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2. Note that the net current into buses @ and () is

—-6.5 10.9
22 0 22 50) =
( T +J>+<11 “)

3. Note that the net current specified into buses D, @, @. @ and Q) is the sum of I, I,
I3, I and Is:

0.4 + 50

(1.5+ jO) + (=0.8 + 70) + (0.5 + j0) + (=1.2 4 j0) + (0.4 + jO) = 0.4 + 0

Chapter 15 Problem Solutions

15.1 The circuit of Fig. 15.1 is redrawn in Fig. 15.7, in which three loop current
variables are identified as z;, 23 and z3. Although not shown, ammeters and
voltmeters with the same accuracy are assumed to be installed as in Fig. 15.1,
and the meter readings are also assumed to be the same as those in Exam-
ple 15.1. Determine the weighted least-squares estimates of the three loop
currents. Using the estimated loop currents, determine the source voltages V;
and V5, and compare the results with those of Example 15.1.

Solution:

The meter readings z; to z4 are related to the three loop currents as follows:

2 I +e;
29 = ZIg9+eg
23 = I1—Z3-+e3
Z4 T2+ x5+ ey
The matrix H is
1 0 0
0 1 0
H=17 o 2
0 1 1
The inverse of the gain matrix becomes
. 0.00833 -0.00167  0.00500
G™! = (HTWH) = | -0.00167 0.00833 —0.00500
0.00500 -0.00500 0.01500
where :
100 0 0 o0 ]
_ 100 0 O
w = 0 50 0
0 0 50
The estimates of the loop currents are calculated from
£ 0 9.0033 A
i, | = GT'HTWz = G'HTW 6os | = | 30133 A
Z3 5'01 2.0100 A
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Using the loop currents and elementary circuit analysis, the source voltages are determined
to be

Vi = 2% -2 15.9966 V
Vo = 2%,+3%3 = 8.0366 V

Note that these values are different from those obtained in Example 15.1 because the quantities
to be estimated here are the loop currents, while the source voltages were sought before.
Another method to find the source voltages is as follows:

Vi = Z3+2% x1
Vo = 24+2x1

where 2, to Z; are the estimated measurements such that 2 = Hx. This will yield the same
result.

15.2 Show that F [(x —-X)(x— JE)T] = G~! where G is the gain matrix.
Solution:

E [(x —%) (x - i)T] = E [(G-IHTWe) (eT WHc;“lT)]
= G 'HTWE [ee”] WHG T
G HTWW-'WHG T = g 'HTWHG!7
G-leeT = gt ’
~

15.3 Show that the sum of the diagonal elements in the matrix HG'HTR"! in
Eq. (15.40) is numerically equal to the number of state variables.

Solution:

The sum of the diagonal elements of HG 'HTR™! is

trace [HGT'HTR™}] = trace |H (H'R-'H) 'HTR"!
) X Y
X

since the trace (XY) =trace (YX), when such products are meaningful,

trace [HG_IHTR'I]

trace |HTR™'H (HTR-'H)™*
N’ ,

-

Y X
= trace [(HTR‘IH) (HTR‘IH)‘I] = trace [I] = N,

Note that matrix I size is N, x N,.
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15.5

i o

Prove Eq. (15.47).
Solution:
f = & RrR'le
-~ {I-HG'H'R"']e} R} [I-HG'H'R !]e
= ¢"{R"-RTHGH'R™'} [I- HG'H"R™']e
= 'R [I-HG HTR™| [I-HG'H'R™]e
= TR}[I-HG'H'R™']e
(The matrix in the bracket is an idempotent matrix)

Note that 1

o

Since measurements 7 and j are uncorrelated, E [e;e;] = 0. Therefore,
E [f] trace [I - HG—IHTR—X]

= trace [I] —trace [HG™'HTR™]

= N —trace {[H (HTR—IH)—I] [HTB—I]}

= N, —trace {[HTR'] [HETRH) ]} = N - N,

Consider the voltages at the two nodes labeled (D and @ in the circuit of
Fig. 15.7 to be state variables. Using the ammeters and voltmeters connected
as shown in Fig. 15.1 and their readings given in Example 15.1, determine
the weighted least-squares estimates of these node voltages. Using the re-
sult, determine the source voltages V7 and V2, and compare the results with
those of Example 15.1. Also calculate the expected value of the sum-of-squares
of the measurement residuals using Eq. (15.46), and check your answer using
Eq. (15.47).

Solution:

The meter readings are related to the node voltages z; and z7 by

zy = I+ —2T0+e = 23:]_—32‘{'81
27 = Iot+zo—Ti+ey = —1y+2x9+ €
z3 = zI1te3
4 = Ioté€4
The matrix H is
2 -1
-1 2
H = 1 0
0 1
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The inverse of the gain matrix is

G! = (HTWH)—]- — 0.00386 000281]

0.00281 0.00386

The estimates of the node voltages are found as

[x:l] = G-IHTWZ
T2

100 0 o0 O 9.01
0 100 0 0 ||302]| _ [70060V
0 0 50 0 6.98 - 5.0107 V
0

0 0 50 5.01

G—IHT

Using the node voltages found, the source voltages are

Vi = £ +% = 7.0060+9.0012 = 16.0072 V
Vo = 29+ 2, = 5.0107+3.0154 = 8.0261 V

where 2 = HX. It is seen that the estimated source voltages are the same as those of
Example 15.1. The expected value of the sum of squares of the measurement residuals is

N,
] = R'.
e[fl = %
0.00193 0.00193 001614 001614

oz oz T 2/10)° + Va0 -

which can be checked by
Np—-N, =4-2=2 -~

15.6 Five ammeters. numbered A; to As are used in the dc circuit of Fig. 15.8 to
determine the two unknown source currents I; and ;. The standard deviations
of the meter errors are 0.2 A for meters A, and As, and 0.1 A for the other
three meters. The readings of the five meters are 0.12 A, 1.18 A, 3.7 A, 0.81 A
and 7.1 A, respectively.

(a) Determine the weighted least-squares estimates of the source currents I;
and 12.

(b) Using the chi-square test of Eq. (15.49) for a = 0.01, check for the presence
of bad data in the measurements. '

(¢) Eliminate any bad data detected in (b) and find the weighted least-squares
estimates of the source currents using the reduced data set.

(d) Apply the chi-square test for a = 0.01 to the results of (¢) to check if the
result is statistically acceptable.

~ |




283

Solution:

(@) Let the unknown source currents be denoted by x; and zq, and the meter readings by
21 through z5. It follows from circuit analysis that

.7 3
T T Tttt
) -3 7
2y = Z(—)'IL EIQ + €2
33 : 3 +
I3 = —1 4 —
3 g0t goTT el
o 4 + 4
4= 40-’51 401‘2 + e4
3 L3
3y = —T 4 — ,
: 0" T Tt e
from which the matrix H is
0175 -=0.075
—-0.075 0.175
H = 0.825 0.075

0.100 0.100
0.075 0.825

The inverse of the gain matrix is

G = (H'WH)™' = [

0.01431 -0.00510
-0.00510  0.05205

where
100 0 0 0 0
0 25 0 0 0
W = 0 0 100 0 O
0 0 0 100 0
0 0 O 0 25
The estimates of the source currents are determined to be
[ o012
i 1.18 37218 A
'l = G''H™Wz = GT'HTW | 370 | = :
N 8.0451 A
E- 0.81
o 7.1
0.12 0.04793 0.07207
1.18 1.12877 0.05123
é - 2—-%2 = z~-Hx = 370 | — | 3.67385 = 0.02615
0.81 1.17669 -~0.36669
7.1 6.91638 0.18362
é

L)

f'=z”'

g1

“

=100 x 0.072077 4+ 25 x 0.05123% 4 100 x 0.02615% + 100 x (—0.36669)° + 25 x 0.18362*
= 14.9427
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Since N, =5 and N; =2, k= N,, = N, = 3. For a = 0.01, X3.0.01 = 11.35. There is
at least one bad measurement by observing that f > 11.35.

(¢) To find the standardized error-estimates, the diagonal elements of the matrix R’ are
first calculated using H and G~! obtained above. Thus,

R' = (I-HG'HTR™ )R

0.00914 x % X X
X 0.03819 x X X
= X X 0.00060 x X
X X x 0.00944 X
X X x x 0.00512

where R = W!

The standardized errors are calculated from

é; 0.07207

N v/0.00014

€3 0.05123
= = 0.26216

VRS, v/0.03819
€3 - 0.02615 —  1.06923

VR, 0.00060

é4 —0.36669
= === = -3.77445

VR, v/0.00944

és 0.18362
= === = 2.56567
\/z 0.00512

from which z, is identified as the bad measurement. To perform state estimation without
z4, the 4** row of H is eliminated and the 4** row and 4** column of W are also
eliminated. The inverse of the new gain matrix becomes

G-! = (HTWH)™' = [ 0.01440 —0.00464]

—0.00464  0.05439

where
0.175 -0.075 100 O 0 0
-0075 0.175 0 25 0 0
H = 0.825  0.075 W = 0 0 100 0
0.075 0.825 0 0 0 25
The new estimates of the source currents are then given by
0.12
21 | _ AcieaT — -113T 1.18 _ | 3.75756 A
[iQJ‘G H'Wz = GTHIW | o —[8.22756A
7.1
(d)
0.12 0.04051 0.07949
& =z2-% = z—Hg = 1.18 _ | 115801 _ 0.02199
- 3.70 3.71706 - —0.01706
7.1 7.06956 0.03044
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5
. €
D3

y=1

144

“= 100 x 0.07949% + 25 x 0.02199% + 100 x (—0.01706)* 4 25 x 0.030442
= 0.69628

Dy
AV N )

kqh;l

Note that in this case k = Ny, — N, =4 =2 = 2. For a = 0.01, x3 , 4, =~ 9.21. Since

f < 921, it is concluded that the set of remaining four measurements does not have
any bad measurements.

15.7 Re-do Prob. 15.6 when the unknowns to be determined are not the source
currents, but the voltages at the three nodes labeled (D, @ and @ in Fig. 15.8.

Solution:

- Let the voltages at the three nodes identified as @), @ and @) in Fig. 15.8 be denoted by =,
3 7, and x4, respectively. From circuit analysis,

; 4 zZT = (Il —IQ)/3+€1
zg = (r3—12)/3+ €2
z3s = zxI1+4+es
zg = Z9/3+ e
zs = z3/l+es

from which matrix H is
1/3 -1/3 0
0 -1/3 1/3
H = 1 0 0
0 1/3 0
0 0 1

The inverse of the gain matrix is

-, 0.00942 0.00424 0.00042
G™' = (HTWH) ~ = | 000424 0.04235 000424
0.00042 0.00424 0.03642

where
- 100 0 O 0 0
0 25 0 0 0
W = 0 0 100 0 0
0 0 0 100 0O
0O 0 o 0 25
The estimates of the node voltages are determined to be
0.12
I 1.18 3.65951 V |
i | = GT'HT™Wz = G-'HTW | 370 | = | 293507V
T3 0.81 703751V

7.1




286

To check for the presence of bad data

7

0.12 0.24148 —0.12148

» 1.18 1.36747 —0.18747

é =z-2 =z-Hx = 3.70 | — | 3.65951 = 0.04049
: 0.81 0.97835 -0.16835
7.1 7.03751 0.06249

)
[v3

5
f=3
J=1
= 100 x (—0.12148)® + 25 x (—0.18747)” + 100 x 0.04049% + 100 x (—0.16835)? -+ 25 x 0.062492
5.44991

Note that k= N, - N, =5-3=2. For a =0.01, Xg,o_m =9.21. Since f < 9.21, the set of
measurements has no bad data for the specified confidence level.

15.8 Consider the circuit of Fig. 15.8 for which accuracy of the ammeters and their
readings are the same as those specified in Prob. 15.6. As in Prob. 15.7, the
voltages at the three nodes labeled ), @ and @) are to be estimated without
first finding the source currents.

(a) Suppose that meters A4 and As are found to be out of order, and therefore,
only three measurements z; = 0.12, 2, = 1.18 and 23 = 3.7 are available.
Determine the weighted least-squares estimates of the nodal voltages, and
the estimated errors é;, é; and é;.

(b) This time suppose meters A, and As are now ot of order and the remaining
three meters are working. Using three measurements z1 = 0.12, z3 = 3.7
and z; = 0.81, can the nodal voltages be estimated without finding the
source currents first? Explain why be examining the matrix G.

Solution:

(a) By eliminating the 4** and 5** rows from H obtained in Prob. 15.7, we have

[1/3 -1/3 0] [100 0 0}
H=| 0 -1/3 1/3 W=1|0 25 0

1 0 0 0 0 100

The inverse of the gain matrix is

» 001 001 0.01
G™' = (HTWH)" = | 001 010 0.10
001 0.10 0.6

The estimates of the node voltages are determined to be

T3 3.70

Iy 0.12
Z | = GT'HTWz = G 'H™W | 118 | =
z 6.88 V

3.7V
334V

e
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It is easy to check that

0.12 0
é=2-z| 118 | -Hx = 0
3.70 0

Note that the degree of freedom is zero. Therefore, in this case, the states of the system
are completely defined without any redundancy in measurements.

(b) Ifonly zy, 23 and z4 are used, node (@ cannot be represented at all and, consequently, its
nodal voltage cannot be estimated. This can also be checked by examining the matrix
H for this case:

1/3 -1/3 0
H= |1 0 0
0 1/3 0

Note that all the elements in the 3™ column are 0, indicating that z3(the voltage at
node @) cannot affect the measurements. One can also note that the gain matrix

becomes
1/3 1 0 100 0 0 1/3 -=1/3 0
G = HTWH = -1/3 o 1/3 0 100 0 1 0 0
0 0 100 0 1/3 0
r 0 —100/9 0
= —~100/9 200/9 o
0

which cannot be inverted.

15.9 Suppose that the two voltage sources in Example 15.1 have been replaced with
new ones, and the meter readings now show z; = 2.9 A, 20 = 10.2 A, 23 =51V
and 24 = 7.2 V.
(a) Determine the weighted least-squares estimates of the new source voltages.
(b) Using the chi-square test for a = 0.005, detect bad data.

(¢) Eliminate the bad data and determine again the weighted least-squares
estimates of the source voltages.

(d) Check your result in (c) again using the chi-square test.

Solution:

(a) The estimates of the new source voltages are obtained from

29
I — (—1yqT _ ~—1ygT 10.2 _ 8.00175 V
[:&2] = GTHWz = GTH'W | | = [17.66491V
7.2

where G, H and W are all specified in Example 15.1.
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(b) To verify the presence of bad data,

| 2.9 279208 0.10702
) ) ) 10.2 1004033 0.15965
é=z-2=z2-Hx = ", | = | 500877 | = | —0.10877

7.0 7.62456 —0.42456

wl“ (&

R 4.2
f=2=
Jj=1

.

Il

100 x 0.10702 + 100 x 0.15965 + 50 x (—0.10877)% + 50 x (—0.42456)°
13.29826 '

Note that in this case k = Ny, — N, = 4—2 = 2. For a = 0.005, x3 4,905 = 10.60. Since
f > 10.60, there is at least one bad measurement.

(c) The diagonal elements of matrix R’ are first found as

R = (I-HG'HTR)R
0.00193 X X X
_ X 0.00193 X X
- X X 0.01614 X
X X X 0.01614

where R = W1

The standardized errors are calculated from

& 0.10702

= ——— = 243611
R, v/0.00193
s
¢ _ 015965 _ .o
VR, 0.00193
g _ 010877 _ oo
VRs3 /0.01614
éq —0.42456

= 222 = -334183
VR, V/0.01614

from which z; is identified as the bad measurement. To perform state estimation without
25, the 27 row of H is eliminated and the 2™ row and 2"¢ column of W are also
eliminated. The inverse of the new gain matrix becomes

1 arwoe -1 | 0.02182  0.00727
G™ = (H'WH) = [0.0072_7 0.10909]

where

0625 —0.125 ‘T100 0 ©
H = | 0375 0125 W=1| 0 5 o0
0.125  0.375 0 0 50

The new estimates of the source voltages are then given by

. 2.9
I _ o-1ygT — -1gT _ 797273 A
[5:2] = GTHWz = GTH W[g;} = [16.59091A
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(d)
2.9 2.90909 —0.00909
g =z-%2=z-Hkx = |51 |—]506364 | = 0.03636
7.2 7.21818 —0.01818
52
~ €
f =X

9

=1
= 100 x (—0.00909)? + 50 x 0.036362 + 50 x (~0.01818)
0.09091

Note that k = Ny — Ny = 3— 2 = 1. For a = 0.005, x} o 05 = 7.88. Since f < 7.88,
no more bad data exists.

15.10 Five wattmeters are installed on the four-bus system of Fig. 15.9 to measure
line real power flows, where per unit reactances of the lines are X2 = 0.05,
X153 =0.1, X253 =0.04, Xo4 = 0.0625 and X34 = 0.08. Suppose that the meter
readings show that

z P, 0.34 per unit
22 = Pz = 0.26 per unit
z3 = Po,3 = 0.17 per unit
zs = Poy = —0.24 per unit
zs = P34 = —0.22 per unit

where the variances of the measurement errors in per unit are given by

(a)

(c).

2 _ 2 _ 2_ -2 .2_ 2
o3 =05 =03 =05 = 05 = (0.01)

Apply the dc power-flow method of Sec. 9.7 to this network with bus (D as
reference, and determine the corresponding H matrix. Then, compute the
weighted least-squares estimates of the phase angles of the bus voltages in
radians.

Using the chi-square test for @ = 0.01, identify two bad measurements.
Between the two bad measurements, one is not worse than the other as
far as accuracy is concerned. Explain why. If both bad measurements are
eliminated simultaneously, would it be possible to estimate the states of
the system?

For the two bad measurements identified in (b), determine the relationship
between the two error estimates in terms of the reactances of the corre-
sponding two lines.
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(d) Eliminate one of the bad measurements identified in (), and determine
the weighted least-squares estimates of the phase angles of the bus voltages
using the reduced data set. Do the same for the other bad measurement.
By comparing the two results, identify the buses at which the estimated
phase angles are equal in the two cases.

Solution:

(a) Let z1, 7o and z3 represent the phase angles of the bus voltages at buses (9, @ and
@: respectively. With bus () as the reference (with the phase angle of 0 radians), a de
power flow analysis would yield

2 = gp0-z)+e
1
zg = 6—_—1-(0—-:52)+eg
z3 = ! (z1—xz9) +¢
3= opa '\ 2 3
24 = ! (1 —x3)+ e
4 7 00625 T YT
z5 = ! (z2 —z3) +e
5 = o8 \® 3 5
from which matrix H is
-20 0 0
0 -10 0
H/E 25 -25 0
16 0 -16

0 125  -125

The inverse of the gain matrix is

- 0.20499 0.18005 0.19554
G™! = (HTWH) " = | 0.18005 0.27980 0.21786 | x 10~°
0.19554 0.21786 0.44657

where
10000 0 0 0 0
0 10000 0 0 0
W = 0 0 10000 0 0
0 0 0 10000 0
0 0 0 0 16000

The estimates of the phase angles (in radians) of the voltages at buses @, @ and @
are determined from

0.34
Z 0.26 —-0.01750
[ﬁz } = G HTWz = G 'HTW 017 | = | —0.02401
Z3 -0.24 —~0.00398

~0.22
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0.34 0.34996 —0.00996
0.26 0.24009 0.01991
g =z-%2=z-H% = 017 | = | 0.16278 | = 0.00722
—-0.24 —0.21328 —0.02372
—-0.22 —0.25036 0.03036
. 5. &2
-3

7

.

1

= 10000 x [(—0.00996)2 +0.019912 + 0.00722% + (—0.02372)% + 0.03036?]
= 20.31951
Note that k = Nm — Ny, = 5-3 =2 For a = 0.01, x3 g0, = 9.21. Since f > 9.21,

there exists at least one bad measurement. To find the bad measurement, the diagonal
elements of R’ are computed:

R’ = (I-HG'HTR™)R

0.18005 X X X X
x 0.72020 X X x
= x x 0.22073 x X x 1074
X x x 0.33317 X
X x x X 0.54586

The standardized errors are calculated from

& _ 000996 ..
VR, J/0.18005 x 101

& _ 0.01991 — 2300
VR, V/0.72020 x 102

B = 0-00722 =  1.53608
VFaa V/0.22073 x 101

: —0.0237

Y = 0028 410036
VR4 v0.33317 x 104

& 0.03036 — 10036

Rt /054586 x 102

Note that the standardized errors for the 4** and 5** measurements are equally bad.
This can be expected since both measurements z, and z5 are equally affected by the
voltage phase angle at bus @. Note that the standardized errors for the first and second
measurements are also equal. If both z4 and zs are discarded, bus @ will virtually be
disconnected from the system, making state estimation impossible. The elimination of
both z; and zs is also equivalent to deleting the 4% and 5t rows from H. It is easy to
check that the resulting gain matrix cannot be inverted.

From (b) above, we have

S

€4 = 24— 24 = —0.02372
0.03036

€s = 25-—55

]
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(d)

Note that in the equations relating z to z, the absolute magnitude of the coefficients of
T3 in the z4 and 25 equations are 1/0.0625 and 1 /0.08, respectively, as can be seen in H.
This means that z4 and z; are sensitive to changes in z3 in the ratio of 0.08:0.0625. Con-
sequently, the error estimates will be inversely proportional to this ratio (0.0625:0.08).
This can be verified by observing that

|éa] _ 0.02372 00625 X5,

lés] — 003036 008 X,

By deleting z4, the reduced matrix H becomes

20 0 0
| 0 —10 0
H=1 o _s 0
0 125 -125

The inverse of the new gain matrix is

0.17731 0.29078 0.29078

. 0.20567 0.17731 0.17731
G = (HTWH) " = x 1076
: 0.17731  0.29078 0.93078

where
10000 0 0 0
0 10000 0 0
W= 0 0 10000 0
0 0 0 10000

The new estimates of the phase angles of the bus voltages, in the absence of z4, are

£ g'g‘é —0.01739
Zy | = GT'HTWz = G 'HTwW | ¢ = | —0.02444
. 0.17

Zq _022 —0.00684

If 25 is deleted instead, the reduced matrix H becomes

-20 0 0

0 -10 0

H = 25 —25 0
16 0 -—-18

In this case, the inverse of the gain matrix is

- 0.20567 0.17731 0.20567
G™' = (HTWH)™ = | 017731 020078 017731 | x 10-5
0.20567 0.17731 0.59630

In this case, the new estimates of the phase angles of the bus voltages are

£ g'gé ~0.01730
Z; | = GT'HTWz = G- 'HTW : = | —0.02444
- 0.17

£3 —0.94 —0.00239
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From the above two results, the phase angles are equal for the two cases at buses D), O
and @), respectively. This could be expected because the state estimation procedure,
in the absence of either z4 or zs5, will minimize f with respect to the line measure-
ments connecting buses @), @ and (. Note that the phase angle at bus @ becomes a
dependent state variable if no measurement is made on either line @—@ or line @-@.

15.11 In the four-bus system of Prob. 15.10, suppose that the variance of the mea-
surement error for zs is (0.05)2 and that all the other data remain the same.
Qualitatively describe how the newly estimated values z4 and zs of the mea-
surements will differ from those obtained in Prob. 15.10. Verify your answer
by recalculating the weighted least-squares estimates of the phase angles (in
radians) of the bus voltages and the corresponding 3.

Salution:

Since o = 0.05% > o2 = 0.01%, Z3 will be determined such that the corresponding 24 is much
closer to the measurement z4 than 2z is to z5. The H matrix is the same as that found in

Prob. 15.10.
iy . -20 0 0
0 10 0
H = 25 =25 0
1 16 0 -16
b 0 125 -125

However, W is different and is given by

10000 0 0 0 0
0 10000 0 0 0
W = 0 0 10000 0 0
0 0 0 10000 0
0 0 0 0 400

The inverse of the gain matrix is

G™! = (HTWH) ' = | 0.17750 0.29000 0.18018

0.20563 0.17750 0.20496
x 106
0.20496 0.18018 0.58568

The estimates of the phase angles of the voltages at buses (@, @ and @) are determined from

0.34
| 0.26 —0.01740
{52} = G'HTWz = G'HTW | 017 | = | -0.02441
I -0.24 -0.00250
—-0.22
The estimated values of z;’s are calculated from
0.34795
0.24409
Z = Hx = 0.17529
-(.23832

—0.27383
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For the fourth and fifth measurements,

€y = z4—324 = —0.24-(-0.23832) = —-0.00168
és = z3—125 = —0.22-(-027383) = 0.05383

Note that the weighted least squares estimation procedure regards z4 much more accurately
than zs.

15.12 Suppose that a line of impedance j0.025 per unit is added between buses (D
and @ in the network of Fig. 15.9, and that a wattmeter is installed on this line
at bus @). The variance of the measurement error for this added wattmeter is
assumed to be the same as that of the others. The meter readings now show

z1 = P = 0.32 per unit
zo = P13 = 0.24 per unit

za = P35 = 0.16 per unit
z4 = Py = —0.29 per unit
zs = P34 = —0.27 per unit

ze = P4 = 0.05 per unit

(a) Find the H matrix that describes the dc power flow with bus () as reference,
and compute the weighted least-squares estimates of the phase angles of
the bus voltages in radians.

(b) Using the chi-square test for & = 0.01, eliminate any bad data and recom-
pute the weighted least-squares estimates of the phase angles of the bus
voltages. Check your result again using the chi-square test for a = 0.01.

Solution:
(a) Let z,, 2 and z3 denote the phase angles of the voltages at. buses @), @ and @,

respectively. With the phase angle of the voltage at bus () specified to be 0, dc power
flow analysis provides

1

zy = m(0—11)+e1
1

22 = 0—_1(0"32)'1-62
1

23 = m($1—22)+e3

% = ——(z )

4 = Qo6 Tt T T e

25 = —1——(

5 = 508 2 z3) +es5
1

z6 = m(0—13)+€6

e
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from which matrix H is

—20 0 0

0 —-10 0

95 925 0

H=1 1 0 —16
0 125 —125
o0 0 -4 |

The inverse of the gain matrix is

) 0.12988 0.09637 0.02401
G™' = (HTWH) " = | 009637 0.18657 0.02675 | x 10~°
: 0.02401 0.02675 0.05483

where _ -
10000 0 0 0 0 0
0 10000 0 0 0 0
W = 0 0 10000 0 0 0
- 0 0 0 10000 0 0
0 0 0 0 10000 0
| 0 0 0 0 0 10000 |

The estimates of the phase angles (in radians) of the voltages at buses @, @ and @
are determined from

0.32
i o2 ~0.01712
i | = GT'HTWz = G'HTW : = | —0.02341
; ~0.29 —0.00101
3 -0.27 '
0.05 |
(d)
0.32 0.34240 -0.02240
0.24 0.23412 0.00588
s = 2-3 = z_H = 016 | | 015732 | _ 0.00268
¢e=z-z=1z = | —0.29 -0.25781 | — | —0.03219
-0.27 -0.28007 0.01007
0.05 0.04027 0.00973
6 22
P &
f=233
=1 J
= 10000 x [(-0.02240)2 +0.005882 + 0.002682 + (—0.03219)* + 0.010072 +0.009732]
= 17.7568

Note that k = N = N; = 6 —3 = 3. For a = 0.01, X3 001-1135 Since f > 11.35,
there exists at least one bad measurement. To identify the bad measurement, the
diagonal elements of matrix R’ are computed from

R = (I-HG'HTR )R
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[ 0.48048 x X X X X i
X 0.81344 X X X X
X X 0.22684 X X X —4
= x x x  0.65006  x x x 10
X % X x 0.70641 X
i X X X X X 0.12277 i

The standardized error-estimates are calculated from

€1 - —0.02240 — 33106
VR v/0.48048 x 10—4
€ _ 0.00588 — 065148
VR, V0.81344 x 104
és3 _ 0.22684 = 056377
VvV R3a v/0.22684 x 10~4
é4 _ —0.03219 — _3.99261
R,, v/0.65006 x 10~
és - 0.01007 = 119820
VR%s V070641 x 102
€g _ 0.00973 = 277670
VR v0.12277 x 104
from which z4 is identified as the bad measurement. After deleting 24, the reduced H
matrix becomes
-20 0 0
0 -10 0
H = 25 -25 0
s 0 125 -125
0 0 —40

The new inverse gain matrix is

_ . 0.17402 0.12540 0.01116
G™! = (HTWH) " = | 012540 0.20566 0.01830 | x 10~°
001116 0.01830 0.05857

where W is now a 5 x 5 matrix which is obtained by deleting the 4** row and 4** column

from the W matrix specified in (a) above. The new estimates of the phase angles of
the bus voltages are determined as

0.32
I 0.24 —0.01628
3 | = G'HTWz = G'HTW | 016 | = | -0.02286
I3 -0.27 -0.00125
0.05
Conducting a Chi-square test,
0.32 0.32562 -0.00562
0.24 0.22861 0.01139
é =2z—-2 =2z—-Hk%x = 0.16 | — 0.16450 = —0.00450
—-0.27 —0.27012 0.00012
0.05 0.05004 —0.00004




297

LD
SN

f=227

j=17
= 10000 x [(—0.00562)2 +0.01139? + (—0.00450)? + 0.000122 + (-0.00004)2]
~ 1.81584

Note that k = N, — Ny =5 —3=2. For a =0.01, X3 g0, = 9.21. Since f < 1.81584,
we conclude that no more bad measurement exists.

)
WL )|

15.13 In the four-bus system described in Prob. 15.12, suppose that the wattmeter on
line D-@ is out of order and that the readings of the remaining five wattmeters
are the same as those specified in Prob. 15.12.

(a) Apply the dc power flow analysis with bus D as reference, and determine
the H matrix. Then, compute the weighted least-squares estimates of the
phase angles of the bus voltages in radians.

(b) Using the chi-square test for a = 0.01, identify two bad measurements.
Eliminate one of them and compute the weighted least-squares estimates of
the bus voltage phase angles. Restore the eliminated bad measurement and
remove the second one before recomputing the estimates of the bus voltage
phase angles. Compare the two sets of results, and identify the buses at the
estimated angles are equal in the two cases. Does the presence of line (D—
@ (but with no line measurement) affect the identification of those buses?
Compare the identified buses with those identified in Prob. 15.10(d).

Solution:

(a) Let z;, 7o and z3 denote the phase angles of the voltages at buses @, @ and @,
respectively. With the phase angle at bus (D equal to 0, dc power flow equations are
determined to be the same as those of Prob. 15.10(a), and the corresponding H matrix

is given by
-20 0 0
0 -10 0
H = 25 -25 0
16 0 -16

0 125 -125
The inverse of the gain matrix is

0.19554 0.21786 0.44657

The estimates of the phase angles (in radians) of the voltages at buses @, @ and @
are determined from

» 0.20499 0.18005 0.19554
G™! = (HTWH) " = | 0.18005 0.27980 0.21786 | x 10~°

0.32
£y 0.24 —0.01636
[52 } = G'HTWz = G'HTW | 016 | = | —0.02257
Z3 -0.29 0.00073-

-0.27
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{b) Conducting a Chi-square test,

0.32 0.32718 —0.00718

0.24 0.22565 0.01435

é=z-2=z-Ht =| 016 |-| 015514.| = 0.00486

-0.29 —0.27344 ~0.01656

—-0.27 —0.29120 0.02120
5 22
P &
f=233
j=1 J

= 10000 x [(-0.00713)2 +0.01435? + 0.004862 + (—0.01656)° + 0.021202]

= 10.0467

Note that k= N, = N; =5 -3 = 2. For @ =001, x% ,; = 9.21. Since f > 9.21, at
least one bad measurement exists. To find the bad measurement, the diagonal elements
of the matrix R’ are computed from

R’ = (I-HG'H'RY)R

0.18005 X X X x

X 0.72020 X X x

= X x 0.22073 X X x 1074
X x x 0.33317 x
X x x X 0.54586
The standardized error-estimates are calculated from

é1 _ -0.00718 = _1.69141
vV Ri; v0.18005 x 104

ég _ 0.01435 = 1.69141
\/R.'n v/0.72020 x 104

& _ 000486 _ _ 1o337s
VRi3a v0.22073 x 104

és _ —0.01656 = —2.86900
\/RfM +/0.33317 x 104

és _ 0.02120 2 86900

VRss 054586 x 102

The fourth and fifth measurements are found to be equally bad. These two measure-
ments are discarded respectively in the following two cases.

Case A: z is deleted. The reduced H matrix becomes

-20 0 0

0 -10 0

H = 25 =25 0
0 125 -125

The new inverse of the gain matrix is

- 0.20567 0.17731 0.17731
G™' = (HTWH) = | 017731 0.20078 0.20078 | x 10~
0.17731 0.29078 0.93078

e
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The new estimates of the phase angles of the bus voltages are

% ggi —-0.01628
£ | = GT'HTWz = G 'HTW : = | —0.02287
; 0.16

i3 007 ~0.00127

Case B: z5 is deleted. The reduced H matrix becomes

20 0 0
0 -10 0
H=1 2 _25 o
16 0 —16

The new inverse of the gain matrix is

» 0.20567 0.17731 0.20567
G-! = (HTWH) = | 017731 0.29078 0.17731 x 107°

0.20567 0.17731 0.59630

The new estimates of the phase angles of the bus voltages are

. 8'22 —0.01628
i, | = GT'HTWz = G 'HTW : = | —0.02287
X . 0.16

£ —0.99 0.00184

From the above results, the phase angles are equal for the two cases at buses 0), @ and
@), respectively. The presence of line (@-@ does not change these identified buses as
long as its measurement is not accounted for in state estimation. Note that the phase
angles are found to be equal at buses D, @ and @ in Prob. 15.10(d). Note that further
calculation shows that the weighted sum-of-squares of the errors will be the same in
Cases A and B above. :

15.14 Three voltmeters and four wattmeters are installed on the three-bus system of
Fig. 15.10, where per-unit reactances of the lines are X;o = 0.1, X;3 = 0.08
and X,3 = 0.05. The per unit values of the three voltmeter measurements are
21 = |Vi| = 1.01, 22 = |Vo| = 1.02 and z3 = |V3| = 0.98. The readings of the
two wattmeters measuring MW generation at buses @ and @ are z4 = 0.48 per
unit and zs = 0.33 per unit, respectively. The measurement of the wattmeter
on line M-@® at bus @ shows z¢ = 0.41 per unit, and that of the wattmeter on
line @-@ at bus @ is 27 = 0.38 per unit. The variances of the measurement
errors are given in per unit as

(a) Use bus () as reference to find expressions for the elements of the matrix

k . :
) and those of the measurement errors egk) in terms of state variables,

as done in Example 15.5.
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(b) Using the initial value of 1.0,£0° per unit for all bus voltages, find the values
of the state variables that will be obtained at the end of the first iteration

of the weighted least-squares state estimation process.

Solution:

(a) Five state variables are defined as follows:

Iy 52
I 53
x=[z3| = | W
T4 [Va|
zs Vsl

The expressions of the measurement errors are

€] = Zl“hl = 21—-|V1| = 2Z1—I3
es = 290—~hy = z -~V = z20—z4
e3 = 23—hy = zn—-|W3| = z3~z5
[Vi||Val . ViV
eq = 24—h4 = ZzZ4- —]ngQTISIn(él—‘SZ)-*-_’ I2”3?l sin
L 1
(TaTy . TaTs |
Rl sxn(O—-zﬂ—!—ﬁsm(O—xﬂ]
HAVAs VallV-
es = Zs—-hs = 23— _—Ilgjzflﬂn(az—&l)-*'—_l l;lglgrl
= 2324 sin(z; ~ 0) + 2455 sin(zy — )]
71701 1 0.05 1T
VA% 1
g = ZG—hs = 25— L-I—%-I%Sin(&—&;;)
. 1 -
_ _ Z3Ts
= %~ |98 0 I"')]
v -
ey = zr—hy = 27— ‘IQlesrlsm(csz 83)
T4Zs i
= 27 - E(TS—SIH(.’L] .‘EQ)]

0 0 1 0
0 0 0 1
0 0 0 0
Hx = | 28 2A 28R 3P

@
Dy
[

(61 — 63)

sin(62 - 53)
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0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

|V2 | sin(6] —é2)
H . —iV1]iVa! cos(é, =42) —1V11iVs| cos(é) —63) 21 2] V1] sin(6, —47) [Vilsin(6;, —&3)
X = 1212} 1213l +¥ ""“‘SI“ ) 121 2i iZ1 3
1
[V2!1V] 1 con(ép—61) ) 1Vilain(63—61) i
( e i ) —|V5 |1 Va] cos(82—63) [Va|sin{62—61) < LA ) |Valsin(6;—63)

121 12!
_1¥3i1Vaicos(8p=$31) 1223} [Z1 2] L 1Y3lain(ég=63) {Z23]
E 223l ! i<23i
4 0 =111 V3] cos(81 —43) [ V3] sin(é, —é3) 0 [Vilsin(6) —63)
b iZ13l (2131 [Z13]
A' IVQHV3|COS(62—63) —IV2“V3|COS(62—63) 0 1V3|sin(67—63) 5V2|Sin(62—63)
; L 122 3] [Z23l {Z2 3] 1Z231
Q 0 1 0 0
0 0 0 1 0
0 (1] 0 0 1
— 10 _ 10z4 sin{—z;) . .
~10z3z4 cos(—z1) —12.5z3zy cos(—z32) +12.5z5 sin(—z2) 10z3 sin(—z1) 12.5z3 sin(—z2)
10z3z4 cos(zy) : . 10z, sin(z1) .
(‘-"2014-"5 cos(z1~7z) —20z425 cos(z1~22) 10z sin(z1) +20zs sin(z; —z5) ) 20Tssin(z1—z2)
0 —12.5z3z5 cos(—z3) 12.5z4 sin(~z3) 0 12.5z3 sin(—z3)
20z4zs cos(z1 —x2) —20z 425 cos(z) —x2) 0 20zs sin(xy—z2) 20z, sin(z1 —z2)

- o

(b) Using flat-start values,




Note that

0T @]
{Hgg R-! Hx]

0.3512 x 10~5
0.2762 x 10~%
—0.3843 x 10~10
0.3297 x 10~10
0.3553 x 10~18

e = z—nl® = 038-0

- 1
702 ’1‘
X 50
x X
x X
X X
X x
X X
=

Using R™! and HYY obtained above,

0.2762 x 105
0.4420 x 105
—0.5400 x 1010
—0.2318 x 1010
—0.1748 x 10~10

x x x
X % X
1
0.022 ’f X
X gosr X
1
x X  gos?
x X x
x X X

—0.3843 x 10~1°
—0.5400 x 10—10
0.4000 x 10—3
—0.3382 x 10~16
—0.5217 x 10~

0.38
x X ]
x X
X x
x x
X x
1
0,057 ’f
X gosT J

0.3297 x 10—10
—0.2318 x 10~10
—~0.3382 x 10~16

0.4000 x 10~3
—0.2413 x 10722

0.3553 x 10~18
—0.1748 x 1010
0.5217 x 10—23
—0.2413 x 1022
0.4000 x 103

Finally, we have

p- ego) - ‘
AT [0 £
(1 (0) (0) :
%2 2 T “l T €
zM = 20 | + (Hgf) R‘1H§2’) H§3) R™! e‘(}o) ’
2 RO o
xgx) i IgO) egO)
0 i
| ]
[0 -0.01014 —0.01014 radian
0 —0.03074 —0.03074 radian ;
= 1|+ 0.01000 | = 1.01 per unit |

1 0.02000 1.02 per unit

1 -0.02000 0.98 per unit

15.15 Application of the weighted least-squares state estimation to the three-bus sys-
tem with all the measurements described in Prob. 15.14 yields the following
estimates of the states

Vil = 1.0109 per unit
Vol = 1.0187 per unit 6, = —0.0101 radians
. |Va| = 0.9804 per unit 63 = —0.0308 radians

The diagonal elements in the covariance matrix R’ are 0.8637 x 10~¢,

0.1882 x 1075, 0.2189 x 1078, 0.7591 x 10~3, 0.8786 x 10~3, 0.1812 x 10~2 and
0.1532 x 102, Find the estimates of the measurement errors é;, and the corre-
sponding standardized errors.

RR————————




303

Solution:
Refer to the solution of Prob. 15.14 for expressions for h(z). The estimates of the measurement
errors are

6, = z1—hi(z) = zi—|Vil = 1.01-1.0109 = —0.0009

€y = z9g—ho(z) = z—|Vo| = 1.02- 1.0187 = 0.0013

é3 = 23— ha(z) = z3—|V3| = 098~ 0.9804 = -0.0004

64 = 24— he(z) = 048-[10x1.0109 x 1.0187 x sin(0.0101)
+ 12.5 x'1.0109 x 0.9804 x sin(0.0308)]
= 048 -0.1040 —0.3815 = -0.0055
& = z5—hs(z) = 033—[10x 1.0187 x 1.0109 x sin(—0.0101)
+ 20 x 1.0187 x 0.9804 x sin(—0.0101 + 0.0308)]
= 0.33+0.1040 —0.4134 = 0.0206
6 = 25— he(z) = 041 —[12.5x 1.0109 x 0.9804 x sin(0.0308)]
0.41 —0.3815 = 0.0285 _
0.38 — [20 x 1.0187 x 0.9804 x sin(—0.0101 + 0.0308))
0.38 -0.4134 = -—-0.0334

i

er = 27 —h-r(.’t)

The standardized errors become

& _ 00009  _ _pgess
N J0.8637 x 10-5

g _ 0008 g4
VRS, /01882 x 10-3

B = —00004 _ _ _o.8549
VRis /0.2189 x 10-%
A = —00055 __ _ _g.1006
VR /0.7591 x 10-3

& _ 0.0206 _ oseso
VRs J0.8786 x 10-2

& 0028  _ o660
VRie J0.1812 x 10-2

& _ 00334 _ _oas
Voo V0.1532 x 10-2

15.16 Solve Prob. 15.14 when the two wattmeters installed on lines O-@ and @-Q
are replaced with two varmeters and their readings are 0.08 and 0.24 per unit,
respectively.
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Solution:
{a) Five state variables are defined as follows:
z; &y
9 53
x=|[z3 | = | |V
T4 |V2|
Zs [Val
The expressions of the measurement errors are -
er = z1—~h; = Vil = 21—z
es = zp—hy 20 —|Va|l = z3 — x4
e3 = 23— ha 23— W3] = z3 —z5
V; VillVa| .
€4 = zZ4 — h4 = 24 - l:l lIZ” ‘|2| sin (51 - 5 ) 112” rl 51n(51 bt 63)]
T3Ty4 .
= -— 00—
z4 [ 01 sin(0 — x; )+ 008 sm(O 1:2)]
[ValVif [Va||Val .
= —he = - b9 — 61 6
es zs 5 z5 1Z1a] —5— sin( )+ —5— |Z 3| sin(6y — 6a)
= z 234 sm(:z: 0)+ sxn( )]
- 571 ! oos 1T
T IV1HV3|
_ (-'53) _ T3Ts
= %7508 " 0gs °=0-=)
[[Va? |V2HV.°.|
= z7~hs = - by =6
er = z7—hy 2 Zosl ~ TZoal cos(6y — 83)
= z —rfﬁﬁ_ﬁx_scm(x '-I)
"7 1005 " 005 1=
The jacobian matrix Hx is now written as sf
[ o 0 1 0 0 ]
0 0 0 1 0
0 0 0 0 1
2P, 8 P, 3 P 3 P 3 P
Hx =\ 58 S8 &% & % :
a P, 3P, 3P, 3P, 3P :
b2 ?6-31 alvll EVQ ojVvs F
3Q1s & 8Q E) )
e B BT IR SR
a3 a 1 3 2 a 3 !
L T S S T 5w i
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0

1

0
V1] sin(8; —é2)
Zi12

1V} ein{és~61)
v 126| R
+! loin(8r—84)
223
0

(el

Vol _ [Va]cos(é2—63)

0

0

1

Vi ! Siﬂ(él -—53)
121 3i

IV, !sin(62—83)
iZ23i

—1V1] cos(é; —63)

1213l

—1V,! cos(d2—581)

0 0 1
0 0 0
0 0 0
| Vo | sin(éy —6n)
—Vi|Valcos(§1 =82)  =iViilVsl cos(é,—é3) =
[Z12] 121 31 +|V;Iellni63]]—6=)
Wz“"}\' .::»e;‘s-,—é;) —‘VgHVgicos(ég—-63) |Valsin(6p—~8y)
1V 11Vy i con(8n=63) 122 3] 12121
- 147231
0 ~1Wi}|Valsin(61—=83)  21Vil _ |Vajcos(é:1—6s)
121 3] Z13 iZ1 3]
|V2|IVaisin(§2—63) =1V, V3lsin(é2 —83) 0 94
L 1Z23] 1Z23]
0 0 1
0 0 0
0 0 0

—~10z3z4 cOs(~21)

1034 cos{z;)
+20z4xs cos(z)—z2)

0

L 20z4xs sin(:c] —::2)

—12.5z3z5 cos(—z2)
) —20z4zs cos(z;—T2)
—12.5z3z sin(—x2)

—=20z4zs sin(z; —z2)

(b) Using flat-start values,

0 0

0 0

0 0
HY = | =10 -125

30 -20

0 0

0 o

6(10) = 21 - h(lo) =
Cgo) 29 - th) =
€O = - h® =
e;(;O) Z4 — hgo) =
Cgo) = 25— h.éo) =
eéo) = 2zg~ héO) —

10.‘:4 Sin(—:tx)
+12.5z sin(—z2)
10z4 sin(z1)

25z3—12.5z5 cos(—x2)

0
1 0 0 1
0 1 0
0 0 1
0 0 0
0 0 0
125 0 -1235
0 20 -20
101 -10 = 0.01
102-10 = 0.02
098 -10 = -0.02
033—-0 = 0.33
008-0 0.08

Za3

{Z23]

0

10z 3 sin{—z1)

10z4 sin(z;)
+20zs sin(z1 —z2)
0

40z 4—20zs cos(z1 ~22)

1232 3l

12.5z3 sin{~z2)

20z, sin(z) —z2)

~12.5z3 cos(—zz)

—20z4 cos(zy —x32)
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Note that

L =
1
[ ohe
X
X
X
x
X
R

z-h" = 024-0 = 024
X X x X x x ]
1
T 03T >1( x X x x
x XL X X X X
x X 0-013, X X x
X X X 0037 (;5 x X
; 1
X X x X 5,057 ’1‘
x X x x X  5osr |

Using R~! and HY obtained above,

T o]

0.4206 x 10~5
0.3592 x 10-5
-0.4194 x 10~1!
-0.2214 x 10~ 11
—0.2715 x 10~ 11

Finally, we have

240
(1)
2

(1) -

x
T3
e
x

4
(1)
]

0.3592 x 10~5
0.7561 x 10~3
—0.4035 x 1010
—0.3918 x 10~19
~0.3905 x 10~10

20
20
20
20

RO

- OO

-0.4194 x 10711  -0.2214 x 10~} —0.2715 x 10~
—0.4035 x 10~19 —0.3918 x 10~ —0.3905 x 10~10
0.1409 x 1073 0.1285 x 103 0.1305 x 10-3
0.1285 x 10~3 0.1378 x 10~3 0.1337 x 1073
0.1305 x 103 0.1337 x 10~3 0.1358 x 1073

- e(lo) -
N
_ L0
N (H@TR-IH@) ngg)TR-l e§°’
0
i
ey
—0.00952 —0.00952 radian
-0.03078 —0.03078 radian
+ 0.00371 = 1.00371 per unit
0.00923 1.00923 per unit
-0.00294 0.99706 per unit

15.17 Suppose that real and reactive power flows are measured at both ends of each
of the five lines in the four-bus system of Fig. 15.9 using ten wattmeters and ten
varmeters. The voltage magnitude is measured at bus () only, and bus injected
powers are not measured at all.

(a) Determine the structure of Hy by writing the partial derivative form a
its non-zero elements, as shown in Example 15.8. Assume that line flow
‘measurements are ordered in the following sequence: O-@, O-Q), @-Q),
@-® and @-@ (and the same sequence also in reverse directions).

(b) Suppose that the elements of the Yy of the network is given by

Y5 = Gy+3B;; = |Yyl 804
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Write out

P21 and Qzl in

/
1

-@ is Bj;-

5]
A=
s
o
Q
L
Q
g
(o}
[«B]
Q
[72]
=3
7]
b
=
)
b
«
Nl
(9
)
=2
Q
=
3]
S
)
2
o]
<
+—
g~
=
&}

-
ul
[72]
(O]
=
2.
b
]

=

2

-
=
[72]
a
S

B
(&
&

&
L}
o
[«3]

g

K=
S

=

o
=
L0
8

d

=3

Q
=

o
4

wn
Gy

e}

[42]

g

| ]

[«B]
ey

)
=
o
-
—
Y
R

he measured quantities

given in Example 15.8, for the

of the matrix Hy corresponding to measure-

f state variables.

e out the expressions, similar to those

zero elements in the rows
ments P, and @2, in terms O

non-

Solution:

(a)

0

8 Pag

Abs

8 Piz

363

3 P3s

083

d P;
33
3 P12

862

3P

362

P2

862

ial

0

Qa3
\

43

Vil

(b)

Py = —|V2|?Ga1+ [VallVillYa1|cos(f2: + 6, — 62)

1> — |Va||Val| Y21 sin(B21 + 61 — ba)

2
2

B

|Va|?Ba1 - |Val? (

Q21




308

o P )
2L = Vol Vi[Yaulsin(6a, — &)

386,

apP

gl = [VallYaslcos(fri = &)

P

S = "AValGai+ WillYaicos(yy — 6o)

15]

911 _ 1y ||WA[[Y2 1| cos(B21 — &)

38

a )

22— WuiYaslsiner: — )

a 7 . -

Qs = 2|Va|Ba; = {Va|By, — [Vi||Ya1sin(f2; — 62)
3|Va|
where 6, 2 0

15.18 The method of Example 15.8 based on measurements of only line flows (plus a
voltage measurement at one bus) is applied to the three-bus system of Fig. 15.10
using three wattmeters and three varmeters. The per unit values of the mea-
surements are

z1= |Vl =10 25 = @12 = —0.101
22=P12 = 0.097 25=Q13i 0.048
23=P3 =038 z:=Q.3= 0.276
24 = P23 = 0.427

where the variances of all the measurements are 0.02%. The per-unit reactances
of the lines are as specified in Prob. 15.14. Using bus () as reference and flat-
start values, find the values of the state variables that will be obtained at the
end of the first iteration of the weighted least-squares state estimation.

Solution:

The measurement errors are

ey = z1—h; = z —|V]
Wi ||Vs

e2 = za—hy = 20-Py = Zz—Lﬂl—-zl-Sin(&-%)
{Z12]
V|| V-

e3 = z3—hy = z3-P;3 = 23-'1—”3-|-Sin(51—53)
|Z1a]
WL |IV-

€4 = z4—hyg = 2z4—Py3 = ZA'J'MSin(52—53)
[Z23]

[Wi2 [V |Va] ]
= — h = _ - _— | —_———— _
es 25 — hs z5 — Q12 z5 73] Z0al cos(6, 52)‘

EARIANL ]

eg = 26— he = 26—Q13 = 2§ — |=—=— ~ ———cos(6; ~ &
2T 2T g )
(Va2 |Vo]iVa) ]

er = 27 —hy = 21— Qg3 = 27 - — cos(f; — &
" Zasl T 12aa) 28
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Using the flat-start values, the initial measurement errors become

e = 1.0-10 =0
egf’) = 0097 -0 = 0.097
e = 0383-0 = 0383
e = 0427-0 = 0427
(0) M1 1
65 = —0101 -_ —i- - (—)-— —0.101
1 1
© _ ——— ] =
N ] 0.048
o - 76—-——1———1— = 027
e, 0.2 005 o0 276
The jacobian matrix Hx is given by
2 63 Vil [Va| [Val
0 0 1 0 0
—| V111 V2l cos(—62) 0. |Vaisin(~87) Viisin(—é2) 0
121 2] {21 2] Z1 2|
0 =W ilVsl cos(=83) [Va| sin(~63) 0 [Vi|sin(—é3)
1Z1 5] |21 3 1Z13]
Hx = VoIVl cos(62=~83)  =IVa|lVacos(62—83) [Va| sin(82—-863) |V2isin(82 —63)
X — 312234 = : {Z2al 0 Z2 3] (223 :
—ViilVa]sin(—62) (2|V] _ V3] cos(—é2) —1Va| cos(—82)
3 : ;;121 2 0 llezl 2 |Z1 2] : 1lzle 2 0
4 0 —|WilIVs| sin(~43) (zwn _ iVaICOS(—G:)) 0 —V; | cos(~63)
1Z1 3l [Z713] |Z1 3] {Zy3i
IVallVasin(62—63)  —|VallValsin(62—63) 0 (2|V2| _ |V3|C°5(62—63)) =1V2| cos(b2—63)
L 1Z723i 122 3] [Z23] {223l 12Z23i B
where 8, 2o.
[ 0 0 1 0 0
-10 0 0 0 0
0 -125 O 0 0
HY 20 -20 0 0 0
0 0 10 -10 0
0 0 12.5 0 -125
. 0 0 0 20 -2
Note that
o x X X X X x
X o037 X X X xX X
x X -ﬁ}ﬂ X x X x
R! = X X X 5Em X X x
X X X X Bﬁ' x x
X x X X X  gogE X
L X x X x X X m)l-,p- ]
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Using Hg,?) obtained above, we have

T nl™?
[chO) R—l H§( )J -

0.1884 x 1073 0.1355 x 10~5 0.5578 x 1018 0.5571 x 10-18 0.5583 x 10—18
0.1693 x 10=5 0.4179 x 10~-18 0.4184 x 10718 (0.4176 x 10-18

0.4000 x 10=2  0.4000 x 10-3 0.4000 x 10-3

0.4019 x 10-3  0.4014 x 10-3

0.4017 x 103
Finally, we have
(0) 7
[
0
o [ &0 oo
651 69 T o\ or el
Vi = | o |+ (H;> R‘1H§(’) HY R
V) V2| © e®
Val® [V3]© e
o |
[0 —0.00948 —0.00948 radian
0 ~0.03078 —0.03078 radian
= 1|+ 0.0 = 1.0 per unit
1 0.01003 1.01003 per unit
|1 -0.00379 0.99621 per unit

Chapter 16 Problem Solutions

16.1 A 60-Hz four-pole turbogenerator rated 500 MVA, 22 kV has an inertia con-
stant of H = 7.5 MJ /MVA. Find (a) the kinetic energy stored in the rotor
at synchronous speed and (6) the angular acceleration if the electrical power
developed is 400 MW when the input less the rotational losses is 740,000 hp.

Solution:

(a) Kinetic energy = 500 x 7.5 = 3750 MJ
(6) Input power = 740,000 x 746 x 10~% = 539 MW. By Eq. (16.14),

Input power - rotational loss = _\7.5 &6 = \—552—400
putp © 180x60 &2 - mgp
d?é
5 = 437.8 elec. degrees/s?
For a four-pole machine,
d*s 4378 2
P — = 218.9 mech. degrees/s
or 60 x w = 36.5 rpm/s2

360




