EE 5240 - Term Projects

Time: Finals Week Monday time TBA 12:45-2:45 Room: Rekhi G006

Allotted Time: 12-15 minutes per presentation; 2-4 mins between.

Team No	Start Time	Team Partners (*-Online)	Project Title
1		<mark>Rakesh Nair</mark> Satya Surya Srinivasa Varma	Computer Modeling of Transient Stability Analysis for a Multi-machine System
2		Sriram Paravastu Nishchal Sharma	GOOSE Messaging Applications and Inter-operability features of IEC 61850 between Doble F6150sv and SEL relays
3		Prudvi Raj Kandragula Goutham Vishwanath Ravichandran	Comparison of Different Methods for Economic Load Dispatch
4		Chris Deiro*	State Estimation with Weighted Least Square Estimation and Orthogonal Transformation

Team No	Start Time	Team Partners (*-Online)	Project Title
5		Jaimeer Bharatkumar Patel Anup Babuji Nair	Load Flow Analysis in power system based on Newton Raphson method (Optimal power flow)
<mark>6</mark>		<mark>Yogendra Kulkarni</mark> Manikandan <mark>Sundararaman</mark>	Dynamic Stability Analysis of Multi machine system using numerical integration methods
7		Isaac Crisp* Astrit Fetahi*	Load Flow Study of the 17 Bus Power System and effect of HVDC/FACTS devices
8		Dhruv Sharma Aswin Nanda Chandrasekar	Transient Stability Analysis of Power System Using MATLAB
9		Neeraj Deshpande Ashish Prem	State Estimation of an IEEE 14-bus using Weighted Least Squares Method

Team No	Start Time	Team Partners (*-Online)	Project Title
10		Ravi Gupta Dipti Deswal	State Estimation of an IEEE multi bus system
11		Arpit Agarwal Atul Kumar	Contingency Analysis of Power System by using Voltage and Active Power Performance Index
<mark>12</mark>		<mark>Manisha Mallik</mark> Nihar Brahmbhatt	Mathematical modelling of swing equation for Power System transient stability analysis for two machine system
13		Sreekanth Menon, Shivank Singh	Computer modelling and study of unsymmetrical and symmetrical faults in power systems.
<mark>14</mark>		Aniket Samel Akshay Pitre	Ordinal Optimisation Theory for Optimal power flow solution