
MobiHydra: Pragmatic and Multi-Level Plausibly Deniable
Encryption Storage for Mobile Devices?

Xingjie Yu†,‡,\, Bo Chen], Zhan Wang†,‡,??,
Bing Chang†,‡,\, Wen Tao Zhu‡,†, and Jiwu Jing†,‡

† State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of
Sciences, CHINA

‡ Data Assurance and Communication Security Research Center,
Chinese Academy of Sciences, CHINA

\ University of Chinese Academy of Sciences, CHINA
] Department of Computer Science, Stony Brook University, USA

Email: xjyu@is.ac.cn, chen@chenirvine.org, zwang@is.ac.cn, changbing12@is.ac.cn, wtzhu@ieee.org, jing@is.ac.cn

Abstract. Nowadays, smartphones have started being used as a tool to collect and spread po-
litically sensitive or activism information. The exposure of the possession of such sensitive data
shall pose a risk in severely threatening the life safety of the device owner. For instance, the data
owner may be caught and coerced to give away the encryption keys so that the encryption alone is
inadequate to mitigate such risk.

In this work, we present MobiHydra, a pragmatic plausibly deniable encryption (PDE) scheme
featuring multi-level deniability on mobile devices, to circumvent the coercive attack. MobiHydra is
pragmatic in that it remarkably supports hiding opportunistic data without necessarily rebooting
the device. In addition, MobiHydra favourably mitigates the so-called booting-time defect, which
is a whistle-blower to expose the usage of PDE in previous solutions. We implement a prototype
for MobiHydra on Google Nexus S. The evaluation results demonstrate that MobiHydra introduces
very low overhead compared with other PDE solutions for mobile devices.

Keywords: Mobile security, plausibly deniable encryption (PDE), data secrecy, coercive attack,
countermeasures

1 Introduction

Many people today perform a majority of their daily communications, web browsing, and finan-
cial transactions via their mobile devices, and leave a large amount of sensitive data (e.g., phone
call history, financial account secrets, and even evidences of an encountered crime) stored in
those devices. Particularly, as mobile phones spread across the globe, human rights activists are
increasingly turning to mobile technology for help in documenting, visualizing, and prosecuting
human rights abuses. Unfortunately, human rights violators often harness similar technologies
to silence activists [2]. To protect sensitive data, major mobile operating systems now provide
different levels of encryption [3–6]. This simple encryption-based solution may work well when
a mobile device gets lost or stolen. However, when a mobile device owner is caught and coerced
into disclosing his/her decryption keys (which is known as a coercive attack), encryption alone
becomes inadequate for protecting the owner’s sensitive data. An example of coercive attack

? This is the full version of the paper that appears in the proceedings of ISC’14 [1].
?? This author is the corresponding author.

against mobile devices is that a human rights worker uses his/her mobile device to collect evi-
dences of atrocities in a region of oppression, but unfortunately he/she is captured and forced
to hand over the evidences.

Plausibly deniable encryption (PDE) [7] is a promising tool that helps to circumvent coercive
attack and allows the data owner to deny the existence of certain data. PDE allows the owner
to decrypt a same ciphertext but present a different (innocuous yet plausible) plaintext, such
that the attacker cannot differentiate between the real plaintext and the presented plaintext,
and thus can be utilized to counteract the coercive attack [8]. A PDE solution can offer plau-
sible deniability, which is an unusual security property allowing somebody to claim to others
that certain information is not in his/her possession or that certain transaction has not been
conducted [7]. In the literature, PDE has been investigated extensively for regular desktop op-
erating systems [9–13]. However, there are very few developments of PDE on mobile devices
where coercive attacks are more likely to occur.

Mobiflage [14] was the first PDE solution designed for mobile devices by customizing Android
full disk encryption (FDE) [6]to offer plausible deniability. A mobile device which is equipped
with Mobiflage works in two operation modes, the standard mode and the PDE mode. The
standard mode is used to manage the regular data, which are less sensitive and thus can be
encrypted normally without plausible deniability. This standard mode is accessed by entering
a public password, which can be disclosed in emergency. The PDE mode, however, is used
to manage sensitive data that can be denied of their existence. The PDE mode can only be
activated by entering a hidden password. When facing a coercive attacker, the smartphone
owner can simply disclose the public password, such that the attacker is only able to access the
standard mode. Since the PDE-enabled device does not have any indication of the existence of
hidden deniable files, the attacker will likely be convinced that the device owner has not kept
any sensitive data and release the owner.

Although Mobiflage [14] initiates the research of PDE on mobile devices, it has some lim-
itations. First of all, hiding data requires booting the device into the PDE mode, which may
bring inconvenience to users and even worse, a user may not have enough time to reboot his/her
device when an attacker suddenly appears. Therefore, Mobiflage is not so pragmatic in the real
world. Second, Mobiflage can only support one deniability level, that is, a Mobiflage user can
either keep or disclose all the sensitive data in the presence of a coercive attack. This will be
problematic if an attacker insists the existence of the sensitive data. Third, Mobiflage is vul-
nerable to a new attack due to its design flaw during booting, which may compromise plausible
deniability.

In this work, we take a holistic view over the existent PDE solutions, and propose MobiHydra,
a novel PDE system for mobile devices, in which we alleviate the limitations of Mobiflage [14].
Our MobiHydra can support secure data hiding in the standard mode for emergency, offering a
convenient feature to MobiHydra users. This way, device owners can work at the standard mode
and transfer the sensitive data to the PDE mode without rebooting. In addition, MobiHydra
introduces another feature, multiple deniability levels, with which users can choose to store sen-
sitive data at different deniability levels. To the best of our knowledge, we are the first to design
a PDE storage system for mobile devices offering both features of hiding data without rebooting
and multi-level deniability. Moreover, we observe that all the previous PDE solutions for mobile
devices are vulnerable to the booting-time attack, and we integrate certain countermeasures into
MobiHydra to mitigate the defect. A feature comparison between Mobiflage and MobiHydra is
summarized in Table 1.

Features Mobiflage MobiHydra

Hiding volumes in external storage Yes Yes

Hiding data w/o rebooting No Yes

Multi-level deniability No Yes

Booting-time attack resistance No Yes

Table 1. Comparison between Mobiflage and MobiHydra

In this paper, we make the following technical contributions:

We identify a previously unreported booting-time defect, which can be exploited as a whistle-
blower to compromise plausible deniability offered by previous PDE solutions for mobile
devices. We also develop countermeasures to mitigate this attack.

We propose MobiHydra, in which we design novel techniques to support hiding data without
rebooting and multiple deniability levels. Particularly, we utilize an additional shelter volume
to support hiding data in the standard mode, and we implement multiple hidden volumes
to support multiple deniability levels, such that multi-level deniability can be achieved.

We theoretically analyze MobiHydra’s security guarantee. We also implement MobiHydra
on a Google Nexus S smartphone powered by Android 4.0 and experimentally evaluate its
performance.

The rest of the paper is organized as follows. The next section introduces the background
and related work. Section 3 presents our threat model and assumptions. Section 4 introduces the
booting-time attack. In Section 5, we describe the design of MobiHydra. We perform security
analysis in Section 6. In Section 7, we present the implementation of MobiHydra on Android
along with performance evaluations. Section 8 concludes the paper.

2 Background and Related Work

Android full disk encryption (FDE). The Android encryption layer is implemented with
dm-crypt [6]. First of all, a master volume key used in encryption is chosen randomly. This master
(volume) key is encrypted with another key, which is derived from 2000 iterations of PBKDF2
(a password-based key derivation function) [15] digest of the user’s screen-unlock password and
a salt value. Both the encrypted master key and the salt value are stored in the footer, which
is located in the last 16KB of the userdata partition. When an Android device is booted and
cannot find a valid file system on the userdata partition, it will require the user to enter the
password. If a valid file system is then found in the dm-crypt target, it will be mounted and the
system will boot regularly.

Mobiflage. Mobiflage [14] implements PDE for a mobile device by hiding a secret volume in
the empty space of the device’s external storage. Mobiflage initially fills the disk with noise-like
random bits, and then creates two volumes, an outer volume and a hidden volume. The outer
volume uses the entire disk while the hidden volume is created in a secret offset within the disk.
The regular data will be stored in the outer volume encrypted by the public password (following
full disk encryption), while the sensitive data will be stored in the hidden volume encrypted by
the hidden password. A Mobiflage user can operate in both the standard mode (by providing the
public password, which allows access to the outer volume) and the PDE mode (by providing the
hidden password, which allows access to the hidden volume). The deniability of Mobiflage comes

from the fact that without knowing the hidden password, an adversary cannot tell whether an
empty space embeds the encrypted hidden volume or simply the noise-like random bits.

Other work on PDE. Deniable encryption was firstly introduced by Canetti et al. [7]. Deniable
encryption allows an encrypted message to be decrypted to different meaningful plaintexts,
some of which can be used as decoy messages depending on the key or passphrase being used.
Anderson et al. [13] designed the first file encryption scheme with PDE support, which is termed
as steganographic file system. The steganographic file system can achieve the same objective as a
PDE cipher by hiding files in random data. Rubberhose [16] for Linux is the first known instance
of a PDE-enabled storage system. Other steganographic file systems [10, 12, 17, 18] focused on
improving the efficiency and reliability. Moreover, a few desktop disk encryption tools [9,11] can
support PDE by allocating hidden volumes on the storage devices. The deniability of hidden
volumes relies on the fact that no evidence is available for identifying the presence of hidden
volumes or data hidden in them. Moreover, some efforts investigated the deniability of desktop
PDE tools based on forensic methods [19,20] .

3 Threat Model and Assumptions

In this section, we discuss our threat model and operational assumptions.

Threat model. We consider an adversary who is able to fully control a mobile device after
capturing it, including a root-level access to the device and a full control over the device’s
internal and external storage. In addition, the adversary can coerce the device’s owner for the
secrets to access the device.

Assumptions. We rely on several assumptions, all or portion of which are also required in the
previous PDE solutions [14]:

The adversary cannot capture a mobile device working in the PDE mode and has no knowl-
edge of the PDE key and password which can allow accessing to the PDE mode. This
assumption is necessary; otherwise, there is no solution since the adversary can directly
acquire the sensitive data from the PDE mode.

The adversary is not able to snapshot a mobile device’s encrypted physical storage before
having captured the device. An active attacker can continuously monitor a suspicious user,
and periodically snapshot his/her mobile device’s storage in a stealthy way. In this work,
however, we only consider a passive attacker who will only take action after capturing a
device.

The adversary is rational: it has motivations to coerce the mobile device’s owner to reveal the
encryption keys and passwords (e.g., secrets for unlocking the screen of the mobile device),
but will stop forcing the owner once it is convinced that the secrets have been revealed; it
will not hold the user indefinitely or simply punish the user without any evidence of the
existence of hidden data.

MobiHydra must be merged with the default Android code stream, such that its capability
is widespread, i.e., an attacker cannot simply distinguish a device with PDE capability.

The mobile device has a physical or an emulated FAT32 external (SD or eMMC) storage
partition. In Section 5.6, we will discuss more on this limitation.

The device is malware-free in both the standard mode and the PDE mode.

4 Booting-time Attack

We found that previous PDE solutions for mobile devices (e.g., Mobiflage [14]) are vulnerable to
a new attack, which we call the booting-time attack. Although in this section we use Mobiflage
as an example, this booting-time vulnerability is common for all the PDE solutions which rely
on hidden volumes to offer plausible deniability. In the following, we elaborate the principle of
the booting-time attack, and demonstrate an experiment to validate the effectiveness of this
attack on Mobiflage.

4.1 The Booting-time Attack

For a mobile device enabling the regular full disk encryption (FDE) without PDE support, when
the device’s user enters a password, the device will try to mount a valid file system (Section 2).
It will test the correctness of the password by decrypting the master volume key to mount a
valid file system. The system will boot successfully if the password is correct, otherwise, it will
require the user to enter the password again. Thus, in FDE, the pre-boot authentication for both
the valid password and the wrong password will not differentiate too much. For a mobile device
enabling PDE (i.e., where Mobiflage is installed), when a valid public password is provided, it
will boot into the standard mode by successfully mounting the outer volume. However, when
a wrong password is provided, the system will first try to boot into the standard mode, and
will then try to boot into the PDE mode by trying to mount the hidden volume. Only after the
password has failed to activate the PDE mode, the user will be required to enter the password
again. A wrong password in Mobiflage is tested for both the public password and the hidden
password, which requires much more pre-boot authentication, and hence takes much longer time
than when a valid public password is provided.

Based on the above observations, we identify a novel booting-time attack, which can compro-
mise the plausibly deniability offered by Mobiflage. Suppose a mobile device is equipped with
Mobiflage, and the device’s owner (i.e., the Mobiflage user) has been captured by a coercive
attacker A.

1. A coerces the owner to disclose the password. The owner gives away the public password
(which is allowed in Mobiflage design). A then boots the system with the public password
several times and records each time interval between the moment when the password is
entered and the moment when the operating system starts to boot up. We denote this time
interval as t succ.

2. A then uses wrong passwords to boot the system multiple times and records each time
interval between the moment when the wrong password is entered and the moment when
the retry screen appears. We denote this time interval as t retry.

3. A makes a decision on whether PDE is present based on the statistical analysis of t succ and
t retry. If significant deviation is observed between instances of t retry and those of t succ,
then A can conclude that the device is protected by PDE.

4.2 Experimental Validation

To evaluate the effectiveness of the booting-time attack on Mobiflage, we targeted a Google
Nexus S Android phone powered by Mobiflage. We depict the instances of t succ and t retry in
Figure 1(a). As a comparison, we perform the same experiment on the same device with FDE

enabled (specifically, we first recovered the device to its initial state without Mobiflage, and then
enabled FDE) and depict the instances of t succ and t retry in Figure 1(b). We observe that for
Mobiflage, t retry is at least 50% longer than t succ, i.e., it takes significantly more time to try
a wrong password than booting the system with a valid public password. However, for a regular
FDE-enabled system, t retry is approximately 30% shorter than t succ. The difference between
Mobiflage and FDE, unfortunately, will offer the adversary a clear indication of the existence of
PDE. Note that for different devices, the specific time characteristics may be a little different,
but the statistical time characteristics will be similar.

(a) Booting time of Mobiflage (b) Booting time of an Android FDE system

Fig. 1. A booting-time attack on Nexus S

5 MobiHydra Design

In this section, we propose a secure PDE system for mobile devices called MobiHydra, which
supports both pragmatic data hiding under standard mode and multi-level deniability. The
resistance against the booting-time attack is also featured in MobiHydra.

5.1 Overview

MobiHydra works in two modes: the standard mode for daily operations, providing encrypted
storage without deniability; and the PDE mode for storing sensitive data with deniable encryp-
tion. The standard mode and the PDE mode are activated by a public password and one of the
multiple hidden passwords, respectively. When booting the device, a password is entered by the
user. As shown in Figure 2, the system first makes an attempt to decrypt the master public
volume key with a password-derived key for mounting the public volume. If it fails, MobiHydra
will calculate an offset with the supplied password, and try to mount a hidden volume onto the
file system mount point where physical storage would be normally mounted.

MobiHydra enables encryption storage with plausible deniability by hiding sensitive data in
hidden volumes. Such volumes are located in the empty space on the mobile device’s external
storage, and each of those is coordinated to one deniability level. To cover up such hidden
volumes, the external storage is first filled with randomly generated bits, ensuring that the
encrypted hidden volumes are indistinguishable from empty space. Then MobiHydra will format
and encrypt the public and hidden volumes as specified by the user. Meanwhile, the offsets of

Fig. 2. MobiHydra workflow

hidden volumes are derived from user passwords. Moreover, a special partition call shelter volume
on the external storage is also allocated and used as a temporary storage for data transfer from
the standard mode to the PDE mode.

MobiHydra provides a safe mechanism for hiding opportunistic files when emergency events
take place but the smartphone is under the standard mode. In the standard mode, files which are
needed to be denied of their existence are stored in the shelter volume. Such files are encrypted
and cannot be decrypted in the standard mode. When the device is booting into the PDE mode
in a safe environment, the opportunistic files will be retrieved and decrypted in the PDE storage.
After a successful retrieval, the shelter volume will be wiped out securely, to ensure data secrecy
and leave enough storage space for future opportunistic files.

5.2 User Steps

At the initialization, the user needs to specify the number of hidden volumes, and select a
public password for activating the standard mode and hidden passwords for accessing each level
of hidden volumes in the PDE mode.

At the pre-boot authentication, the user enters the public password to activate the standard
mode. The daily operations (e.g., calls, short messages) should be performed in the standard
mode where operational logs and traces of usage are recorded as the innocuous materials. Con-
sequently, if the user get caught with the device working in the standard mode or powered-off,
he/she can feign compliance by relinquishing the public password. In some circumstances, the
adversary may not be convinced by the public password, and thus continue intimidating the user
to reveal the hidden passwords. The user can give away one or two hidden passwords which are
associated with relatively lower deniability levels to avoid safety threat and keep more sensitive
data in secret. Of course, the user should assess the importance of each hidden file, and save it
in an appropriate hidden volume.

When the user boots the device into the PDE mode, he/she should provide a hidden pass-
word at the pre-boot authentication. After booting into the PDE mode, the user can transfer
documents with another device, or take photos and videos and all the data are stored on deniable
volumes. However, once the necessary operations are completed, the users are recommended to
reboot and switch the device to the standard mode for the sake of safety.

5.3 Pragmatic Hiding Support

Pragmatic hiding allowing data transfer from the standard mode to the PDE mode without
rebooting the device is not supported in previous PDE system for mobile devices. However, in
some cases, the user has no time to reboot the device before saving opportunistic files. MobiHydra
implements a pragmatic mechanism for hiding data under the standard mode.

Principle. The basic idea for hiding data without rebooting the device into the PDE mode is
that a sensitive file can be saved in a shelter volume temporarily in the standard mode, and
will be transferred to the hidden volume automatically when the user boots the device into
the PDE mode. For the purpose of denying the existence of such file in the standard mode,
the opportunistic file is protected by the same symmetric encryption function used for hidden
volumes (which is also the same function used for filling the empty area with random numbers)
to keep it undistinguishable from the noise-like random numbers. Moreover, in order to keep
such file not readable in the standard mode, the symmetric key is encrypted by an asymmetric
public key, and the private key is kept in hidden volumes which cannot be accessed from the
standard mode.

In the standard mode, if the user has to hide opportunistic data for emergency (i.e., taking
photos of an encountered crime as evidences) and has no time to rebooting the device into PDE
mode, MobiHydra will encrypt such data with a randomly generated symmetric key and save
the ciphertext in a shelter volume. The random symmetric key will be encrypted with a public
key which is generated at the initialization of MobiHydra, and saved in the shelter volume.
When the PDE mode is activated, MobiHydra will decrypt the symmetric key of the shelter
volume with the private key saved in the mounted hidden volume to decrypt the opportunistic
data saved in the shelter volume. After that, such decrypted data will be transferred to the
hidden volume and then securely deleted from the shelter volume to release storage space. In
our design, the private key is saved in every hidden volume, so that the opportunistic data will
be transferred to any hidden volume mounted at the first time of activating the PDE mode after
storing these data in the standard mode. Therefore, the user could choose which deniability level
to keep such data in by entering an associated password. Moreover, a possible way to decide the
deniability level of an opportunistic file in the standard mode is discussed in Section 5.6.

In the standard mode, the hidden data may need to be operated by customized apps with our
pragmatic hiding support and an option to save files to shelter volume. Note that, to be capable
of hiding files, an app should give no indication of the existence of such files in its operation
logs. The customized apps may be a red flag for the usage of PDE tool, thus such apps should
be designed with deniability. In this work, we focus on the PDE storage scheme itself, while
the secure management of any related apps is beyond the scope of the paper. We suggest that
a customized app can be designed as a hidden app that works in the backstage and could be
activated in emergency.

Shelter volume. A small part of the external storage is allocated specifically for the shelter
volume while other remaining storage is used for the public volume and hidden volumes. To
avoid overwriting the hidden volume by writing opportunistic data in the shelter volume across
the volume border, the offset of this shelter volume is close to the end of the external storage.
The shelter volume is mounted as a block device in the standard mode.

However, since shelter volume is mounted as an independent block device in the standard
mode, the available space of the external storage is less than its real physical storage in the
file system. It may make the adversary suspect the existence of a shelter volume. A deniable
explanation for the unavailable storage could be given by attributing it to system influence. In
this way, the shelter volume should be limited to a size that small enough to be reasonable
for system influence, which may reduce the data transfer capability. However, since the shelter
volume is used for emergency data transfer, there is no need to assign a massive storage space
for such volume. We suggest that the user need to transfer the opportunistic data to hidden
volume as soon as convenient to ensure enough space for next emergency.

To allocate storage area for the shelter volume without size limitation and thus improve
the data-transfer capability, some dummy files could be maintained in the shelter volume and
updated periodically. In this case, the unavailable storage can be explained as being occupied
by such dummy files. However, the existence of dummy files will result in a waste of storage
space. Since an extra block device may arouse suspicion of an adversary about the existence
of opportunistic data, instead of mounting a shelter volume as the temporary storage, such
data can also be stored in some special areas of the public volume, and encrypted by another
symmetric key before being encrypted with the master public volume key. The locations of such
areas are recorded in the hidden volumes together with the public volume key and another
symmetric key. However, this solution requires either the modification of the access privilege
of the whole SD card or rooting the mobile device, which brings additional security risk to the
system.

5.4 Multi-Level Deniability

Previous PDE system (i.e., Mobiflage) keeps all sensitive data in a single hidden volume, which
may risk in all or nothing exposure. In contrast, MobiHydra offers multiple hidden volumes which
are corresponding to different deniability levels so that the user is able to selectively relinquish
one of the multiple hidden volumes when it is necessary. This is how the name MobiHydra comes
where “Hydra” is a many-headed serpent in Greek mythology [21].

Storage layout. The storage space can be regarded as the concatenation of independent en-
crypted volumes, including one public volume, one shelter volume and multiple hidden volumes.
We formalize the storage layout as follows:

EKp(V olpub)||EK1(V olh1)||EK2(V olh2)||...||EKn(V olhn)||EKs(V olshel)

Here, EK(·) represents a symmetric encryption function with key K and || represents con-
catenation. V olpub, V olshel and V olhi denote the public volume, shelter volume and the i-th
hidden volume, respectively. Kp and Ks represent a master volume key of the public volume
and shelter volume. n represents the required number of hidden volumes specified by the user,
and K1 to Kn represent the master keys of hidden volumes.

The deniability of V olhi enhances along with the increment of i. When a right password
(either a public password or a hidden password) is supplied for system boot, to avoid a visible
limit on the mounted volume, the volume decrypted by a given key will appear to consume
all remaining space (except the space allocated for the shelter volume), and other volumes will
appear to random noise. Thus, the existence of V olhi,i>1 could be denied by relinquishing the
password associated with V olhx,x∈[1,i−1], and the existence of V olh1 can be denied if the user only
gives away the public password. In addition, the exposure of V olhi,i>1 may expose the existence
of V olhx,x∈[1,i−1] which is detailed in Section Offset Calculation. Therefore, if the adversary forces
the user to reveal hidden password besides the public password, the user can fake compliance
by giving away one or two hidden passwords associated with relatively lower deniability levels,
and the data saved in the hidden volumes relatively associated with higher deniability levels are
still secret.

Note that, the hidden volumes may be overwritten by writing to the currently mounted
volume past the volume boundary. Although overwriting the sensitive data incidentally can be
avoided by saving appropriate size of data in each hidden volume on purpose, an adversary
still can destroy the hidden data by overlapping them. This issue is inherent to PDE storage
solutions, which is usually addressed by keeping data replicas on desktop [12, 16]. However,
considering the limited storage space on mobile devices, MobiHydra only protects data secrecy
rather than data integrality.

Offset calculation. The offset is the mounting point for each volume at booting time. The
offset is derived from the password provided by the user. In order to keep the operations in-
distinguishable between PDE and Android FDE, the calculation of each offset should not rely
on any stored variables that are not introduced by FDE, since the existence of such variables
may expose the existence of hidden volumes. The offset for public volume is just the start of the
storage space; and the offset for shelter volume is specified by the user at the PDE installation
time. The offset calculation for the i-th hidden volume is formalized as follows:

offset(i) = m×vlen + (i− 1)/N×(1−m)×vlen + H(pwdi||salt)modb1/kN×(1−m)×vlenc

Where vlen denotes the number of 512-byte sectors on the logical block storage device; m
represents the proportion of the storage space that is only occupied by the public volume; H is a
PBKDF2 iterated hash function; pwdi is the password of the hidden volume with the deniability
level of i; N is the largest number of hidden volumes supported by the system; salt is a random
value for PBKDF2 and k is a real number larger than 1 and helps to randomize the offset point.
We further explain each variable as follows:

– m is recommended to be no less than 50%, on the account of that the public volume is used
frequently for daily operations than the hidden volumes;

– The salt value has been also used for the public volume key derivation (i.e., stored in the
default encryption footer);

– N is a constant decided by the system, and each hidden volume’s size is approximately
(1 − m)/N of external storage size except for the n-th one (consuming the storage space
between its offset and the shelter volume’s offset) regardless of the number of needed hidden
volumes specified by the user (represented by n in Section Storage Layout). If N is replaced
by n, the size of each hidden volume can be specified by the user to some extent. As a pre-
requisite, n should be encrypted with different password-derived key, respectively, to ensure

that any hidden password could unwrap n for offset calculation. Therefore, the adversary
who has already obtained a hidden password can decrypt n, thus can ascertain whether any
extra hidden volumes exists. Note that, in our design, if the user gives away the passwords
associated with V olhi, the adversary can calculate the space between the offset of this volume
and the end of the public volume which may indicate the presence of other hidden volumes
(V olhx,x∈[1,i−1]).

– i is not supplied by the user for system boot for the sake of keeping consistence with Android
FDE, since any different user interaction will give an indication of the usage of PDE tool.
Instead, i will be traversed from 1 to N for offset generation until a valid volume is mounted.
Moreover, this design ensures that the required time for testing a wrong password gives no
indication of the value of n.

– k should be specific based on a trade-off between security requirement and storage utilization.
The offset of a certain hidden volume randomizes in the range of 0 to b1/kN×(1−m)×vlenc,
therefore, to avoid overwriting the next volume, we suggest that the data stored in a hidden
volume should be within (1−m)/N×vlen×(1− 1/k)×512 bytes except for the n-th hidden
volume. However, it results in a waste of storage space. For the purpose of reducing the waste
of storage, k should be set to a relatively large integer which will result in a corresponding
small offset random range.

5.5 Mitigating the Booting-time Attack

In order to make the time characteristic of password verification identical between MobiHydra
and a regular Android FDE system, there are two options: reducing the time for wrong password
verification or increasing the verification time for correct password in MobiHydra implementa-
tion.

Wrong password verification involves the following essential operations: calculating offset
from password, retrieving and decrypting the encrypted master key. Each of above operations
requires executing PBKDF2 digest algorithm 2000 times. We firstly attempt to accelerate the
wrong password verification by reducing the iterations of PBKDF2 digest to 1000 times. How-
ever, the results turn out that it not only weakens the security and may suffer dictionary attack,
but also has no significant change in time characteristics of password verification in MobiHydra.

Furthermore, we try to mitigate the booting-time defect by manipulating the verification
time for correct password. According to our experiment, if 3×N extra invocations of PBKDF2
are performed as a dump operation after a password is authenticated as the right password
(where N is the supported level of deniability in MobiHydra), the characteristics of t retry and
t succ will be identical in MobiHydra and an Android FDE system as shown in Section 7.

5.6 Known Issues

MobiHydra shares parts of limitations of Mobiflage scheme, including the need of a separate
physical FAT32 storage partition and the choice between allowing the user to configure the
volume size and avoiding the need to store the offset. Besides, our current MobiHydra design
has the following unsolved issues:

1. The size of the shelter volume cannot be changed once it has been set at the initialization
of the PDE system, in that the shelter volume is located between the public storage area
and the hidden one physically and dynamically scaling the size of the shelter volume may

overwrite the data stored in the hidden volumes. In addition, it is noted that a relatively
smaller size of shelter volume will lower the risk of comprising deniability because the shelter
volume is viewed as unavailable storage space under the standard mode.

2. For the sake of simplicity, the opportunistic data stored in the shelter volume are visible to
all the hidden volumes, so that the user cannot set the deniability level of them. A possible
solution is to generate a unique pair of RSA keys for each deniability level, save the private
key in each corresponding hidden volume and save the public keys in the shelter volume.
When a file is stored in the shelter volume, MobiHydra will encrypt the file with a random
master key and wrap the random master key with its corresponding public key. In this
fashion, only the hidden volume with correct private key can retrieve the opportunistic data
appropriately.

6 Security Analysis

The security of MobiHydra is captured in Lemma 1 and Theorem 1. Compared to Mobiflage [14],
MobiHydra is enhanced with additional security properties as follows:

Mitigate the booting-time attack: Most of the previous PDE solutions based on hidden
volumes [8] are vulnerable to the booting-time attack (Section 4). Our MobiHydra, however,
mitigates this attack by introducing additional delay to the booting process of the standard
mode. Thus, an attacker cannot suspect the existence of the PDE mode by observing the
time difference between a booting process where a correct public password is provided and
another where a wrong password is provided.

Support multiple deniability levels: Previous PDE solutions for mobile devices [8] can only
support one deniability level, by which a mobile device owner can either keep or disclose all
the sensitive data upon a coercive attack. This will be problematic if an attacker insists the
existence of the sensitive data. In MobiHydra, we allow the device owner to convince such
an attacker by disclosing a portion of the less sensitive data from the lower deniability levels,
such that the more sensitive data from higher deniability levels can remain secret.

Lemma 1 (Security Guarantee of Mobiflage). Mobiflage [14] can offer plausible deniability
for mobile devices.

Proof. (sketch) In terms of PDE paradigm, Mobiflage is receiver-deniable [7]. In addition, Mob-
iflage maintains deniability against threats from both the desktop and the mobile systems. We
refer the reader to [8] for more detailed security analysis.

Theorem 1. MobiHydra can offer plausible deniability for mobile devices.

Proof. (sketch) MobiHydra implements multiple deniability levels based on multiple hidden
volumes, and utilizes additional techniques to support pragmatic hiding without rebooting and
mitigate the booting-time attack. Let S be a sub-system of MobiHydra, which only implements
multiple deniability levels based on multiple hidden volumes. A MobiHydra system is equivalent
to a system which is formed by adding to S additional techniques to support pragmatic hiding
without rebooting and mitigate the booting-time attack. In the following, we show: 1) the
techniques used to support pragmatic hiding and mitigate the booting-time attack will not
introduce additional security breaches in terms of plausible deniability; 2) S is equivalent to a
Mobiflage system.

To support pragmatic data hiding, we utilize a shelter volume (which can simply be extended
to multiple shelter volumes), which is encrypted and is not able to be differentiated from a
regular empty volume. Thus, the supporting of hiding data without rebooting does not add any
indication of the existence of PDE. In addition, to mitigate the booting-time attack, we add
additional delay to the booting process of the standard mode, which does not add any indication
of the existence of PDE either (based on our assumptions in Section 3, MobiHydra should be
merged with the default Android code stream, and thus additional delay to the booting process
of the standard mode will not become a vulnerability).

S (i.e., a sub-system of MobiHydra) implements multiple deniability levels, each of which has
a hidden volume accessible by a different hidden password. Let n be the number of deniability
levels. MobiHydra system has 1 outer volume, 1 public password, n hidden volumes, and n
hidden passwords. We can view the n hidden volumes as 1 large hidden volume, and can view
the n hidden passwords as 1 combined password by which we can access every portion in this
large hidden volume. Thus, S can be viewed as a PDE system which has 1 outer volume, 1
public password, 1 hidden volume, and 1 hidden password, which is equivalent to a Mobiflage
system.

We conclude that MobiHydra can achieve Mobiflage’s security guarantee, and thus can offer
plausible deniability for mobile devices (Lemma 1).

7 Implementation and Evaluation

We implemented a prototype of MobiHydra on a Google Nexus S smartphone based on Android
4.0 (ICS). Our Nexus S has 1 GB internal and 15GB eMMC external storage (i.e., eMMC
partition). In our prototype implementation, we use almost half of the extern storage for hidden
volumes. In the following, we first elaborate the implementation details, and then provide the
experimental results.

7.1 Prototype Implementation

Pragmatic hiding support. We mount a shelter volume as a block device, which is linked
to /dev/shelter vol through a hard link. This volume consumes the last 128MB of the external
storage. We modify the access privilege of such storage area, such that apps are able to write
files to it. The content of the shelter volume is shown in Figure 3. For experimental purpose, we
develop a camera app which can save images to this shelter volume when the device works in
the standard mode.

MobiHydra generates a pair of 1024-bit RSA keys during its initialization, and saves the
public key in the pubkey field. Meanwhile, the private key is saved in a file /SDcard/prkey,
which will be stored in each hidden volume, and is not accessible in the standard mode. In
the standard mode, once the camera app has captured an opportunistic image, MobiHydra will
encrypt the image by a randomly chosen AES-XTS key, and save the encrypted image in the
Data field. It will then encrypt this AES-XTS key by the public key and save the ciphertext in
the AESkey field. After that, the plaintext of the AES-XTS key will be discarded. The number of
files will be kept in the int count field. For simplicity, our current prototype only supports 16 files,
but it can be easily extended to support more files. In addition, the AESkey field in the current
prototype can only store one AES-XTS key, i.e., the user can only hide data in the standard

Fig. 3. Content of the shelter volume

mode once before booting it into the PDE mode, since it cannot access to the old AES-XTS key
in the standard mode. This limitation can simply be addressed by extending the AESkey field
to be able to store multiple randomly generated keys, such that for a new opportunistic data
hiding attempt, MobiHydra can generate a new AES-XTS key without overwriting the old one.

In our prototype implementation, all the deniability levels share the same RSA private key.
Note that differentiating the hiding data for each different deniability level can be achieved by
generating a RSA key pair for each deniability level, and storing each private key in its associated
hidden volume. When the PDE mode is activated, MobiHydra will decrypt the AESkey field
using the private key stored in /SDcard/prkey. It then decrypts the int count field using the
AES-XTS key (acquired by decrypting the AESkey field), acquiring the number of files. If the
number of files falls within the range of 1 to 16, those files saved in the shelter volume will be
decrypted and saved to the corresponding hidden volume. After that, the data stored in the
shelter volume, starting from the AESkey field, will be wiped and replaced by random data. If
the number of files does not fall within the range of 1 to 16, no further process for data transfer
will be performed.

Multi-level deniability. For simplicity, our prototype only supports up to 5 deniability levels,
and it is easy to be extended to support more deniability levels. The storage layout for our
prototype is shown in Figure 4. In our prototype, 50% of the external storage is only occupied
by the public volume on the account of frequent usage of it for daily operations. A user can
determine the number of deniability levels during initialization (i.e., from 1 to 5). If the user
initializes 5 hidden volumes, the size of each hidden volume is around 1GB. If the user needs
more space for one hidden volume, he/she can choose less hidden volumes during initialization.
For this case, the last hidden volume can consume the remaining external storage starting from
its own offset (except the space allocated for the shelter volume). The master volume key for
each hidden volume is stored at the storage sector located at the corresponding hidden volume’s
offset (recall from Section 5.4 that the offset is computed based on secrets, e.g., the hidden
password). The master volume key for the public volume is encrypted and stored in a footer
located in the last 16KB of the userdata partition (located in internal storage). The random
salt is also stored in this area. We fix k (a variable used in computing the offset as described
in Section 5.4) at 8 in our prototype, which can achieve a good tradeoff between the security
requirement and the storage utilization (only resulting in a waste of 1GB storage space).

Pre-boot authentication in MobiHydra. When a MobiHydra device boots, it will require
the user to enter a password. It then derives a key from the password, and uses this key to
decrypt the master volume key of the public volume, attempting to mount the public volume.
If it fails, it will try to mount the first hidden volume based on the given password. It first

Fig. 4. Storage layout of our MobiHydra prototype

Key Initiali IO Boot time Boot time
system length -zation speed (wrong password) (public password)

(bits) (s) (MB/s) (s) (s)

Default FDE 128 85.4 8.5 0.19 0.27

Mobiflage 512 7399 8.2 0.54 0.35

MobiHydra 512 7421 8.1 1.49 1.98

Table 2. Performance comparison between default Android FDE, Mobiflage and MobiHydra

calculates the offset of this hidden volume by initializing the variable i (a variable representing
the deniability level as described in Section 5.4) as“1”. It then obtains the corresponding master
volume key by decrypting the storage sector at this offset with a key, which is derived for this
hidden volume from the given password. It tries to mount this hidden volume starting at the
next storage sector after the calculated offset. If a valid file system is found, the corresponding
hidden volume will be mounted, and the system boot will continue as usual. Otherwise, it will
try to mount another hidden volume by increasing i by 1, up to all the available hidden volumes
(at most 5 in our prototype implementation). If it cannot find a valid file system after having
tried all the available hidden volumes, it will ask the user to re-enter a password.

7.2 Experimental Evaluation

We evaluate MobiHydra in terms of initialization performance, I/O and system boot perfor-
mance, and the effectiveness of mitigating the booting-time attack. We also provide a perfor-
mance comparison among MobiHydra, Mobiflage and the default Android FDE system.

Initialization performance. To compare the time required for initialization among MobiHy-
dra, Mobiflage and Android FDE system, we initialize each system three times, and average
the results in Table 2. We observe that the initialization time significantly increases in both
MobiHydra and Mobiflage compared to Android FDE. This is because, for PDE purpose, both
MobiHydra and Mobiflage require an expensive two-pass random wipe of the external storage
(each pass with a new random key), and encryptions over the hidden volumes. However, Android
FDE only needs to encrypt the whole external storage with the master volume key one time.
We claim that the high cost of initialization is not a significant issue for MobiHydra because
initialization is a one-time operation.

PDE system Booting time
with hidden password(s)

Mobiflage 10.7

MobiHydra
pde 1 0.62
pde 2 0.86
pde 3 1.09
pde 4 1.31
pde 5 1.62

Table 3. System boot time in the PDE mode, in which
pde n represents the time for booting the device into
the PDE mode for deniability level n employing the
n-th hidden password. Fig. 5. Booting time of MobiHydra

I/O performance. We use the adb-shell tool to test the I/O performance for each aforemen-
tioned system. We run 10 trials, during each of which we write a 100MB file to the external
storage (i.e., eMMC partition). The results in Table 2 show that MobiHydra has a similar I/O
performance compared to Mobiflage because, first of all, for both MobiHydra and Mobiflage,
read/write the hidden volume will result in similar operations; secondly, in MobiHydra, we adopt
the same encryption algorithm as in Mobiflage.

System boot performance. Compared to Mobiflage, MobiHydra performs different operations
in system boot procedure, especially in pre-boot authentication. We evaluate the boot time of
MobiHydra, Mobiflage and Android FDE under a wrong password, a correct public password
(a correct password for Android FDE since it does not have a public password) and a correct
hidden password (not applicable to Android FDE), respectively. We average the time in Table 2
and 3. We have several observations: First of all, MobiHydra takes longer time when testing
a wrong password compared to either Mobiflage or Android FDE (Table 2). This is because
MobiHydra needs to try the wrong password for the public volume and all the hidden volumes
during pre-boot authentication. Meanwhile, MobiHydra takes longer time to boot the standard
mode compared to the other two systems (Table 2), which is resulted from the countermeasures
used in mitigating the booting-time attack. Second, the time needed to boot the PDE mode in
MobiHydra increases with the deniability levels (Table 3), i.e., the higher the deniability level,
the more time is needed to boot the PDE mode. This is because, MobiHydra tests a given
password starting from the lowest deniability level, and keeps testing until it can find a target
deniability level. Third, the time needed to boot the PDE mode of MobiHydra ranges around
1 second in MobiHydra, which is significantly shorter than 10.7 seconds as it is in Mobiflage
(Table 3). This is because, Mobiflage always tries to un-mount a persistent log partition when
booting a system which, unfortunately, is very inefficient for a device that does not have this
partition (e.g., Google Nexus S). We optimize this process by judging whether or not the device
has such a partition before trying to un-mount it, which results in a saving of approximately 9
seconds when booting a device without such a partition.

Mitigating the booting-time attack. To mitigate the booting-time attack, MobiHydra per-
forms 15 additional invocations of PBKDF2 as dump operations when a correct public password
is provided. Figure 5 shows the statistical characteristics of t retry (refer to Section 4) and t succ
(refer to Section 4) for MobiHydra. t retry is approximately 30% shorter than t succ, i.e., the
deviation between t retry and t succ is similar to that of a default FDE system (Figure 1(b)).
Booting the standard mode in MobiHydra now takes approximately 2 seconds. However, this
will not degrade plausible deniability because, first of all, taking several seconds to boot a mobile

device is very common in daily life; second, upon being suspicious of, the device’s owner can
simply ascribe the slow boot to the poor device performance. Thus, MobiHydra can mitigate
the booting-time defect.

8 Conclusion
The mobile device owners may become the target of a coercive attack if their devices store
certain sensitive content such as evidences of an encountered crime and uprising. To help them
circumvent such attack, we propose MobiHydra, a pragmatic PDE storage with multi-level
deniability for mobile devices. MobiHydra provides a secure mechanism for pragmatic data
hiding, allowing a user to save deniable data in the standard mode without rebooting the device.
In addition, MobiHydra supports multi-level deniability, which reduces the possibility of losing
all the sensitive data at a time. Moreover, MobiHydra can mitigate the booting-time attack,
which is a common vulnerability for all the previous PDE solutions relying on hidden volumes
to offer plausible deniability.

References

1. X. Yu, B. Chen, Z. Wang, B. Chang, W. T. Zhu, J. Jing. MobiHydra: Pragmatic and Multi-Level Plausibly
Deniable Encryption Storage for Mobile Devices. In 17th Information Security Conference (ISC’14), 2014.

2. SXSW Schedule. Caught in the Act: Mobile Tech & Human Rights. [www Document]: http: // schedule.
sxsw. com/ 2014/ events/ event IAP21063 , 2014.

3. Windows Inc. BitLocker Drive Encryption. [www Document]: http: // windows. microsoft. com/ en-us/
windows7/ products/ features/ bitlocker , 2014.

4. App Inc. OS X: About FileVault 2. [www Ducument]: http: // support. apple. com/ kb/ ht4790 , 2014.
5. Google Inc. Linux Unified Key Setup. [www Document]: https: // code. google. com/ p/ cryptsetup/ , 2014.
6. Google Inc. dm-crypt: Linux kernel device-mapper crypto target. [www Document]: https: // code. google.

com/ p/ cryptsetup/ wiki/ DMCrypt , 2014.
7. R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable Encryption. In CRYPTO’97, 1997.
8. A. Skillen. Deniable Storage Encryption for Mobile Devices. PhD thesis, Concordia University, 2013.
9. FreeOTFE. FreeOTFE - Free disk encryption software for PCs and PDAs. version 5.21. Project website:

http: // www. freeotfe. org/ , 2012.
10. A. D.McDonald and M. G. Kuhn. Stegfs: A Steganographic File System for Linux. In International Workshop

on Information Hiding (IH’99), 1999.
11. TrueCrypt. Free open source on-the-fly disk encryption software.version 7.1a. Project website: http: // www.

truecrypt. org/ , 2012.
12. H. Pang, K. lee Tan, and X. Zhou. StegFS: A Steganographic File System. In 19th International Conference

on Data Engineering (ICDE’02), 2002.
13. R. Anderson, R. Needham, and A. Shamir. The Steganographic File System. In International Workshop on

Information Hiding (IH’98), 1998.
14. A. Skillen and M. Mannan. On Implementing Deniable Storage Encryption for Mobile Devices. In 20th

Annual Symposium on Network and Distributed System Security (NDSS’13), 2013.
15. B. Kaliski. PKCS 5: Password-based cryptography specification,version 2.0. RFC 2898 (informational), 2000.
16. J. Assange, R.-P. Weinmann, and S. Dreyfus. Rubberhose: Cryptographically Deniable Transparent Disk

Encryption System. Project website: http: // marutukku. org , 1997.
17. J. Han, M. Pan, D. Gao, and H. Pang. A Multi-user Steganographic File System on Untrusted Shared Storage.

In 26th Annual Computer Security Applications Conference (ACSAC’10), 2010.
18. X. Zhou, H. Pang, and K.-L. Tan. Hiding Data Accesses in Steganographic File System. In 20th International

Conference on Data Engineering (ICDE’03), 2003.
19. A. Czeski, D. J. S. Hilaire, K. Koscher, S. D. Gribble, T. Kohno and B. Schneier. Defeating Encrypted and

Deniable File Systems: TrueCrypt v.5.1a and the Case of the Tattling OS and Applications. In 3rd USENIX
Workshop on Hot Topics in Security (HotSec’08), 2008.

20. A. Irwin. Forensic Methods and Techniques for the Detection of Deniable Encryption. [www document]:
http: // www. cosc. canterbury. ac. nz/ ray. hunt/ deniable encryption tool a survey , 2008.

21. Wikipedia. Hydra. [www Document]: http: // en. wikipedia. org/ wiki/ Hydra , 2014.

