EE 5220 - HW#6 T-Line Parameters & Modeling

You may work with one homework partner on this if you wish. Using ATPDraw's Line Constants interface, you will enter the physical design dimensions of a single-circuit and a double-circuit line and obtain the parameters of the line, and use the Verify function to confirm the 60-Hz sequence impedances and line-charging MVA.

As with all of your work with ATP, refer to the 346-page ATPDraw V7.0 Users Manual, this is available in the ATP program group on the remote.mtu.edu server. Many good examples and self-help / self-learning. Discussions on our e-mail group can be referring to appropriate pages of this manual.

For both cases, use the lumped parameter coupled-pi model, assume earth resistivity is 100 Ohmmeters, and create the model for 60-Hz. Check off all possible output requests – this will create a detailed output of all parameter matrices and line parameters in the *.lis file (in H:\atp\results\.

Case 1: See attached example 5.10 from Glover & Sarma 2nd Ed. However, use line data from EPRI case 3H4. https://pages.mtu.edu/~bamork/ee5200/TLin_cfg.pdf If the required line data is not given in the attached table, look it up in mfrs web page (links via Useful Web Links).

Case 2a: Do Prob. 5.37 from Glover & Sarma 2nd Ed. However, use line data from EPRI case 3P3.

Case 2b: Do Prob 5.38 from Glover & Sarma 2nd Ed. Again, use 3P3 line data.

For each case:

- Provide notes on how you handle the conductor parameters and in general how you used Line Constants.
- Copy/paste the parameter input screens from Line Constants. Provide annotations.
- Copy/paste the Verify output for steady-state 60Hz
 - Sequence impedances and line charging MVARs. Explain meaning of each. Elaborate on pos, neg, zero effects for impedance and line charging.
- Copy/paste the Frequency Scan Verify output for 1 Hz -100 kHz. Why are positive sequence and zero sequence different? Can you trust the Pi model at high frequencies?
- Copy/paste the Linecheck output for steady-state 60 Hz. Explore use of selecting output in different units. Explain meaning.
- Provide a printout of the .lis file's Line Constants output. Provide annotations of the meaning of each of the parameter matrices.
- From *.lis printout:
 - Make note of z & y in ohms and S per mile or per meter.
 - Make note of γ , α , β , Z_C , τ .
 - For the single-circuit line, calculate the line's ABCD parameters.

In the next homework, you can begin using the line model to simulate things like Ferranti Rise, traveling waves, line loading effects, and many other performance scenarios.

Table 5.6 Output data for Example 5.10

Series phase impedance matrix Z_P Eq. 5.7.19 Units:Ohms/km $\begin{bmatrix} 0.1181E + 00 + j5.532E - 01 & 0.1009E + 00 + j2.340E - 01 & 0.9813E - 01 + j1.842E - 01 \end{bmatrix}$ 0.1009E + 00 + j2.339E - 01 0.1200E + 00 + j5.500E - 01 0.1009E + 00 + j2.339E - 010.9813E - 01 + j1.842E - 01 0.1009E + 00 + j2.340E - 01 0.1181E + 00 + j5.532E - 01Series sequence impedance matrix Z_s Eq. 5.7.25 Units: Ohms/km 0.3187E + 00 + j9.869E - 01 0.1264E - 00 - j9.112E - 03 -.1421E - 01 - j6.389E - 03-.1421E - 01 - j6.374E - 03 0.1875E - 01 + j3.347E - 01 -.2903E - 01 + j1.814E - 020.1262E - 01 - j9.117E - 03 0.3022E - 01 + j1.607E - 02 0.1875E - 01 + j3.347E - 01Shunt phase admittance matrix $Y_{\rm P}$ Eq. 5.11.16 Units: S/km + j4.311E - 06 - j7.666E - 07 - j2.167E - 07+ j4.439E - 06 - j7.666E - 07-i7.666E - 07| -j2.167E - 07 - j7.666E - 07 + j4.311E - 06Shunt sequence admittance matrix Y_s Eq. 5.11. 19 Units: S/km 0.0000E + 00 + j3.187E - 06 - .1219E - 06 + j7.036E - 08 0.1219E - 06 + j7.036E - 080.1219E - 06 + j7.036E - 08 - .3901E - 13 + j4.937E - 06 - 0.3544E - 06 - j2.046E - 07-.1219E - 06 + j7.036E - 08 - .3544E - 06 - j2.046E - 07 0.3901E - 13 + j4.937E - 06electric field strength (kV/m) Conductor surface electric field strength Eqs. 5.12.1-5.12.5 10 $E_{\rm rmax} = 19.3 \,\rm kV_{\rm rms}/cm$ Ground level Lateral profile of ground-level electric field strength Eq. 5.12.6 5 40 10 20 30 Distance from center of row (m)

203

50

60

HW#6

- **5.31** Rework Problem 5.30 with one neutral wire located 6m directly above the center phase conductor. Compare the series sequence impedance matrix with that of Problem 5.30.
- **5.32** Using the LINE CONSTANTS program, compute the shunt sequence admittance matrix for the line in Problem 5.13. Assume an average line height of 20 m and no neutral wires. Compare the computed positive-sequence shunt admittance with the result calculated in Problem 5.21.
- **5.33** Rework Problem 5.32 with two neutral wires located 7 m above and 8 m to the left and right of the center bundle.
- **5.34** Using the LINE CONSTANTS program, compute the conductor surface electric field strength and the ground-level electric field strength profile for the line in Problem 5.33. Assume a 100 m right-of-way width.
- **5.35** Determine the effect of a 10% decrease as well as a 10% increase in phase spacing on the conductor surface electric field strength and on the ground-level electric field strength profile for the line in Problem 5.34.
- **5.36** Determine the effect of a 10% decrease as well as a 10% increase in the average line height on the conductor surface electric field strength as well as the ground-level electric field strength profile for the line in Problem 5.34.
- **5.37** Using the LINE CONSTANTS program, calculate the equivalent series sequence impedance matrix and the equivalent shunt sequence admittance matrix for the double-circuit, three-phase line shown in Figure 5.34 with phase arrangement I.

5.38 Rework Problem 5.37 for phase arrangement II shown in parentheses in Figure 5.34. Compare the computed results of the two phase arrangements.

		`						Rd	c		(r')	
CONDUCTOR	SIZE AL/STL (KCM)	AREA (SI)	DIAM (IN)	WEIGHT (LB/FT)	RATED STREN (LBS)	L OHMS /MI	C MOHM /MI	R-25C OHMS /MI	R-50C OHMS /MI	CHART #	GMR (FT)	* WT Alum
TURKEY	26.2 6/ 1	.0240	.198	.036	1190	.636	.1423	3.4590	3.9400	1-1023	.0053	67.90
SWAN	41.7 7/ 1	.0383	.250	.067	2360	.608	.1335	2.1540	2.5230	1-670	.0067	58.10
SPARROW	66.4 6/1	.0608	.316	.091	2850	.578	.1284	1.3720	1.6280	1-1023	.0085	67.90
GROUSE	66.4 // 1 80.0 8/ 1	.0653	.325	.107	3640	.579	.1276	1.1200	1.6350	1-1023	.0085	50.40
ROBIN	83.8 6/1	.0767	.355	.115	3550	.564	.1250	1.0890	1.3050	1-938	.0096	67.90
PETREL	101.8 12/ 7	.1266	.461	.254	10400	.540	.1172	.8510	1.0840	1-546	.0117	37.80
MINORCA	105.7 6/ 1	.0967	. 398	.145	4380	.535	.1210	.8010	1.0240	1-936	.0108	37.80
QUAIL	133.2 6/ 1	.1219	.447	.183	5310	.536	.1186	.6860	.8530	1-938	.0121	67.90
LEGHORN	134.6 12/ 7	.1674	.530	.336	13600	.525	.1131	.6460	.8450	1-546	.0132	37.80
PIGEON	167.7 6/ 1	.1538	.502	.231	6620	.510	.1147	.5450	.6900	1-938	.0137	67.90
DOTTEREL	176.9 12/ 7	.2200	.607	.441	17300	.509	.1091	.4930	.6670	1-546	.0151	37.80
DORKING BRAHMA	190.8 12/ /	.2373	.631	.4/6	18/00	.504	.10/9	.4570	.6250	1-546	.0157	28.30
COCHIN	211.3 12/ 7	.2628	.663	.528	28400	.498	.1065	.4130	.5750	1-546	.0165	37.80
PENGUIN	211.6 6/ 1	.1939	.563	.291	8350	.508	.1113	.4340	.5690	1-938	.0152	67.90 86.45
PARTRIDGE	266.8 26/ 7	.2436	.642	.269	11300	.476	.1074	.3466	.3792	1-782	.0217	68.60
OSTRICH	300.0 26/ 7	.2740	.680	.413	12700	.458	.1057	.3070	.3372	1-782	.0229	68.60
MERLIN	336.4 18/ 1	.2/89	.684	.365	8680	.462	.1055	.2767	.3037	1-844	.0222	86.45
ORIOLE	336.4 30/ 7	.3259	.741	.527	17300	.445	.1032	.2719	.2987	1-773	.0255	60.35
CHICKADEE	397.5 18/ 1	.3295	.743	.432	9940	.452	.1031	.2342	.2572	1-844	.0241	86.45
IBIS	397.5 24/ /	.3527	.772	.512	16300	.444	.1018	.2367	.2551	1-669	.0239	68.60
LARK	397.5 30/ 7	.3850	.806	.623	20300	.435	.1007	.2306	.2533	1-773	.0277	60.35
PELICAN	477.0 18/ 1	.3954	.814	.518	11800	.441	.1004	.1957	.2148	1-844	.0264	86.45
HAWK	477.0 26/ 7	.4356	.858	.657	19500	.430	.0988	.1931	.2120	1-782	.0289	68.60
HEN	477.0 30/ 7	.4620	.883	.747	23800	.424	.0980	.1919	.2107	1-773	.0304	60.35
DSPREY	556.5 18/ 1	.4614	.879	.604	13700	.432	.0981	.1679	.1843	1-844	.0284	86.45
DOVE	556.5 26/ 7	.5083	.927	.766	22600	.420	.0965	.1663	.1826	1-782	.0314	68.60
EAGLE	556.5 30/ 7	.5391	.953	.872	27800	.415	.0957	.1651	.1812	1-773	.0327	60.35
SQUAB	605.0 26/ 7	.5526	.955	.780	24300	.418	.0953	.1536	.1679	1-782	.0319	68.60
TÈAL	605.0 30/19	.5835	.994	.940	30000	.410	.0944	.1517	.1665	1-757	.0341	60.90
RINGBIRD	636.0 18/ 1 636.0 24/ 7	.5272	.940	•691 •819	15700	.424	.0960	.1484	.1627	1-844	.1915	86.45
GROSBEAK	636.0 26/ 7	.5809	.990	.875	25200	.412	.0946	.1454	.1596	1-782	.0335	68.60
EGRET	636.0 30/19	.6134	1.019	.988	31500	.406	.0937	.1447	.1589	1-757	.0352	60.90
CROW	715.5 54/ 7	.6340	1.036	.921	26300	.412	.0943	.1304	.1430	1-838	.0349	73.25
STARLING	715.5 26/ 7	.6535	1.051	.985	28400	.405	.0948	.1294	.1420	1-537	.0355	68.60
CUCKOO	715.5 30/19	.6901	1.081	1.111	34600	.399	.0920	.1287	.1412	1-757	.03/3	60.90 73.20
DRAKE	795.0 26/ 7	.7261	1.108	1.094	31500	.399	.0912	.1172	.1284	1-537	.0373	68.60
MALLARD	795.0 30/19	.7668	1.140	1.235	38400	.393	.0904	.1159	.1272	1-757	.0392	60.90
TERN	795.0 36/ 1	.6676	1.040	.805	22100	.411	.0930	.1188	.1302	1-090	.0352	83.70
CONDOR	795.0 54/ 7	.7053	1.093	1.024	28200	.400	.0916	.1174	.1286	1-838	.0370	73.25
RUDDY	8/4.5 54/ / 900.0 45/ 7	.7555	1.146	1.126	31400	.395	.0902	.1073	.11/6	1-838	.0386	73.25 83.70
CANARY	900.0 54/ 7	.7985	1.162	1.159	31900	.393	.0898	.1041	.1140	1-838	.0392	73.25
CARDINAL	954.0 45/ 7	.8011	1.165	1.075	25900	.395	.0897	.0997	.1092	1-955	.0386	83.70
ORTOLAN	1033.5 45/ 7	.8678	1.213	1.165	27700	.390	.0885	.0924	.1011	1-957	.0402	83.70
CURLEW	1033.5 54/ 7	.9169	1.246	1.331	36600	.385	.0877	.0914	.1000	1-838	.0402	73.25
BLUEJAY FINCH	1113.0 45/ /	.9346	1.259	1.255	29800	.386	.08/4	.0851	.0941	1-957	.0415	83.70
BUNTING	1192.5 45/ 7	1.0010	1.302	1.344	32000	.382	.0864	.0809	.0884	1-957	.0429	83.70
GRACKLE	1192.5 54/19	1.0550	1.338	1.533	41900	.376	.0856	.0798	.0873	1-1009	.0451	73.70
PHEASANT	1272.0 43/ /	1.1260	1.345	1.434	43600	.378	.0855	.0751	.0821	1-1009	.0444	73.70
DIPPER	1351.5 45/ 7	1.1350	1.386	1.522	36200	.374	.0846	.0721	.0786	1-957	.0459	83.70
MARTIN BOBOLINK	1351.5 54/19	1.1960	1.424	1.613	46300 38300	.368 .371	.0838	.0710	.0746	1-1009 1-957	.0482 .0470	73.70 83.70
PLOVER	1431.0 54/19	1.2660	1.465	1.840	49100	.365	.0829	.0673	.0735	1-1009	.0494	73.70
NUTHATCH	1510.5 45/ 7	1.2680	1.466	1.702	40100	.367	.0829	.0649	.0707	1-957	·0486	83.70
LAPWING	1590.0 45/ 7	1.3350	1.502	1.792	42200	.364	.0822	.0623	.0678	1-957	.0498	83.70
FALCON	1590.0 54/19	1.4070	1.545	2.044	54500	.358	.0814	.0612	.0667	1-1009	.0523	73.70
GHUKAR BLUERTRD	2156.0 84/19	1.8310	1.602	2.074	60300	.325	.0803	.0560	.0609	1-1020	.0536	81.30
KIWI	2167.0 72/ 7	1.7760	1.737	2.303	49800	.348	.0782	.0482	.0521	1-1053	.0568	89.20
THRASHER	2312.0 76/19	1.9140	1.802	2.526	57300 61700	.342	.0767	.0446	.0482	1-1202	.0595	86.70
JOREE	2010.0 10/19	2.0030	1.000	4.147	31/00		.0100	.0410	.0450	1-1202		00.70