

Preventing Pollution: Choices During Process Synthesis - Chapter 9

David R. Shonnard
Department of Chemical Engineering
Michigan Technological University

Michigan Technological University

1

Chapter 9 (a): Outline

After the Input-Output structure is established, an environmental evaluation during process synthesis can identify large sources of waste generation and release; directing the attention of the designer to pollution prevention options within the process

- 1 Educational goals and topics covered in the module
- 1 Pollution prevention strategies for process units - **Material selection and chemical reactors**
- 1 Pollution prevention strategies for process units - **Separations, Storage Tanks, Fugitive Sources, Separative Reactors, and Safety Concerns**

Michigan Technological University

2

Educational goals and topics covered in
Chapter 9

Students will:

1. become familiar with practical pollution prevention strategies for process units

Chapter 9: Important issues regarding
pollution prevention for unit operations

1. *Material selection*: fuel type, mass separating agents (MSAs), air, water, diluents, heat transfer fluids
2. *Operating conditions*: temperature, pressure, mixing intensity
3. *Energy consumption*: high efficiency boilers, operation of units to minimize energy usage
4. *Material storage and fugitive sources*: storage tank choices and equipment monitoring and maintenance
5. *Waste generation mechanisms*: understanding this will lead to pollution prevention strategies

Chapter 9: Pollution prevention through material selection - fuel type

Example Problem:

Calculate the annual uncontrolled SO_2 emissions to satisfy a steam energy demand of 10^8 Btu/yr with a boiler efficiency of .85 assuming Fuel Oil #6, #2, and Natural Gas.

	#6 Fuel Oil	#2 Fuel Oil	Natural Gas
Emission Factor, EF (lb/ 10^3 gal)	157S	143S	0.6 lb/ 10^6 scf
Sulfur Content, S %	0.84	0.24	----
Heating Value, HV (Btu/ 10^3 gal)	1.48×10^8	1.30×10^8	$1050 \times 10^6 \text{ Btu}/10^6 \text{ scf}$
Annual Emission, E (lb SO_2 /yr)	105	31	.07

$$E_i (\text{lb } i / \text{yr}) = \frac{EF_{\text{av}} (\text{lb } i / 10^3 \text{ gal}) \times ED (\text{Btu} / \text{yr})}{HV (\text{Btu} / 10^3 \text{ gal}) \times BE}$$

$$E_i (\text{lb } i / \text{yr}) = \frac{EF (\text{lb } i / 10^6 \text{ scf}) \times ED (\text{Btu} / \text{yr})}{HV (\text{Btu} / 10^6 \text{ scf}) \times BE}$$

Michigan Technological University

5

Chapter 9: Pollution prevention through material selection - reactor applications

1. Catalysts:

- that allow the use of more environmentally benign raw materials - e.g. **less hazardous raw materials**
- that convert **wastes to usable products and feedstocks**
- products more environmentally friendly - e.g. RFG / low S diesel fuel

2. Oxidants: in partial oxidation reactions

- **replace air with pure O_2** or enriched air to reduce NOx emissions

3. Solvents and diluents :

- **replace toxic solvents** with benign alternatives for polymer synthesis
- **replace air with CO_2** as heat sinks in exothermic gas phase reactions

Michigan Technological University

6

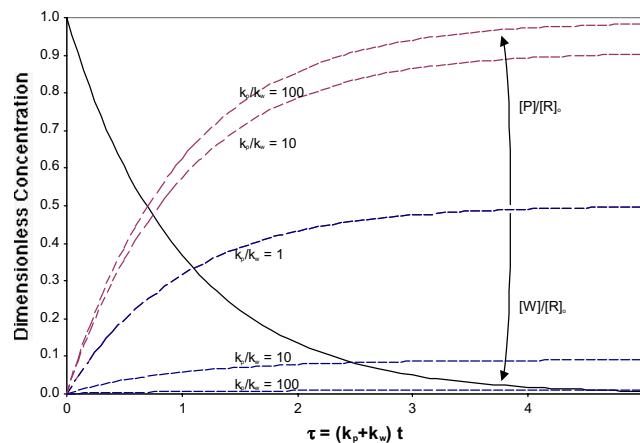
Chapter 9: Pollution prevention for chemical reactors

1. *Reaction type*:

- series versus parallel pathways
- irreversible versus reversible
- competitive-consecutive reaction pathway

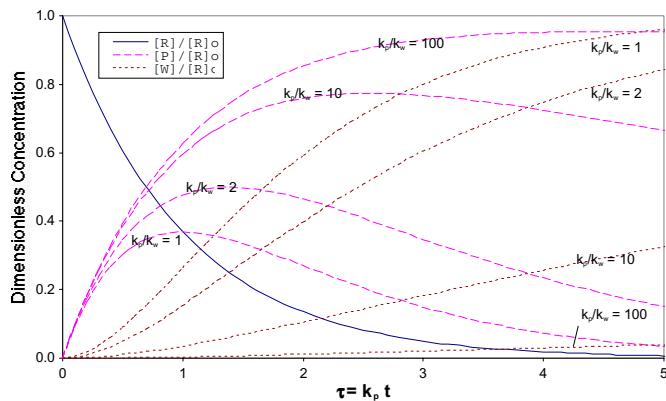
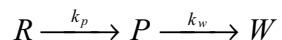
2. *Reactor type*:

- issues of residence time, mixing, heat transfer


3. *Reaction conditions*:

- effect of mixing on yield and selectivity

Chapter 9: Pollution prevention for chemical reactions



1st Order Irreversible Parallel Reactions

Chapter 9: Pollution prevention for chemical reactions

1st Order Irreversible Series Reactions

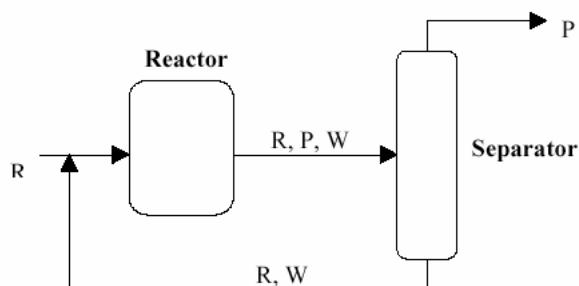
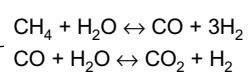
High Conversion
 $t > 5 k_p^{-1}$
High Selectivity
 $k_p \gg k_w$
Selectivity dependent on residence time

MichiganTech

Michigan Technological University

9

Pollution prevention for chemical reactions



Reversible Series Reactions

Steam reforming of CH_4

$R = \text{CH}_4$

$P = \text{CO}$

$W = \text{CO}_2$

Separate and recycle waste to extinction

MichiganTech

Michigan Technological University

10

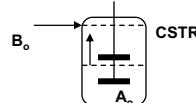
Chapter 9: Pollution prevention - reactor types

1. CSTR:

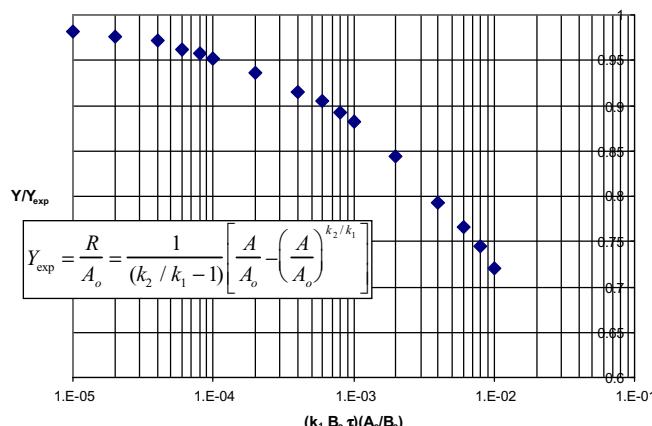
- not always the best choice if residence time is critical

2. Plug flow reactor:

- better control over residence time
- temperature control may be a problem for highly exothermic reactions


3. Fluidized bed reactor :

- if selectivity is affected by temperature, tighter control is possible


4. Separative reactors:

- remove product before byproduct formation can occur: series reactions

Chapter 9: Pollution prevention - mixing effects

Irreversible 2nd order competitive-consecutive reactions

$Y = \text{yield}$
 $= P/A_o$
 $Y_{\text{exp}} = \text{expected}$
 $\tau = \text{mixing time}$
 scale

Increased
mixing will
increase
observed yield

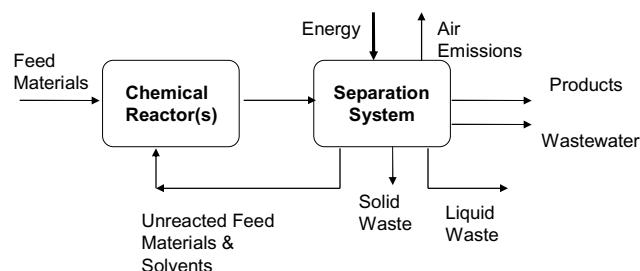
Chapter 9 (a): Pollution prevention - other reactor modifications

1. *Improve Reactant Addition:*

- premix reactants and catalysts prior to reactor addition
- add low density materials at reactor bottom to ensure effective mixing

2. *Catalysts:*

- use a heterogeneous catalyst to avoid heavy metal waste streams
- select catalysts with higher selectivity and physical characteristics (size, porosity, shape, etc.)


3. *Distribute flow in fixed-bed reactors*

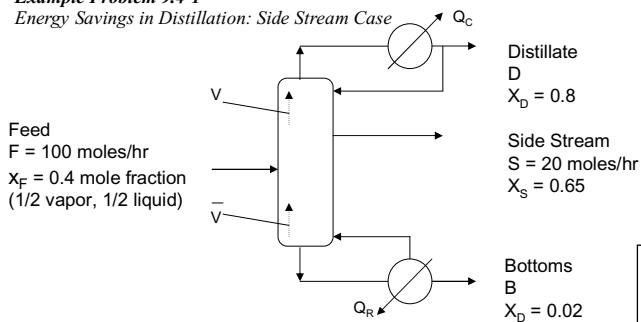
4. *Heating/Cooling:*

- use co-current coolant flow for better temperature control
- use inert diluents (CO_2) to control temperature in gas phase reactions

5. *Improve reactor monitoring and control*

Chapter 9: Separations - Potential problems / opportunities

Pollution Prevention Strategies


- 1 Correct choice of separation technologies
- 1 Choice of mass separating agents
- 1 Design heuristics to prevent pollution
- 1 Careful control of system parameters during operation

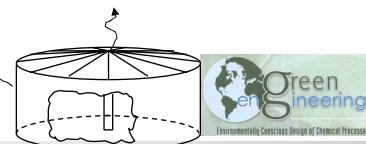
Chapter 9: Separations - Common sense solution to distillation

Example Problem 9.4-1

Energy Savings in Distillation: Side Stream Case

Solution:

**Energy
Savings
Of about
30%**


Column Design	<i>L/D</i>	<i>D</i>	\bar{V}	<i>Q_R</i> (cal/hr)
Side Stream	2.5	32.56	63.96	63.96×10^4
No Side Stream	2.0	48.72	96.16	96.16×10^4

MichiganTech

Michigan Technological University

15

Storage Tank Emissions: Solvent Mass Calculation

- 1 Calculate net emissions reduction for application of new paint to existing fixed roof tank

→ Old dark paint in poor condition: **509.7 lb/yr** emitted

→ New white paint: **337.6 lb/yr**

50% (vol) solvent in paint, 100 sq. ft./gal of paint, solvent density = 6 lb/gal

Dark Paint: Basis 10 years

$$\text{Total VOC Emission} = (10 \text{ yr}) (509.7 \text{ lb/yr}) = \boxed{5,097 \text{ lb}}$$

New White Paint: Basis 10 years

Surface Area of a 16 ft dia and 10 ft tall Tank = 703.7 ft^2

$$\text{Total Solvent Emission} = (10 \text{ yr}) (337.6 \text{ lb/yr}) + \frac{(703.7 \text{ ft}^2)(6 \text{ lb/gal})}{(100 \text{ ft}^2/\text{gal})} = \boxed{3,418.2 \text{ lb}}$$

MichiganTech

Michigan Technological University

16

Chapter 9: Fugitive Sources - pollution prevention techniques

Table 9.6-4 Effectiveness of Various Fugitive Emission Reduction Techniques

Equipment	Control Technique	Control Effectiveness (%)	
		SOCMI	Petroleum Refinery
Pumps, light liquid service	Dual mechanical seals	100	100
	Monthly leak detection and repair	60	80
	Quarterly leak detection and repair	30	70
Valves, gas/light liquid service	Monthly leak detection and repair	60	70
	Quarterly leak detection and repair	50	60
Pressure-relief devices	Tie to flare; rupture disk	100	100
	Monthly leak detection and repair	50	50
	Quarterly leak detection and repair	40	40
Open-ended lines	Caps, plugs, blinds	100	100
Compressors	Mechanical seals; vented to degassing reservoirs	100	100
Sampling connections	Closed purge sampling systems	100	100

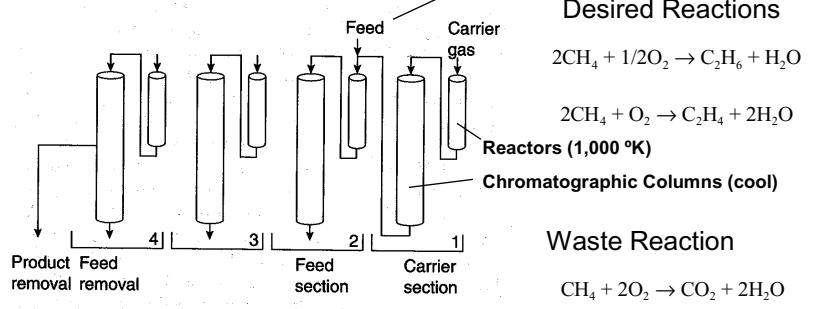
Allen, D.T. and Shonnard, D.R., "Green Engineering: Environmentally Conscious Design of Chemical Processes, Prentice-Hall, Upper Saddle River, NJ, 2002

Michigan Technological University

17

Chapter 9: Separative reactors – key features

- 1 **Combine chemical reaction with separation in a single unit**
- 1 **Reduce waste generation**
 - » Shift chemical equilibrium to favor product formation by removing products from reaction mixture
 - » Remove desired product in series reactions thereby reducing waste generation via secondary reactions
- 1 **Maximize product yields**
- 1 **Separation technologies used**
 - » Distillation
 - » Adsorption
 - » Membranes

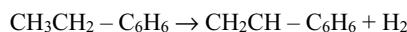
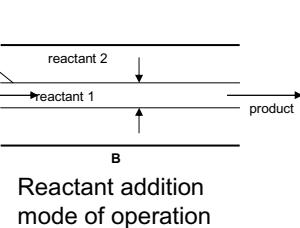
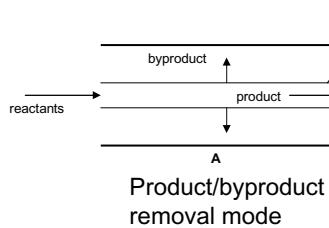

Michigan Technological University

18

Chapter 9: Separative reactors - with adsorption

Simulated Countercurrent Moving-bed Chromatographic Reactor

Yields of product from CH_4 increase from <20% to > 50%




Allen, D.T. and Shonnard, D.R., "Green Engineering: Environmentally Conscious Design of Chemical Processes, Prentice-Hall, Upper Saddle River, NJ, 2002

MichiganTech

Michigan Technological University

19

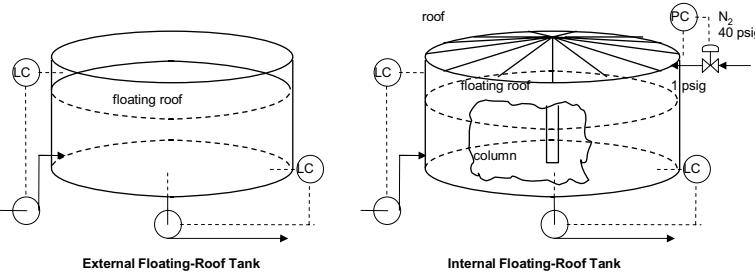
Chapter 9: Separative reactors - with membranes

Dehydrogenation of ethylbenzene to styrene reaction

Yields of product increase 15% and selectivity increases 2-5%

MichiganTech

Michigan Technological University


20

Chapter 9: Safety concerns with pollution prevention

- 1 Pollution prevention applications may make a chemical process more complex, thereby increasing safety concerns.

Example problem 9.7-1 Safety concerns for storage tank pollution prevention

Allen, D.T. and Shonnard, D.R., "Green Engineering: Environmentally Conscious Design of Chemical Processes, Prentice-Hall, Upper Saddle River, NJ, 2002

21

MichiganTech

Michigan Technological University

Table 9.7-2 Limited HAZ-OP Analysis of storage tank pollution prevention

Guide Words	Deviation	EFRT	IFRT	Possible Cause	Consequences
NO	Inlet pump fails to stop or Outlet pump fails to start	X	X	1. Level gauge fails 2. Pump fails	1. Toluene spills out top of tank 2. Soil and ground water contamination 3. Exposure to site personnel
MORE	Inert N ₂ fails to stop		X	1. Pressure control fails	1. Overpressure of storage tank and tank roof failure 2. Tank rupture and spill of toluene
LESS	Inert N ₂ insufficient		X	1. N ₂ supply interruption	1. flammable mixture of Toluene + air
AS WELL AS	Water in tank	X	X	1. Floating roof leak in EFRT 2. External roof leak in IFRT	1. Contamination of toluene product and generation of additional waste
PART OF	Inert N ₂ insufficient		X	1. Covered under LESS	1. Covered under LESS
REVERSE	Pumps reverse	X	X	1. Impossible	1. Level control failure and spill of toluene
OTHER THAN	Another inerting gas		X	1. Another gas is used	1. If O ₂ is used by mistake, a flammable mixture is created.

EFRT – External Floating-Roof Tank
IFRT – Internal Floating-Roof Tank

Allen, D.T. and Shonnard, D.R., "Green Engineering: Environmentally Conscious Design of Chemical Processes, Prentice-Hall, Upper Saddle River, NJ, 2002

22

MichiganTech

Michigan Technological University

Chapter 9: Summary/Conclusions

1. **Pollution prevention for chemical reactions and reactors:**

- material choices for reactions
- reactor types (CSTR, plug flow, fluid bed, etc.)
- reaction conditions (temperature, mixing, concentration effects)

2. **Pollution prevention for within other unit operations**

- Separation units
- Material choices can affect energy consumption
- Storage tanks - some types are inherently less polluting
- Fugitive sources - some types of equipment emit less VOCs
- Separative reactors can increase reaction yield and selectivity
- Safety concerns originate from the increase in complexity of pollution prevention design modifications