EE 5220 - Lecture 14

Topics for Today:

- Course Info:
 - Web page: <u>https://pages.mtu.edu/~bamork/ee5220/index.htm</u>
 - Software Matlab. ATP/EMTP [License <u>www.emtp.org</u>] ATP tutorials posted on our course web page
 - <u>EE5220-L@mtu.edu</u> (participation = min of half letter grade, 5%)
- HW#5 will be posted. Partnered exercise. Due latest Tues Feb 20th 9am.
 - Section 12.4 detailed derivation for capacitor
 - Prob 5.3 first do ATP simulation, then Hand Calculations
 - Prob 5.6
- Term Project proposed topic(s) by end of next week, via short e-mail.
- Circuit Breakers Interruption issues
 - Restrike
 - Reignition
- Cap and Reactor application (term projects similar to Hmwk4 are discouraged)
 - Dist system
 - Autotransformer tertiary
 - HV direct connection
- Transmission Lines development of T-Line equations, traveling wave relays
- Transformers hybrid model, inrush, GIC, ferroresonance

2a (ap Application - LV, on customer side of meter => Penalty for Low P.F. => P.F. Correction

Compensation Shunt - Voltage Support - Power Transfer $P_{1-2} = \frac{V_1 V_2}{X_{12}} \sin(\delta_1 - \delta_2)$ 21% increase (.95->1.05 p.w.V) - Stability

5200 Re

Series Comp (5,-52) ľ -Xc R

3Ь

DISTRIBUTED - PARAMER T-LINES

- "LONG LINES" (>250Km @60HZ)

- FOR LIGHTNING, EVEN VERY SHORT LINES ARE MODELED AS DIST-PARMM.

Making ΔX Very Small, $\int dV = IZ dx$ $\int dI = Vy dx$ Rearranging, $\begin{cases}
\frac{dV}{dx} = \frac{1}{12} \\
\frac{dX}{dx} = \frac{3}{3} \\
\frac{dI}{dx} = \frac{3}{3} \\
\frac{dX}{dx} = \frac{3}$ (\mathbf{i}) (2) Taking derivative of (1),

Substituting into (2) 6 $\frac{d^2 V}{dx^2} = V_{jz}$ This implice gen'l sol'n: V= A, e^{vy=x} + A₂ e^{vy=x} Since I= $\frac{dV}{dx/z}$ I= A, Jeger A, Jeger X at X=0, $Y=V_R$, $I=I_R$ $V(o) = V_R = A_1 + A_2$ I(0)= IR= VIA, - VIA2

Defining $Z_c = \sqrt{E} = Char$ Imp. Propagation Const. 8=√y== $V_{R} = A_{1} + A_{2}$ $I_{R} = \frac{A_{1} - A_{2}}{Z_{c}}$ $A_{r}=(N_{R}+t_{c}I_{R})/2$ $A_1 = V_R - Z_c I_R$

00 Incident voltage Reflected voltage This form is best (VR+ZcIR) = (VR-ZcIR) - 2X for traveling waves V(x)= **Reflected** Current Incident current $I(x) = \left(\frac{V_R + \tilde{t} \cdot I_R}{2\tilde{t}_c}\right) \frac{\eta_x}{e^2} - 1$ VR-LeLR $V_s = V(l) \leftarrow x = l$ $I_s = I(l)$ This form is best for S-S 60 Hz using ABCD VR Cosh (8x) + Zc Ir Sinh (7x) $\frac{1}{2} \frac{A}{Sinh(3x)} + I_R \cosh(3x),$ **T(x)**

In hyperbolic torm, $V_{s} = \frac{I_{s}}{I_{2}} + \frac{I_{r}}{I_{2}} + \frac{$ From EQNS: [VB] = [AB] [VR] [VB] = [CD] [IR] Is] [CD] [IR] IF we match [AB] with TT-Epain [CD] With TT-Epain $Z' = Z \left[\frac{\sinh(\gamma A)}{3A} \right]$

 $Y' = Y' [t_{anh}(\frac{x_2}{2})]$ $\frac{1}{2} = \frac{1}{2} [\frac{t_{anh}(\frac{x_2}{2})}{\frac{\pi x_2}{2}}]$