
Overview of Today’s Topics

• Sparse Matrix Data Structures, Linked-List Storage
• LU Factorization

– Basic Approach: [A][X]=[B] [L][U][X]=[B]
– Crout’s method, row-based example in class

• Introduction to MatLab
– Interactive commands
– SAVE-ing and LOAD-ing .mat files
– Useful functions related to sparse matrices
– Editing and running .m files
– MatLab exercise



Sparse Matrix Data Structures

• Matrices having very few non-zero entries 
are termed “sparse.”

• Sparsity = numb. zero entries/matrix size
• Density = numb. nonzero entries/matrix size
• Power system admittance matrices [Y] tend 

to be quite sparse. 
– Example: 10 000-bus system, avg of 3 lines/bus
– Sparsity is: (108 – 40 000) / 108 = 99,96%



Helpful MatLab Commands

• General
– save, load
– who – lists variables
– clear a, b, ..
– inv(A) – inverts matrix
– zeros, ones
– find 
– help xxx to find help 

on a specific command
– HTML help desk

• LU, sparse matrices
– issparse, sparse, full
– nnz, nonzeros
– spy – shows topology
– [L,U] = lu(A)
– Reordering: colmd, 

symmmd, symrcm, 
colperm, randperm, 
dmperm



Use of the spy function
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Algorithms and Sparse Systems
• Typical situation: Given [Y][V] = [I] where [Y] 

and [I] are known, solve for [V]....
• Direct inversion of [Y] will result in a full matrix 

[Y]-1 

• Therefore, “in situ” factorization methods are 
applied directly to [Y].

• [Y] is stored in a linked-list data structure, and 
dynamically modified as the factorization 
progresses. 

• We must understand the data structures, for I/O of 
the data and to pass variables between program 
modules of C++, Fortran, Pascal, Java, Delpi, etc.



Full Matrix Storage

• Example: 5x5 coefficient matrix
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02003 Full storage requirements:

-25 single-precision values
-200 bytes if complex values

Data Types:
-Single precision Real: 4 bytes
-Double precision Real: 8 bytes
-Complex: 8 bytes
-Integer can be 2-byte or 4-byte



Linked Lists – Several Variations
• Data structure uses only column vectors.
• Only the nonzero matrix values are stored.
• Use integer vector of pointers to start of each row.
• Use integer vector of column positions for each 

value.
• Use integer vector of links between the nonzero 

values of a row.
• Integer values can be unsigned 2-byte integers and 

still address 65 536 positions in a vector. 
• Switch over to Overhead Projector for example...



Crout’s LU Algorithm

• Algorithm can progress by rows or by columns
• Procedure is straight-forward.  Row-method:

– Copy column one
– Normalize Row 1: Divide Row 1 off-diagonal entries 

by diagonal row term of Row 1.
– For each element (i,j) where i>1 and j>1, subtract from 

it the product of ai1•a1j ie. y(i,j) = y(i,j) - y(i,1)*y(1,j)
– If the resulting submatrix is of order ≥ 2, repeat the 

same operations on the submatrix. 



LU Factorization Example

• Solve by LU Factorization
• Use in situ method, Crout’s method by row
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Step 1: LU Factorization
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Perform steps on transparency in class...

How many “fills?”
How many positions
were “eliminated?”



L and U
• There are many possible L & U pairs, i.e. 

the factorization is not unique.  In this case, 
applying the Crout method by row and 
splitting apart the result to get [L] and [U]:
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Solving the Intermediate Equations

• [A][x]=[B]
• [LA][UA][x]=[B]

Substituting [z]=[U][x] , solve
• [LA][z]=[B] by forward substitution

After solving for [z] , then solve
• [U][x]=[z] by backward substitution
• No matrix inversion required!



Solve for [z] by forward substitution
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Solve for [x] by backward substitution
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Implications of Sparsity

• What happens to efficiency of LU 
factorization as sparsity increases?

• Zeros in rows don’t
have to be normalized!

• A row-column product
of zero does not 
change anything! 
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