
Overview of Today’s Topics

• Sparse Matrix Data Structures, Linked-List Storage
• LU Factorization

– Basic Approach: [A][X]=[B] [L][U][X]=[B]
– Crout’s method, row-based example in class

• Introduction to MatLab
– Interactive commands
– SAVE-ing and LOAD-ing .mat files
– Useful functions related to sparse matrices
– Editing and running .m files
– MatLab exercise

Sparse Matrix Data Structures

• Matrices having very few non-zero entries
are termed “sparse.”

• Sparsity = numb. zero entries/matrix size
• Density = numb. nonzero entries/matrix size
• Power system admittance matrices [Y] tend

to be quite sparse.
– Example: 10 000-bus system, avg of 3 lines/bus
– Sparsity is: (108 – 40 000) / 108 = 99,96%

Helpful MatLab Commands

• General
– save, load
– who – lists variables
– clear a, b, ..
– inv(A) – inverts matrix
– zeros, ones
– find
– help xxx to find help

on a specific command
– HTML help desk

• LU, sparse matrices
– issparse, sparse, full
– nnz, nonzeros
– spy – shows topology
– [L,U] = lu(A)
– Reordering: colmd,

symmmd, symrcm,
colperm, randperm,
dmperm

Use of the spy function

0 10 20 30 40 50

0

10

20

30

40

50

nz = 213

57-Bus
IEEE System

Sparsity:
93.44%

Algorithms and Sparse Systems
• Typical situation: Given [Y][V] = [I] where [Y]

and [I] are known, solve for [V]....
• Direct inversion of [Y] will result in a full matrix

[Y]-1

• Therefore, “in situ” factorization methods are
applied directly to [Y].

• [Y] is stored in a linked-list data structure, and
dynamically modified as the factorization
progresses.

• We must understand the data structures, for I/O of
the data and to pass variables between program
modules of C++, Fortran, Pascal, Java, Delpi, etc.

Full Matrix Storage

• Example: 5x5 coefficient matrix

40900
01702
97210
00150
02003 Full storage requirements:

-25 single-precision values
-200 bytes if complex values

Data Types:
-Single precision Real: 4 bytes
-Double precision Real: 8 bytes
-Complex: 8 bytes
-Integer can be 2-byte or 4-byte

Linked Lists – Several Variations
• Data structure uses only column vectors.
• Only the nonzero matrix values are stored.
• Use integer vector of pointers to start of each row.
• Use integer vector of column positions for each

value.
• Use integer vector of links between the nonzero

values of a row.
• Integer values can be unsigned 2-byte integers and

still address 65 536 positions in a vector.
• Switch over to Overhead Projector for example...

Crout’s LU Algorithm

• Algorithm can progress by rows or by columns
• Procedure is straight-forward. Row-method:

– Copy column one
– Normalize Row 1: Divide Row 1 off-diagonal entries

by diagonal row term of Row 1.
– For each element (i,j) where i>1 and j>1, subtract from

it the product of ai1•a1j ie. y(i,j) = y(i,j) - y(i,1)*y(1,j)
– If the resulting submatrix is of order ≥ 2, repeat the

same operations on the submatrix.

LU Factorization Example

• Solve by LU Factorization
• Use in situ method, Crout’s method by row

=

−
10
8
4
8

1124
2142
61233
2442

4

3

2

1

x
x
x
x

A BMatLab Variable
Names

Step 1: LU Factorization

[][]UL⇒

−
1124
2142
61233
2442Perform LU Factorization

on the coefficient matrix:

[]ULO=

−−−
−

−−−

91964
0502
1233

1222
Result:

Perform steps on transparency in class...

How many “fills?”
How many positions
were “eliminated?”

L and U
• There are many possible L & U pairs, i.e.

the factorization is not unique. In this case,
applying the Crout method by row and
splitting apart the result to get [L] and [U]:

[][]

−−

−−−
−

−
=⇒

−−−
−

−−−

1000
0100
1210

1221

91964
0502
0033
0002

91964
0502
1233

1222

UL

A LA UA

Matlab Variable Names

Solving the Intermediate Equations

• [A][x]=[B]
• [LA][UA][x]=[B]

Substituting [z]=[U][x] , solve
• [LA][z]=[B] by forward substitution

After solving for [z] , then solve
• [U][x]=[z] by backward substitution
• No matrix inversion required!

Solve for [z] by forward substitution

=

−−−
−

−

10
8
4
8

91964
0502
0033
0002

4

3

2

1

z
z
z
z

LA B

Solve for [x] by backward substitution

−

=

−−

11.1
00.0
67.2
00.4

1000
0100
1210

1221

4

3

2

1

x
x
x
x

[z]UA

Implications of Sparsity

• What happens to efficiency of LU
factorization as sparsity increases?

• Zeros in rows don’t
have to be normalized!

• A row-column product
of zero does not
change anything!

6004
4200
8040
6002

