IEEE Power Engineering Society Summer Meeting Edmonton, July 18-22, 1999

Tutorial: Power System Overvoltages

Low Frequency Transients

Presented by Bruce Mork

Work Done by Slow Transients Task Force IEEE T&D Working Group on Modeling and Analysis of Systems Transients Using Digital Programs

Task Force Objectives

- Identification of Various Phenomena
- Define Modeling & Analysis Guidelines
- Gather Benchmarked Models
- Present Results of Sample Studies
- Publish Summary Papers and Guidelines
- Define Direction for Future Development of Component and System Models

Low-Frequency (Slow) Transients "Phenomena"

- Torsional Issues, Rotating Machines (5-120 Hz) p.3-2
- Transient Shaft Torques (5-50 Hz) p.3-2
- Turbine Blade Vibrations (80-250 Hz) p.3-2
- Fast Bus Transfer (up to 1000 Hz) p.3-3
- Controller Interactions (1-35 Hz) p.3-8
- Harmonic Resonances (60-600 Hz) p.3-10
- Ferroresonance (up to 1000-2000 Hz) p.3-12
- Refer to Tables 1 (p. 3 4) and Table 2 (omitted)

Torsional Oscillations (5-120 Hz)

Starting on p. 3-2 of Report:

- Series Capacitors (SSR)
- HVDC Converters
- Automatic Voltage Regulators (AVR)
- Power System Stabilizers (PSS)
- Static Var Compensators (SVC)

Transient Torsional Torques (5-50 Hz)

Starting on p. 3-2 of Report:

- Faults
- Switching

Turbine Blade Vibrations (90-250 Hz)

- Large Signal Disturbances
- Usually Rely on Manufacturer's FEM Model

Fast Bus Transfer (up to 1000 Hz)

- Typically 10-15 Motors
- Understand Individual Motors
- Model must show aggregate behavior
- Benchmarking is strongly recommended
- Run a statistical study

Controller Interactions (1 - 35 Hz)

- SVCs
- HVDC Converter
- Adjustable Series Capacitors
- AVRs
- PSSs
- Interactions between multiple closed-loop controllers in a system.

Today's Focus: Ferroresonance

Introduction to Ferroresonance

- Single Phase, Three Phase, Nonlinearities

- Modeling

- » The Study Zone
- » Transformer Models
- » Model Parameters
- Case Studies
- Recommendations

Ferroresonance Basics

- A "Resonance" involving a capacitance in series with a saturable inductance L_M.
- Unpredictable due to nonlinearities.
- More likely when little load or damping, and for unbalanced 3-phase excitation
- Examples of capacitances:
 - Series Compensated Lines.
 - Shunt Capacitor Banks.
 - Underground Cable.
 - Systems grounded only via stray capacitance.
 - Grading capacitors on Circuit Breakers.
 - Generator Surge Capacitors.

Some Available Literature:

- Be careful! Some (much?) misinformation exists.
- Identified and named in 1907.
- Series Distribution Capacitors 1930s.
- Rudenberg: Analytical Work in 1940s.
- Hopkinson, Smith: 3-phase systems, 1960-70s.
- Jiles, Frame, Swift: Core Inductances, 70s-80s
- Smith, Stuehm, Mork: Transformer Models.
- Mork, Walling: System Models, 1987-90s.
- Mork, Kieny: Nonlinear Dynamics, 1989-90s.

Subtransmission Capacitor Banks: Ferroresonance

- One Phase of Source is Open
- Series L-C resonance
- Nonlinear Inductance
- Zero Sequence Path

Case 1: VT FERRORESONANCE IN Temporarily Ungrounded 50-kV System

• System Grounding was lost for 3 minutes.

• 72 VTs of same Mfr were destroyed.

•Zero Sequence Load Provided some damping, but not enough.

Case 1: VT FERRORESONANCE IN Temporarily Ungrounded 50-kV System

• Simplified system model is sufficient.

 Zero sequence capacitance

• Line impedance and source impedance were much less than VT core inductance.

- FULL SCALE LABORATORY & FIELD TESTS.
- 5-LEG WOUND CORE, RATED 75-kVA, WINDINGS: 12,470GY/7200 - 480GY/277 (TYPICAL IN 80% OF U.S. SYSTEMS).
- RATED VOLTAGE APPLIED.
- ONE OR TWO PHASES OPEN-CIRCUITED.
- BACKFEED VOLTAGE IN UNENERGIZED PHASES
- CAPACITANCE(S) CONNECTED TO OPEN PHASE(S) TO SIMULATE CABLE.
- VOLTAGE WAVEFORMS ON OPEN PHASE(S) RECORDED AS CAPACITANCE IS VARIED.

• Basic Delta-Wye Transformer Model as Presented in EMTP Rule Book.

•Composed of three single-phase transformers

 Phase-to-phase coupling is not included

5-Legged Wound-Core Transformer Cross Section with Flux Paths/Tubes

EMTP Model, 5-Legged Wound-Core

- RC Integrators
- Core Losses
- Coupling Capacitors
- Winding Resistance
- Ideal Coupling Isolates Core From Winding Connections

CONCLUSIONS

- FERRORESONANT BEHAVIOR IS TYPICAL OF NONLINEAR DYNAMICAL SYSTEMS.
- RESPONSES MAY BE PERIODIC OR CHAOTIC.
- MULTIPLE MODES OF RESPONSE ARE POSSIBLE FOR THE SAME PARAMETERS.
- STEADY STATE RESPONSES CAN BE SENSITIVE TO INITIAL CONDITIONS OR PERTURBATIONS.
- SPONTANEOUS TRANSITIONS FROM ONE MODE TO ANOTHER ARE POSSIBLE.
- WHEN SIMULATING, THERE MAY NOT BE "ONE CORRECT" RESPONSE.

Recommendations

- Beware of lightly-loaded transformers operating in the presence of capacitance.
- Topologically correct transformer models are the key to simulation of ferroresonance.
- Core saturation/loss representations are still weak point of transformer models.
- Nonlinearities make ferroresonance hard to predict or confirm.
- Monitor current literature for new developments in modeling and simulation techniques.

