project No. Checked By Preliminary\_\_\_\_\_ Final Ly = 2x107 ln 10.743 = 8.503 x107 H/m 14.715×107 H/m gives higher L LXy = Lx + Ly =decreased phase 2,37 mH/mi spacing gives 10.ver1 Tables Usually we want inductance in ohms per mile X\_ = 277FL = 277FL × 2×10-7 ln Dm H/m = 2.022 × 103 f lu Dm ohms/mile where Ds is listed in table A.I for 60 HZ X\_= .2794 logio Dm 2/mi for 60 HZ X<sub>L</sub> = , 2794 log<sub>10</sub> <u>1</u> + .2794 log<sub>10</sub> <u>D</u><sub>m</sub> <u>R</u>/mile X<sub>L</sub> = X<sub>a</sub> = inductive reactance inductive reactance at one foot spacing spacing factor

Of Page \_\_ Client **Burns & MCDonnell** NGINEERS - ARCHITECTS - CONSULTANTS Kansas City, Missouri Date Project No. Made By \_ Checked By\_ Preliminary\_\_\_\_\_ \_ Final Waxwing at 10 ft spacing - single prove Ex:  $X_{L} = .476$ .2794 Definite = .7554 2/mile (one cond only of line, (10)For 10 miles j.7552 Lord 1.755r Mutual Inductance ĉK) Jin  $\mathcal{O}$ Int D Power line CXX. Phone Line οv Undersould work "D = - I6 Ia ! Ib produce same flux (some I) Ved = just 2×.7411 log 10 Dad Dac [K12K1] 1/2 - M= Q12 IZ 7 at/mi and a set of





| Rurns & MCDonneli                                             | Client            |                                     | Ра         | age Of                  |
|---------------------------------------------------------------|-------------------|-------------------------------------|------------|-------------------------|
| ENGINEERS - ARCHITECTS - CONSULTANTS<br>Kansas City, Missouri | Project No        | Date                                | M          | ade By                  |
|                                                               |                   |                                     | C          | hecked By               |
| 041581 Form GCO-29                                            |                   |                                     | P          | reliminary Final        |
| EX:                                                           |                   |                                     |            |                         |
| (3.4)                                                         | 201 0             | `~                                  | 60 H       | 2                       |
|                                                               | 20'               |                                     | ACSR       | DRAKE                   |
|                                                               |                   | 0                                   |            |                         |
| Find                                                          | the induc         | tive reactance                      | per mil    | e per phose             |
| From                                                          | table A.1         | $D_3 = GMIZ$                        | = 0.0 37   | <u>3 ft</u>             |
|                                                               |                   | Dee = \$ 201                        | × 20 × 38  | = <u>24.8</u> ft        |
|                                                               |                   | -                                   |            |                         |
|                                                               | $L = 2 \times 10$ | $D^{-7} ln \frac{Der^{47}}{Ds} m =$ | .7411 -log | 10 Deg mit<br>Ds mi     |
|                                                               | = 13              | ×157 H/m =                          | 2,092      | mH/mile                 |
|                                                               | X L =             | 377L = 377(2)                       | 2.092)     | mile                    |
|                                                               |                   | V - 700                             | 2 8.1.1    | 7                       |
|                                                               |                   | L = .101                            | 50/m,1e    |                         |
| From                                                          | Tobles            | $X = X_a +$                         | - XJ       |                         |
|                                                               | >                 | (a = 0.399 2/m                      | Ň          |                         |
|                                                               | X                 | d = ,2794 lo                        | 1910 Des = | 389 52/mi               |
|                                                               | X                 | $= X_{a} + X_{d} =$                 | = ,399+,   | B&9 = ,788 2/mi         |
|                                                               |                   |                                     |            |                         |
|                                                               | Go To             | Tobles - in                         | terpolate  | from A.Z<br>for 24.8 ft |
|                                                               |                   |                                     |            | 101 2012 11.            |

Page \_\_\_\_\_ Of \_\_\_\_ Client \_ Burns & M<sup>c</sup>Donnell ENGINEERS - ARCHITECTS - CONSULTANTS Kansas City, Missouri Made By Project No. \_\_\_\_\_ Date \_\_\_\_\_ Checked By \_\_\_\_ 041581 Form GCO-29 Preliminary \_\_\_\_\_ Final\_\_\_ BUNDLED CONDUCTORS de d->d used at 345-KV and above to reduce corona For some voltage on a wire, say 100 KV Olsis large Ps is small Cs = charge density E field is less Corona 1055 - blue have around conductors bundling reduces corona Ds Corres  $D_s^b = GMR = \sqrt[4]{(D_sd)^2} = \sqrt{D_sd}$ 345-KV Ds from tables 24  $D_s^b = GHR = \sqrt[9]{(D_s dd)^3} = \sqrt[3]{D_s d^2}$ 500 KV ds 2  $D_{5}^{b} = GMR = \sqrt[16]{(D_{5} d d \sqrt{2} d)^{4}}$ =  $1.09^{4}/(D_{5} \times d^{3})$ 765 KI









Phase spacing, burlet contuctors will As conductor radius' As phase spacing Smiler 5 For same ( result in 5 Inductances