## Topics for Today:

- Startup
- Web page: https://pages.mtu.edu/~bamork/ee5220/
- Book, references, syllabus, more are on web page.
- Software - Matlab. ATP/EMTP [ License - www.emtp.org ] ATP tutorials posted on our course web page
- EE5220-L@mtu.edu (participation = min half letter grade)
- HW\#4 soon posted. Partnered exercise. Due Tues Feb $13^{\text {th }}$.
- ATP Simulation pointers
- Cap Bank Switching (continued)
- Discussion - how to carry out HW\#4
- Parameters
- Setup of this simple system simulation.
- Cap Bank configurations
- Transformer parameters
- Rules of thumb for impedances

ATP Simulation Pointer of the Day:
Always ground one point on your circuit. This avoids the problem of "floating subnetwork." Essentially this is a situation where the admittance matrix that describes the circuit is singular. If the program would attempt to proceed with LU factorization there would be a divide by zero error and the program would crash.

Note: In ATP, there is an undesirable and somewhat random automatic "correction" of this situation, where one node is grounded to fix the situation, but the user may not be aware that this has been done or which node has been grounded. Better: you control the situation by grounding the node that needs to be grounded.

## ATP Simulation Pointer for the day:

Always ground one point on your circuit. This avoids the problem of a " trent euthetrustr." Essentially this is a situation where mine remminice matrix that describes the circuit is singular. If the program would attempt to proceed with LU factertretion there would be a divide by zero error and the program would crash.



$$
\left[\begin{array}{ccc}
y_{a} & -y_{a} & 0 \\
-y_{2} & y_{2}+y_{b} & -y_{b} \\
0 & -y_{b} & y_{k}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
I_{i n j} \\
0 \\
0
\end{array}\right]
$$

$$
0 \approx 10^{-15} \cdot\left(10^{-12}+\infty \approx 10^{12}-10^{15}\right.
$$



$$
\begin{aligned}
& \frac{x}{R}=7 \\
& M U A_{S c}= \\
& Z_{T H}=\sqrt{3} V_{L L}\left(I_{S c}\right) \\
& I_{S C} \\
& Z_{R}
\end{aligned}
$$


"S.C. MVA" j $K_{T H}$
$V_{T H} \sigma_{1} V_{L W} \quad q_{t} I_{S c} \quad$ S.C.MVA $=\sqrt{3} V_{L C} I_{S C}$

$\rho=1 \Omega \pi=$
Strain Bus - Overhead Conductor for bus conductor. Tube/Pipe Bus - AI tube or Channel
Focus on $x / R$ ratio and $L / f+$.


- Some parameters - vital
- not important
- Some effects can be ignored.

Ex:

$$
\begin{aligned}
L & =(.25)\left(100^{\circ}\right)=25 \mu \mathrm{H} \\
X_{L} & =2 \pi f L \Omega \\
& =371 \mathrm{~L} \Omega=9.4 \mathrm{~m} \Omega \mathrm{e} 60 \% \\
& =\frac{78.5 \mathrm{~m} \Omega}{} 500 \mathrm{~Hz} \\
& =\frac{785 \mathrm{~m} \Omega}{5 \mathrm{kHz}}
\end{aligned}
$$

## Typical Spacings and Clearances in a Substation

See up-to-date NESC to verify!

| Voltage Level |  | Min Conductor Spacing |  |  | Min Switch Spacing Ph-Ph |  | Min L-L <br> Phase <br> Clearance | Min No. <br> Bells at <br> Deadend | Min <br> Cable <br> Size | Min <br> Bus <br> Size |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| KV (L-L) | BIL (kV) | Cent-Cent | Ph-Gnd | To Grade | Horngap | V Break | H Break |  |  |  |



See SK. ACP - Per Phase


$$
V_{S}=\frac{\sqrt{2} \times V_{L L, R M S}}{\sqrt{3}}=V_{P}
$$

(CAPE, PSS/E)
$Z_{5}=$ From sic. Study $(x / R=$ ? usE
or assume $570,(x / R)=$ ? Judgement
Bus Sections - Go to Sr. Power Book
$\therefore L=K \log \frac{D}{r^{\prime}} \frac{\mu H}{f t}$

$$
\begin{aligned}
R= & \text { From Tables: } \Omega / f . \\
& R_{\text {Ac }} @ 50^{\circ} \mathrm{C}
\end{aligned}
$$

Cap Bank Values
Equiv L-N Cap of a $\qquad$ AVAR Bank?


Typical Roastings: 100, 200, 400 KVAN

$$
\begin{aligned}
& \text { Low } \mathrm{KV} \rightarrow 24 \mathrm{KV} \\
& \text { Losses : } 0.05 \mathrm{~F} 0,3
\end{aligned}
$$

w/kvar



CB's - Switches
Spreadsheet Cales:
Outrush:
STEP\#2 $V_{P} \frac{\text { ITC }}{\frac{T}{T}} \quad$ FacQ



