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Introduction

Metabolism is the collection of enzyme-
catalyzed reactions that convert
substrates that are external to the cell
into various internal products.
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Characteristics of Metabolism

1. Varies from organisms to organism
2. Many common characteristics

3. Affected by environmental conditions

» a) O, availability: Saccharomyces cerevisiae
Aerobic growth on glucose — more yeast cells
Anaerobic growth on glucose — ethanol

» b) Control of metabolism is important in bioprocesses
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Types of Metabolism

Catabolism

Anabolism

Metabolic reactions in the cell that degrade a substrate into
smaller / simpler products.

Glucose — CO,

Metabolic reactions that result in the synthesis of larger /
more complex molecules.
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Figure 5.1: Classes of Reactions (Fig. 5.1)
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Figure 5.1. Schematic diagram of reactions in a bacterial cell.
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Bioenergetics
The source of energy to fuel cellular metabolsim is
“reduced” forms of carbon (sugars, hydrocarbons, etc.)

The Sun is the ultimate source via the process of
Photosynthesis in plants

CO, +H,0 + hv - CH,0 + O,
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ATP - Adenosine Triphosphate

Catabolism of carbon-containing substrates generates
high energy biomolecules
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ATP - Reactions

Release of energy

ATP + H,0 = ADP + Pi; AG° =-7.3 kcal/mole
Storage of energy

ADP + H,0 = AMP + Pi; AG° = -7.3 kcal/mole

Analogs of ATP
GTP = guanosine triphosphate
UTP = uridine triphosphate
CTP = cytidine triphosphate
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ATP: Energy Currency of the Cell (Fig. 5.2)
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Figure 5.2. Transfer of biological energy from high-energy to low-energy cc
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NAD* and NADP * (Fig. 5.3)
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Glucose Metabolism

1. Fermentation (Glycolysis) of glucose to pyruvate.

2. Krebs or tricarboxylic acid (TCA) cycle for conversion
of pyruvate to CO..

3. Respiration or electron transport chain for formation of

ATP by transferring electrons from NADH to an
electron acceptor (O, under aerobic conditions).
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* Phase 1:‘Phiosphorylation of glucose
and its conversion to *
glyceraldehyde 3-phnsphate
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" Phase 2" Conversion of glycataldahyde :

coupled formation-of ATP .
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Glycolysis: in Eucaryotes

* Fermentation of Glucose — Pyruvate
* no O, required
e Occurs in the Cytoplasm

Glucose + 2 ADP + 2 NAD* +2 P, —
2 Pyruvate +|2 ATP|+ 2 (NADH + H*)

2 (FADH + H+)
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In Eucaryotes, Cytoplasm l to Mitochondria

4ATP=




Krebs or TCA Cycle

* In Mitochondria of eucaryotes

e provides e~ (NADH) and ultimately energy (ATP) for
biosynthesis

* provides intermediates for amino acid synthesis

* generates energy (GTP)
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Krebs or TCA Cycle

Pyruvate + 4 NAD* + FAD — 3 CO, + 4NADH, + FADH,
GDP + P, - GTP
GTP + ADP — GDP + ATP

-

Yield of ATP 1+4(3)+2=15ATP
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Complete Oxidation of Glucose

Glucose + 36 P, + 36 ADP +6 O, —
6 CO, + 6 H,0 + 36 ATP

AGP° = (36)(7.3 kcal/mole) = 263 kcal/mole glucose
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Energetics of Glucose Oxidation

Direct Oxidation of Glucose
Glucose + 6 0, - 6 CO, + 6 H,O

AGP° = 686 kcal/mole glucose

Energy Efficiency of Glycolysis/TCA Cycle
263/686(100) = 38% (standard conditions)
~ 60% (nonstandard conditions)
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ATP Yields

Eucaryotes
3ATP, 2ATP — 36 ATP
NADH FADH Glucose

Procaryotes
<2 ATP, 1ATP — <24 ATP
NADH FADH Glucose
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Respiration

* In Mitochondria of eucaryotes
* in membrane-bound proteins in procaryotes

e " transport from NADH or FADH to an
electron acceptor
- /)

/Y\

Aerobic Anaerobic
0, NO,, SO,?, Fe¥*, Cu?*, S°,
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Membrane
Respiration

motive
ATP Synthesis ADP + P
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. Figure 5.6. Electron transport and electron transport phosphorylation. Top: Ox 22
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Biosynthesis

The EMP pathway and TCA cycle are used for
catabolism (Glucose — CO, + NADH + ATP)
primarily. — energy production.

* The Hexose - Monophosphate pathway (HMP)
is used for biosynthesis
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Amino Acids by Various Pathways (Fig. 5.8)
Family Precursor Products
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Metabolic Engineering (ME)

“the directed improvement of product formation
or cellular properties through the modification of
specific biochemical reactions(s) or the
introduction of new one(s) with the use of
recombinant DNA technology’.

Itis a field that employs the following skills
+ Applied molecular biology
+ Reaction Engineering
+ Systems analysis

“Metabolic Engineering: Principles and Methodologies”
Stephanopoulos, Aristidou, and Nielsen, Academic Press, 1998
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Metabolic Pathway Analysis
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FIGURE 3.1 Mixed acid fermentation by E. coli. The substrate (glucose) and the seven
metabolic products are circled. Intracellular metabolites and cofactors included in the metabolic
model are marked in boldface type. The transamination reaction where aspartate is formed from
oxaloacetate is shown as a direct amination, i.e., glutamate and 2-ketoglutarate are not shown in
order to reduce the complexity. 29
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Principles of ME and Mixed Acid Fermentation

1. Rates of intra-cellular reactions can be measured by
extra-cellular product accumulation. (ATP)

2. The redox balance (balance on NADH consumption and
generation) must balance.

TABLE 3.1 Typical Yields of the Mixed Acid E. coli Fermentation®

Metabolic product Moles formed per 100 mol of glucose fermented
Formate 2.4
Acetate 36.5
Lactate 79.5
Succinate 10.7
Ethanol 49.8
co, 88.0
H, 75.0

“ The data are taken from Ingraham et al. (1983).

“Metabolic Engineering: Principles and Methodologies”
Stephanopoulos, Aristidou, and Nielsen, Academic Press, 1998
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Analysis of E. Coli Mixed Acid Fermentation

1. How do we determine the rate of ATP generation using
measured data from the fermentation experiment? What is
the ATP used for?

2. Write a balance equation for the generation and
consumption of NADH.

3. Using a basis of 100 moles of Glucose, how many moles
of NADH are generated?

4. Using the data in Table 3.1, how many moles of NADH
are consumed?

5. Is a redpx balance achieved during this fermentation?

“Metabolic Engineering: Principles and Methodologies”
Stephanopoulos, Aristidou, and Nielsen, Academic Press, 1998
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