Overview of Today’s Topics

* Sparse Matrix Data Structures, Linked-List Storage

* LU Factorization
— Basic Approach: [A][X]=[B] = [L][U][X]=[B]
— Crout’s method, row-based example 1n class

 Introduction to MatLab
— Interactive commands
— SAVE-ing and LOAD-ing .mat files
— Useful functions related to sparse matrices
— Editing and running .m files
— MatLab exercise



Sparse Matrix Data Structures

Matrices having very few non-zero entries
are termed “sparse.”

Sparsity = numb. zero entries/matrix size
Density = numb. nonzero entries/matrix size

Power system admittance matrices [ Y] tend
to be quite sparse.

— Example: 10 000-bus system, avg of 3 lines/bus
— Sparsity is: (108 —40 000) / 103 =99,96%



Helpful MatLab Commands

* General * LU, sparse matrices

— save, load — issparse, sparse, full

— who — lists variables — NNz, NONZEeros

— cleara, b, ..

. . . — spy — shows topology
— 1nv(A) — inverts matrix

~ [L,U] = lu(A)

— ZEeros, ones .
— Reordering: colmd,
— find
symmmd, symrcm,
— help xxx to find help

colperm, randperm,

on a specific command
dmperm

— HTML help desk



Use of the spy function
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Algorithms and Sparse Systems

Typical situation: Given [Y][V] = [I] where [Y]
and [I] are known, solve for [V]....

Direct inversion of [ Y] will result in a full matrix
[Y]

Therefore, “in situ” factorization methods are
applied directly to [Y].

[Y] 1s stored 1n a linked-list data structure, and

dynamically modified as the factorization
progresses.

We must understand the data structures, for I/O of
the data and to pass variables between program
modules of C++, Fortran, Pascal, Java, Delpi, etc.



Full Matrix Storage

« Example: 5x5 coefficient matrix

0 0 2

S OO W

o O = W

NO J N =

S = q O

~ O O O O

Full storage requirements:
-25 single-precision values
-200 bytes 1f complex values

Data Types:

-Single precision Real: 4 bytes
-Double precision Real: 8 bytes
-Complex: 8 bytes

-Integer can be 2-byte or 4-byte



[Linked Lists — Several Variations

 Data structure uses only column vectors.
* Only the nonzero matrix values are stored.
* Use integer vector of pointers to start of each row.

* Use integer vector of column positions for each
value.

« Use integer vector of links between the nonzero
values of a row.

 Integer values can be unsigned 2-byte integers and
still address 65 536 positions 1n a vector.

« Switch over to Overhead Projector for example...



Crout’s LU Algorithm

* Algorithm can progress by rows or by columns

* Procedure 1s straight-forward. Row-method:
— Copy column one

— Normalize Row 1: Divide Row 1 off-diagonal entries
by diagonal row term of Row 1.

— For each element (1,)) where 1>1 and j>1, subtract from
it the product of a;,*a;; 1e. y(i,)) = y(1,)) - y(1,1)*y(1,)

— If the resulting submatrix 1s of order > 2, repeat the
same operations on the submatrix.



LU Factorization Example

* Solve by LU Factorization
* Use 1n situ method, Crout’s method by row

4 4 20 x7 [8
3 12 6|x,| |4
4 -1 2|x,| |8
2 1 1|x,| |10
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Step 1: LU Factorization

Perform LU Factorization
on the coefficient matrix:

2 4
3 3
2 4

4 2

Perform steps on transparency in class...

Result:

How many “fills?”
How many positions
were “eliminated?”

2
3
2
4

2
-3
0
-6

4

12

—1
1

2
-2
-5

-19




2 2 2 1

3 -3 -2 -1

2 0 -5 0

4 -6 -19 -9]
A

[Land U

* There are many possible L & U pairs, 1.¢.
the factorization 1s not unique. In this case,
applying the Crout method by row and
splitting apart the result to get [L] and [U]:

=|L]u]=

2 0 0 0
3 -3 0 0
2 0 -5 0

4 -6 -19 -9

oo O =

S O =

2 1
-2 -1
1 0
0 1

LA UA
\Matlab Variable Names /




Solving the Intermediate Equations

* [Allx]=[B]

+ [LAJ[UA][x]~[B]
Substituting [z]=[U][x] , solve

* [LA][z]=[B] by forward substitution
After solving for [z] , then solve

» [U][x]=[z] by backward substitution

* No matrix inversion required!




~ D W

Solve for [z] by forward substitution




Solve for [x] by backward substitution

1 2 2 1| x| [4.00]:
0 1 -2 —1|x,| | 267
00 1 0x| |000
00 0 1|x| |[-L11

UA (7]
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Implications of Sparsity

* What happens to efficiency of LU
factorization as sparsity increases?

e Zeros in rows don’t 70
have to be normalized!

* A row-column product 0 4
of zero does not 0 O
change anything! 4 0

S N O O

AN B OO0 O
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elimination without row interchange is given by
0.000125x, + 1.25x, = 6.25
—1.25 x 10°x, = —6.25 > 103
Consequently, x, == 5.00 and x, = 0, which is clearly unacceptable. Let us now see
what happens if we interchange the rows in Eq. (4-47):
"12.5 12.5 75()“] _ ‘"75 T
L 0000125 1.25](x, L 6.25]
Applying the Gaussian elimination again, we obtain
12.5x, + 12.5x, =175
1.25x, = 6.25

Hence, x, = 3.00 and x, = 1.00, which is obviously the correct solution.

Our example suggests that too small a pivot is likely to cause severe numerical
error. It has been suggested [1] that for most matrices a good strategy is to choose the
pivot at the kth stage to be the element with the largest absolute value in column &
of all rows from k through n. Testing for size to find the optimum pivot and the sub-
sequent row-interchange operation required to move the desired pivot to the proper
position would no doubt require additional computer time. However, the improve-
ment in accuracy is usually worth the extra time. Even further refinement is possibie
by interchanging not only the rows but also the columns. This strategy is sometimes
referred to as complete pivoting. For further details concerning this topic, see [3].

(4-48)

f% *4-4 THE LU FACTORIZATION’

4-4-1 A Theorem on Factorization

In Section 4-3, we discussed the Gaussian elimination algorithm. It was shown
that any nonsingular matrix A can be reduced to an upper triangular matrix U, with
unit diagonal elements, by a proper sequence of elementary row operations. Or
equivalently,

8,8,.,...8,8,4=U (4-49)

where u,, = uy, =...=u,, = 1, and &, may be any of the three types of elementary
matrices.

The type 3 elementary matrices in Eq. (4-49) are lower triangular matrices,®
because we always add c times one row to a later row. Any type 2 elementary matrix
is a lower triangular matrix, but this is not so for a type 1 elementary matrix.

If the pivot elements a,,, ai¥, . . . at all stages are nonzero, then type 1 elemen-
tary matrices are not needed in Eq. (4-49). Since the product of any two lower triangular
matrices is also a lower triangular matrix, it follows that the product

7The results of this section are used in Chapter 16 in conjunction with sparse-matrix tech-
niques.
8A lower triangular matrix L is a square matrix with zero elements above the principal diagonal.

:
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in Eq. (4-49) is lower triangular. It can be easily shown that the inverse of any non-
singular lower triangular matrix is also lower triangular. Then we can solve for 4
in Eq. (4-49) to give

A=(88, . . 88)'U

4-30
- LU (4-30)

where L = &7'87' ... 8! is a lower triangular matrix.

On the other hand, if at any stage the pivot element a{¥} is zero, then a row in-
terchange is needed for the elimination procedure to continue. In such a case, some
of the elementary matrices in Eq. (4-49) will be of type 1. To explain the effect of row
interchange, let us introduce the following subscript notations for the three types of
elementary matrices:

§;,: Type 1 elementary matrix obtained from 1 by interchanging the ith
and jth rows.

&(c): Type 2 elementary matrix obtained from 1 by multiplying the ith
row by ¢ (¢ = 0).

§,(c): Type 3 clementary matrix obtained from 1 by adding ¢ times the ith
row to the jth row.

P: Type | elementary matrix, or the product of some type 1 elementary
matrices.

Then, for the worst case when a row interchange is needed in every stage of the
forward-elimination step, Eq. (4-49) for the case n = 4 is of the form®

ISA(C:0)33(09)82(08)51(07? 1*334(05)1’? |824(Cs)823(04)1’% lt'Sx4(63)1’313(32)312(01)1’11:4 =U (45D

normalizing diagonal third stage second stage first stage

elements
where each P, is an &;. Each P, in Eq. (4-51) can be moved to the right of a neigh-

boring &, matrix provided that “proper changes” are made on the elements of &, to
obtain a new elementary &,. For example, if P, = &,, and &, = &,,(), then

0 1 0371 0 0 010
P& =1 0 0[]0 1 Ol=|1 00
0 0 Lfla O 1 @ 0 1
0 07f0 1 0
=10 1 0oll1 0 0|=§,pP,
0 « 1]{0 0 1

9Similar arguments hold for the case » > 4. But the expression is too lengthy to be given here.
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Hence .
§, = &)
The general rules for moving P, one step to the right are as follows (the proof is
straightforward). Assuming that i == j % k = [, then
£,8.(c) = &0)8
§,8,(c) = £.,(0)8;
8,8,,(c) = &.(c)&y;,
8,8,(c) = §,(c)&;
In other words, the subscripts of £ are obtained from the subscripts of & by making

interchanges (possibly none) of the subscripts j < L. .

Now consider a typical P,, say P,, in Eq. (4-51). Its corresponding row opera-
tion is to interchange the second row with some later row, say the fourth IoW, SO that
a nonzero element is brought to the (2, 2) position. Then P, = &,,. Applying the rules
of Eq. (4-52) to Eq. (4-51), we have

P2814(53)8u(02)812(01) = 824814(03)813(52)812(01) = 812(53)824813(02)812(01)
= 812(C3)813(01)824812(01) = 8!2(53)813(02)814(6'1)824
= 8;5(¢5)815(c2)81alc )Pz

successively to the rightmost position. Although the cont.ents
t they all remain lower triangular matrices!
’s to the right, Eq. (4-49)

Sijsik(c) = S,k(c)&;

(4-52)
&,81(c) = 8(c)&;

Thus, we have moved P,
of the other & matrices change, note tha
From our discussion we see that, after moving all P,

may be written as
@, B8Py PP)A=T (4-53)
where all &, are lower triangular matrices. Equation (4-53) directly leads to
LU=PA

where
Pp=P_P, ... PP

is a permutation matrix, and
L=(§,...8,&)"

is a lower triangular matrix. We have, in fact, proved Theorem 4-1.

Theorern 4-1. Given any nonsingular matrix A, there exists some permutation
matrix P (possibly P = 1) such that

e

with unit diagonal elements and L is a

(4-54)

where U is an upper triangular matrix

Section 4-4
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lower triangular matrix with nonzero diagonal elements. Once a proper P is chosen,
this factorization is unique.

The factorization of 4 or P4 into the product LU is called LU factorization.
By inserting the product of two diagonal matrices D, and D,, with DD, =1,
between L and U, the theorem can take on many different forms, as follows:

LU = LD,D,U = (LD ,)(D,U) = LU= LD, U=LD.U (4-55)

where L and U are lower and upper triangular matrices, respectively, one of which
may have arbitrary nonzero diagonal elements.
Once the LU factorization is obtained, by whatever method, the equation

Ax=LUx=p (4-56)
is solved by transforming Eq. (4-56) into
Ly=np 4-57)
and
U=y (4-58)

We first solve for y from Eq. (4-57) and next solve for x from Eq. (4-58). Since both
equations are triangular systems of equations, the solutions are easily obtained by
back substitutions.

——

-

4-4-2 Crout's Algorithm without Row Interchange

We shall now describe a practical method for calculating the L and U factors,
which is sometimes referred to as Crout’s method [6].

In Gaussian elimination, the forward-elimination step yields U explicitly.!?
! The elements of L can be shown to be given by

Fa;, O 0
2
ay; a¥)
L= " (4-59)
2
a, a ay

Each element of L appears at a certain stage of the forward-elimination step and
may be recorded (usually written over the original matrix to save storage).

Note that in Gaussian elimination many elements of the given matrix are written
over quite a number of times before an element in the U matrix is obtained. For
example, in Eq. (4-23), the element a,, is written over three times:

(3)
44>

The last result is the (4, 4) element of L matrix.

2 4
Qg a, all, aly

10To obtain U with unit diagonal elements, further divide the kth equation in Eq. (4-30)

by aif).
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The Crout’s method, as will be shown pre§ently, is gcjtually a methpd ofrecgllll:tus-
lating the elements of L and U recursively, thhogt writing O'Verd _pftevllcixgsm puters.
This is a great advantage with desk calculators. With automatic digl ations 4 Con:
this advantage is not an important one. As far’ as the number' of opera.mately e
cerned, both Gaussian elimination and Crout’s met’hod require ap.promaner v
operations for 7 large. The real advantage of Crout’s method lies in sm

off error and in its suitability to incorporate sparse-matrix techniques [7}-18] (see

Chap. 16).
To see how Crout’s metho
ider the case n = 4, as in Section 4-3. We assume

d generates the elements of L and U recursively,
that no row interchange

again cons

isunecessary in Eq. (4-54). Then P=1and
M, O 0 011 Uy Uys U4 ] ayy iz @43 a, |
Iy 1 O 0 \0 1 Ups Uas | _ G,y Q22 Gas Qs (4-60)
L Il In 0

‘0 0 1 uzaJ a;, Q32 Q3z Qs

Ly laz s lia 0 0 0 1 Gy gz Qa3 Gas

We shall now show how each element I, of L and each element u;, of U canbe

determined using the Crout’s algorithrp.

. mpmain +

Define an auxiliary mairix, COnsisiiig
manner:

of elements of L and Uin the following

lyy Uiy U3 4

Iy L Uz Uas (4-61)
I3 13, I35 Uss

141 142 143 144

Elements of @ are to be calculated one by one in the illustrated order

ONORORO

@%% (4-62)
® O

® 0060

i r words, we calculate
where @ indicates the kth element to be calculated. In othe

First column of L
First row of U (except u;; = 1)
Second column of L

Second row of U (except uz; = 1)

etc.
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The elements of L and U are calculated simply by equating a;, successively, according

to the order shown in Eq. (4-62), with the product of the jth row of L and the kth
column of U. We have

auzln-l 111:011
ay; = 1,,-1 Ly = as,
a“:l“-l 131‘—‘031
a“:Z“.l IAI = dg4
. g
ay, = Iy, =2
11
. aqy
ays =l ooy =S
11
. dyg
@is = Inthis S =g
11
@22 = btz + Lo Sl =@y — huy, (4-63)
ﬂn:l;luu—{-—[” ol = a;z—lsxuxz
7 7 ; ) B
Ggy = ity T lan R P Loy,
. ays — lhyuys
gy = lytty; + Dhottys Uy = -
22
I : ayy — ltya
Aze = l“u” -+ lnu“ S Uge = __l_
22
asy = lyttyy + Inptdes + L s = ayy — gy — l3aUas
o3 = lagtys + laattas + g Lolyy = agy — Ly — L
=] £/ -] . yq — Iyqys — L3ty
A34 == 31Uy 7 b3zlae T f33Uss O Uy = ;
33
@us = luittys + lattas + Listtse + las o des = agq — Loy — lagting — [z,

Note a very important feature of this calculation: the calculation of the element@
of the auxiliary matrix @, which is an element of either L or U, involves only the ele-
ment of 4 in the same position and some of those elements of Q that have already
been calculated. As the element@is obtained, it is recorded in the @ matrix. (In fact,
it may be recorded in the corresponding position in the 4 matrix, if there is no need
to keep the 4 matrix.) This calculated result need never be written over; it is already
one of the elements of L or U.

Following the pattern displayed by Eq. (4-63), we can formulate Crout’s
algorithm for obtaining the auxiliary matrix Q (which contains the components L
and U) as given below. A rigorous proof of the algorithm may be found in [6].
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Crout’s Algorithm without Row Interchange

Given A, an n X a matrix. Initially, @ = 0 of dimension »n x n.

Step [. Obtain the first column of Q by ., = 4, for k=1,2,...,n

Step 2. Complete the first row of @ by ¢, = auig,, fork=2,3,...,n

Step 3. Setj — 2.

Step 4. Complete the entries of the jth column of @ by qu; = ar; — 9e191s
— Qa2 — = Qo ni-ng 0T k=, ]+ I,...,n

Step 5. 1If j = n, terminate the algorithm. Otherwise go to step 6.

Step 6. Complete the entries of the jth row of 0 by ;e = (@ — 9191
= g2 = — G- ndy-on)lgy Tor k=j+ Lj+2...,n

Step 7. Setj«—j 4+ 1; go to step 4.

A numerical example will illustrate the application of the algorithm.

-1 2

ExAMPLE 4-2.
r2 4 4 27
\ 3 3 12 6
A=
2 4
L4 2 1 1

2 2 2 1 ERC
3 -3 -2 -1 3 -3 0 0
0= N L= >
2 0 -5 0 2 0 =5 0
4 —6 —19 =9 4 -6 —19 —9
12 2 1
0 1 -2 -1
U= 0 1 o
o 0o 0 1

Elements of Q are calculated as follows:

First column: 2 =2,3=3,2=2,4=4

Firstrow: 2=14,2=4%,1=14%.
X

2,0=4—-2x2—-6=2—4x2.
Second row: —2 = (12 — 3 x 2))(=3), ~1 = (6 — 3 x 1)/(=3).

Second column: —3 =3 —3
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Third column: —5= —1 —=2x2—-0x(=2),—19=1—4x2 ~(—6)
X (=2).

Thirdrow: 0 =2 —2 x 1 —0 x (=1}

Fourth column: —9 =1 —4 x 1 —(—=6) x (—1) — (—19) x 0.

4-5 SINUSOIDAL STEADY-STATE ANALYSIS OF LINEAR
NETWORKS BY NODAL EQUATIONS

The analysis of the behavior of a linear network in sinusoidal steady state is usually
referred to as “ac analysis.” A great deal of similarity exists between ac analysis and
the analysis of linear resistive networks in Section 4-2. In fact, all the relationships

discussed there carry over to ac analysis if we make the following transitions in nota-
tions and concepts.

ANALYSIS OF LINEAR

RESISTIVE NETWORK AC ANALYSIS

Resistance R Impedance Z

Conductance & Admittance ¥

(), time function V(w), phasor

i(¢), time function I(w), phasor

Values of R, G, v, { Valuesof Z, Y, V, I
are real numbers are complex numbers

Because of such correspondence, we shall not repeat the detailed derivation.
Instead, we shall only give the definitions and the main results, and the reader should
refer to Section 4-2 for details.

Define the voltage vectors as

.[7'1 Vl El
v, v, E,

val- |, wval-|, Eal- (4-64)
v, v, E,

and the current vectors as

jl 7 Il ‘]‘11
I, 1 Js

Tal |, 18| L J2|- (4-65) |
Lﬁ. _ L, | J,






