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At a given bus i in the system, there can exist:

Fixed P and Q injection consisting of:
< Scheduled generation that injects PG i into the bus.
< A fixed load of PL i + jQL i (an injection of - PL i - jQL i )

P and Q flowing into bus from the network (all part of [YBUS]):
< Transmission lines - short, medium, long; single-circuit, double-circuit where

mutual coupling is neglected, or double-circuit with mutual coupling effects. 
< Transformers - 2-winding or 3-winding; fixed ratio, LTC, or Phase-Shifting. 
< Shunt reactors:  Y = 1/(jωL) = - jBREACT 
< Shunt capacitor banks:  Y = jωC = jBCAP 
< A voltage-dependent load represented as a shunt admittance: YLOAD = G + jB.

Important things to note:
< The scheduled generation PG i is dictated by the system dispatch center via

SCADA.  The generator’s governor is given a “set point” and holds PG i constant
within a close tolerance.  Also, the generator’s exciter holds the bus voltage V i

at a constant magnitude (its angle δ i is not directly controlled and is an
unknown).  

< The fixed load PL i + jQL i represents the aggregate load supplied to local
consumers.  In planning studies, this is usually a worst-case projection of what
planners think the load will be 5 or 10 or more years into the future. 

< PT i and QT i are the total P and Q flowing INTO the transmission grid defined
by [YBUS].  This includes the effects of shunt capacitor banks and reactors. 



P P P PINTO BUS i Gi Li T i     0

Q Q Q QINTO BUS i Gi Li T i     0

When forming equations, it is extremely important to establish a reference direction
for the flow of P, Q, and current.  This is clearly labeled on the sketch on the
preceding page.  Recall that the current  is the net current injected into the~

Ii
network at bus i by the generator and load (this is the same injected current that
occurs in the equation [YBUS][V] = [I] ).  Bus voltages are measured with respect to the
same reference that [YBUS] is referred to. 
 
Notations:

The voltages and currents we are dealing with are RMS phasor values.  In the
equations we develop, it is necessary to refer to their magnitudes and angles.  For
example, the voltage at bus k with respect to reference is:

RMS phasor value: or Vk  or Vk /δk
~
Vk

RMS magnitude:  or just Angle of :   δ k
~
Vk Vk

~
Vk

We also need to refer to individual elements of [YBUS].  The entry in the i,j position is
a complex number  with a magnitude of  and an angle of  yi j yi j i j

The Setup:

At each bus, there are just three components to the P and Q being injected.  If we
follow the development of Heydt’s book, we will consider the summation of P and Q
into a given bus i  (refer to the figure on the previous page and be sure to get the
signs right).  When the system is in equilibrium the total P and total Q flowing into the
bus will be zero. 

Observe that PT i and QT i are functions of the bus voltages, while PL i and QL i and PG i

are constants (scheduled).  Q G i is a “slack” variable (more on it later).  Note that
these two equations together make up the nonlinear function F(δ,V) = 0 which will be
solved with Newton-Raphson iteration.  (i.e. initial guesses for the unknown V’s and δ’s
are made and an iteration is performed that drives the V’s and δ’s toward values that
make F(δ,V) = 0).  When the iteration has converged, we know all of the bus voltages in
the system and then can calculate all P and Q flows through transmission lines,
transformers, and the slack bus. 
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In order to calculate PT i and QT i we must first know the value of , which can be~
Ii

found by multiplying row i of [YBUS] times the bus voltage vector.  In the form of a
summation, it is:

The complex power flowing into the network at this point is thus

Resolving it into its real and imaginary components, 

Thus, the total P and Q flowing into bus i for a converged solution is

Heydt lumps load and generation together:  P i = PG i - PL i and Q i = QG i - QL i and refers
to them as “specified active and reactive powers.”  The “mismatches” ΔP i and ΔQ i are
defined as the difference between the specified P and Q (flowing into the bus from
the load and generator) and the P and Q flowing out of the bus and into the network. 
At equilibrium (when loadflow has converged) the mismatches are, within a tolerance
of ε, equal to zero.  However, during the iteration, the mismatches are nonzero and
are a function of the present values of δ and V.  At iteration step m,  

The complete expressions for the mismatches at iteration step m are thus given as: 
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Note that Heydt has a sign error in the way that he defines ΔP and ΔQ (see p.149),
but then recovers from it by tagging a minus sign on [J] (see p.150).  The complete
formulation for the loadflow is thus in the form

ΔP is the column vector of P mismatches at all buses except the slack bus.  ΔQ is the
column vector of Q mismatches at all load buses (Q is a slack variable at all generator
buses and at the slack bus and so these buses are not included).  [J] is the Jacobian
matrix containing the partial derivatives of the expressions for P and Q flowing into
each bus.  These partial derivatives fall into 4 categories and [J] is often partitioned
into 4 submatrices described as follows:

or

The partials can be obtained from the equations for PIN and QIN . They are listed in
equations (4.38) through (4.45) in your text. 

For the main diagonal terms of J1 note that when j = i, δ i - δ j = 0 and the partial is 0. 

For the off-diagonal terms of J1, only one of the terms of the summation has a non-
zero partial derivative: 

For the main diagonal terms of J2,  j = i so which leads to V V Vi j i 2
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For off-diagonal terms of J2,

For main diagonal terms of J3 (note sign error in equation 4.42):

For off-diagonal terms of J3:

For main diagonal terms of J4:

Finally, for off-diagonal terms of J4:

All terms in the
Jacobian and in the mismatch vector are evaluated using “present” values of V and δ.  
The column vector for Δδ ΔV is then solved.  Typically this is done using sparse matrix
data structures and some type of in situ LU factorization.  The values of δ and V used
in the present iteration are then updated:

Convergence is usually determined by monitoring the mismatch vector.   The norm of
the mismatch vector could be used as a convergence measure but usually is not.
Testing for | ΔPi | # ε at all PQ and PV busses, and testing for  | ΔQi | # ε at all PQ
buses is done.  Choosing ε = 0.001 per unit is common.  Typically, the Q mismatches are
greater than P mismatches so convergence often depends on ΔQ.   If the precision of
the loadflow study is not of primary concern, the convergence tolerance for Q is
sometimes relaxed to 10 ε or else the condition is modified to be | ΔQi

2 | # ε .


