Chapter 3: Enzymes

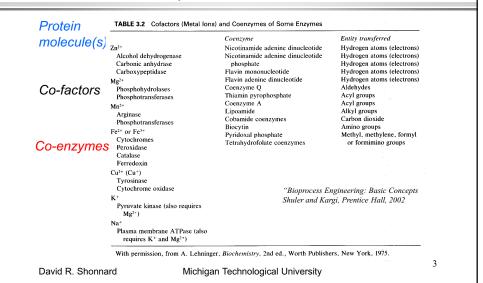
David Shonnard Department of Chemical Engineering Michigan Technological University

David R. Shonnard

Michigan Technological University

Presentation Outline: Lectures 4 and 5

- 1 Introduction to Enzymes
- 1 Kinetics of Enzyme-Catalyzed Reactions
- 1 Effects of Environmental Conditions on Kinetics
- 1 Inhibition of Enzyme Catalyzed Reactions
- 1 Immobilized Enzyme Systems
- 1 Industrial Uses of Enzymes


David R. Shonnard

Michigan Technological University

2

Introduction to Enzymes (3.1 and 3.2)

Constituents of Enzymes

Introduction to Enzymes (3.1)

Naming of Enzymes

- adding suffix -ase to
 - → substrate converted (e,g, urease)
 - → reaction catalyzed (e,g, dehydrogenase)

Enzymes Facts

- over 2,000 known enzymes
- · more efficient than chemical catalyses
- high molecular weight (15,000<MW<10⁶ Daltons)

David R. Shonnard

Michigan Technological University

Major Classes of Enzymes (Table 3.1)

Oxidoreductases

• oxidation – reduction reactions

Transferases

• transfer of whole functional groups (e.g. NH₂ group)

Hydrolases

• Hydrolysis reactions involving various functional groups

Lyases

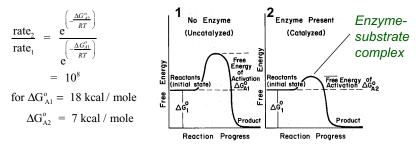
• Additions to double bonds

Isomerases

• oxidation – reduction reactions

Ligases

· formation of bonds with ATP cleavage


David R. Shonnard

Michigan Technological University

5

How Enzymes Work (3.2)

Lower the activation energy of enzyme-substrate complex

Lock and Key Model

Active Site

6

complex

ES

David R. Shonnard

Michigan Technological University

Enzyme Kinetics (3.3)

Michaelis-Menten Kinetics

Relate product reaction rate to measurable quantities

David R. Shonnard

Michigan Technological University

7

Enzyme Kinetics (3.3)

Mass Balance Equations

Product Rate
$$v = \frac{d[P]}{dt} = k_2[ES]$$

ES Rate
$$\frac{d[ES]}{dt} = k_1[E][S] - k_1[ES] - k_2[ES]$$

Enzyme Balance
$$[E] = [E_o] - [ES]$$

David R. Shonnard

Michigan Technological University

Michaelis-Menten Kinetics (eqn. 3.8)

Rapid Equilibrium Assumption (formation of ES is rapid)

$$\begin{array}{ll} \textit{Equilibrium Constant} & \textit{K}_{m}^{'} = \frac{k_{.1}}{k_{1}} = \frac{[E][S]}{[ES]} \\ \end{array}$$

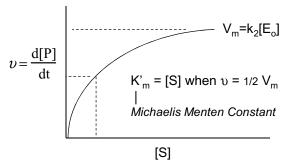
Combine K'_m equation with E balance equation

[ES] =
$$\frac{[E_o][S]}{K'_m + [S]}$$

Product Rate Eqn. - Michaelis-Menten Equation

maximum rate

$$v = k_2[ES] = \frac{k_2[E_o][S]}{K_m' + [S]} = \frac{V_m[S]}{K_m' + [S]}$$

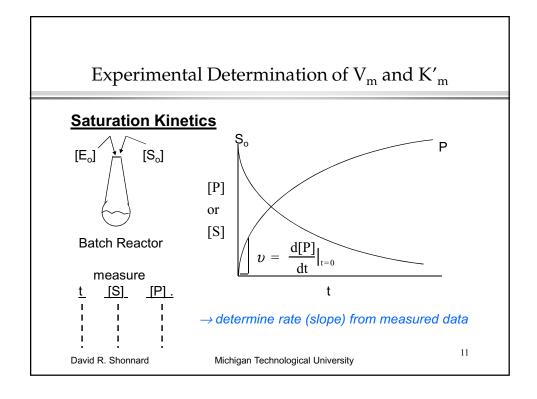

David R. Shonnard

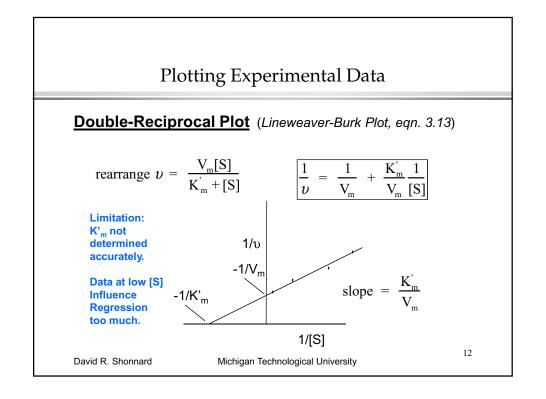
Michigan Technological University

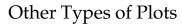
9

Michaelis-Menten Kinetics (cont.)

Saturation Kinetics

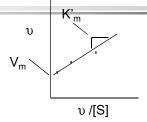


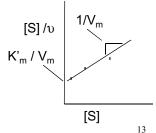

• at high [S] $\rightarrow v$ =V $_m$ (constant) - why? \rightarrow all active sites on E filled with S


• if K'_m is small \rightarrow S has high affinity for E

David R. Shonnard

Michigan Technological University




Eadie-Hofstee Plot (eqn. 3.14)

$$v = V_m + K_m \frac{v}{[S]}$$

Hanes-Woolf Plot (eqn. 3.15)

$$\boxed{\frac{[S]}{v} = \frac{K_m'}{V_m} + \frac{1}{V_m}[S]}$$

David R. Shonnard

Michigan Technological University

Complex Enzyme Kinetics: Inhibition

A) Competitive Inhibition (eqn. 3.20 - 3.23)

$$v = \frac{V_{m}[S]}{K'_{m}[1 + \frac{[I]}{K_{I}}] + [S]}$$

$$E + S \xleftarrow{k_{.1}} ES \xrightarrow{k_{2}} E + P$$

$$+$$

$$I \rightarrow Inhibitor binds to active site on enzyme
$$\updownarrow K_{I}$$

$$EI \rightarrow Enzyme / Inhibitor complex$$$$

- $K'_{m, app} \rightarrow net \ effect \ of \ I \ is \ to \ increase \ K'_{m}$
- overcome inhibition by increasing [S]

David R. Shonnard

Michigan Technological University

Complex Enzyme Kinetics: Inhibition

B) Noncompetitive Inhibition (eqn. 3.24 - 3.27)

$$\boxed{v = \frac{V_m [S]}{\left[1 + \frac{[I]}{K_I}\right](K_m' + [S])}} \begin{array}{c} E + S \xleftarrow{k_{\cdot I}} & k_I \to ES \xrightarrow{k_2} \to E + P \\ + & + & + \\ I & I & I \\ \updownarrow K_I & & \updownarrow K_I \\ V_{m \ app} = \frac{V_m}{\sum_{m \ app}} \end{array}$$

$$E + S \xleftarrow{k_{\cdot I}} & ES \xrightarrow{k_2} \to E + P$$

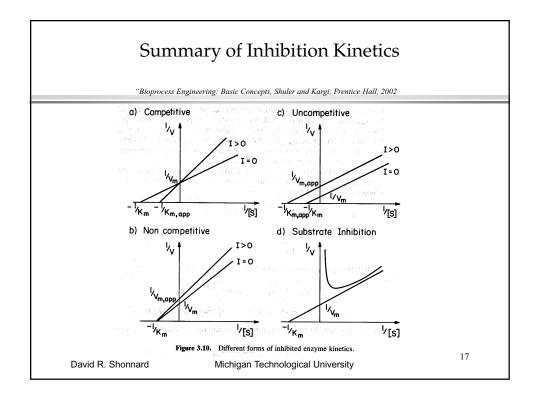
$$+ & + & + \\ I & I & I \\ \updownarrow K_I & & \updownarrow K_I \\ EI + S \longleftarrow \to ESI$$

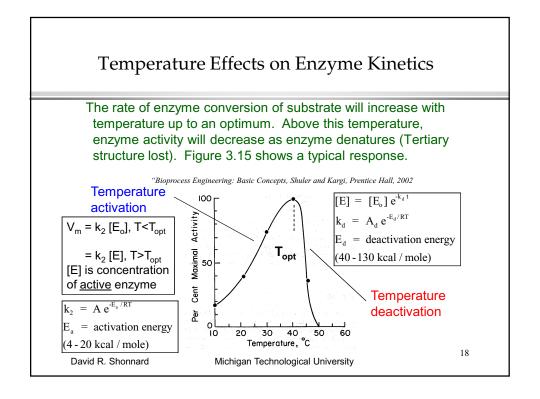
$$V_{m, app} = \frac{V_m}{\left[1 + \frac{[I]}{K_I}\right]} \rightarrow net \ effect \ of \ I \ is \ to \ reduce \ V_m$$

· overcome inhibition by blocking inhibitor

David R. Shonnard

Michigan Technological University

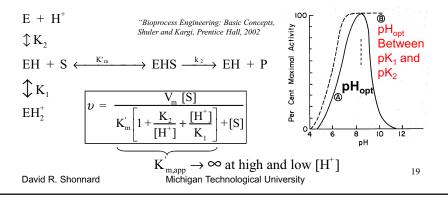

15


More Inhibition Kinetics (eqn. 3.28 - 3.38)

- C) Uncompetitive Inhibition
 D) Substrate Inhibition
 - have similar mechanisms
 by inhibiting on ES

David R. Shonnard

Michigan Technological University



pH Effects on Enzyme Kinetics (eqn. 3.40 - 3.44)

Enzymes are active only over a small pH range

Reasons

- 1. Tertiary structure is pH-dependent
- 2. Active site functional group charges are pH-dependent

Immobilized Enzyme Systems

Immobilization - Definition

The containment of enzyme solution within a confined space for the purpose of retaining and re-using enzyme in processing equipment. There are many advantages that accompany immobilized enzymes and many methods for immobilization.

David R. Shonnard

Michigan Technological University

Immobilized Enzyme Systems

Advantages

- 1. <u>Reduce costs</u> of operation compared to *free enzyme systems* where additional separation and purification steps are needed.
- 2. Some immobilization methods can increase enzyme activity.
- 3. A <u>model system</u> to study enzyme action in <u>membrane-bound</u> enzymes that occur in the cell.

Disadvantages

- 1. Many immobilized enzymes exhibit lower activity compared to free enzymes.
- 2. More expensive to prepare than free enzymes.
- 3. Mass transfer limitations due to immobilization methods.

David R. Shonnard

Michigan Technological University

21

Methods of Enzyme Immobilization

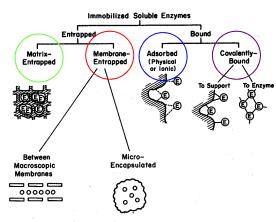


Figure 3.16. Major immobilization methods.

"Bioprocess Engineering: Basic Concepts, Shuler and Kargi, Prentice Hall, 2002

David R. Shonnard

Michigan Technological University

Matrix Entrapment of Enzymes

Matrix Entrapment

The <u>enzyme solution</u> is mixed with a *polymeric fluid* that solidifies into various forms, depending on application (usually small beads). The polymeric material is *semi-permeable*. Large molecular weight enzymes can not diffuse out, but smaller substrate and product molecules can.

Matrices for Entrapment

- Ca-alginate
- Agar
- Polyacrylamide
- Collagen

David R. Shonnard

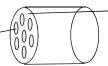
Michigan Technological University

23

Membrane Entrapment

Membrane Materials

Enzymes solution may be confined between thin semi-permeable membranes. Membrane materials include;

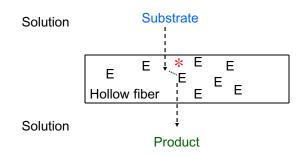

Nylon

- Cellulose
- Polysulfone
- Polyacrylate

Membrane Configurations

<u>Hollow fiber</u> configuration is a popular arrangement for separating enzyme from substrate and product solution.

Hollow fibers containing a stationary enzyme — solution



Mobile fluid outside fiber tubes containing substrate and products

David R. Shonnard

Michigan Technological University

Membrane Entrapment: Diffusion Processes

David R. Shonnard

Michigan Technological University

25

Surface Immobilization: Adsorption

Adsorption: Attachment of enzymes to stationary solids by weak physical forces (van der Waals or dispersion forces). Active site is normally unaffected and nearly full activity is observed. Desorption of enzymes is a common problem.

Solid Support Materials:

- Alumina
- Porous Glass
- Diatomaceous Earth
- Cellulose Materials
- Ion Exchange Resin
- Silica
- Ceramics
- Clay
- Activated Carbon
- Starch

David R. Shonnard

Michigan Technological University

Surface Immobilization: Covalent Bonding

Covalent Bonding: The retention of enzyme on support surfaces by covalent bonding between *functional groups* on the enzyme and those on the support surface.

Functional Groups on Enzymes:

- Amino (protein-NH₂)
- Carboxyl (protein-COOH)
- Hydroxyl (protein-OH)
- Sulfhydryl (Protein-SH)

Active site of enzyme must not participate in covalent bonding. Enzyme inhibitors are added to enzyme solution during covalent bonding treatment.

David R. Shonnard

Michigan Technological University

27

Surface Immobilization: Support Bonding

TABLE 3.3 Methods of Covalent Binding of Enzymes to Supports

Supports with -OH(a) Using cyanogen bromide $HC-OH \qquad HC-O \qquad HC-O-NH-PROTEIN$ $+CNBr \rightarrow HC-OH \qquad HC-OH$ (b) Using S-triazine derivatives $+OH + CI + NH_2 \qquad +OH \qquad +OH$

Surface Immobilization: Support Bonding

Supports with -- COOF

(a) Via azide derivative

1)
$$-O-CH_2-COOH \xrightarrow{CH_3OH} -O-CH_2-COOCH_3 \xrightarrow{H_2NNH_2} -O-CH_2-CO-NH-NH_2$$

$$2) \hspace{0.2cm} \left| \hspace{0.2cm} -O-CH_2-CO-NH-NH_2 \frac{NaNO_2}{HCI} \right| -O-CH_2-CON_3 \frac{+protein-NH_2}{2} \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_2 \right| \\ \left| \hspace{0.2cm} -O-CH_2-CO-NH-NH_2 \frac{NaNO_2}{HCI} \right| -O-CH_2 -CON_3 \frac{+protein-NH_2}{2} \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_2 \right| \\ \left| \hspace{0.2cm} -O-CH_2-CO-NH-NH_2 \frac{NaNO_2}{HCI} \right| -O-CH_2 -CON_3 \frac{+protein-NH_2}{2} \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_2 \right| \\ \left| \hspace{0.2cm} -O-CH_2-CO-NH-NH_2 \frac{NaNO_2}{HCI} \right| -O-CH_2 -CON_3 \frac{+protein-NH_2}{2} \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_2 \right| \\ \left| \hspace{0.2cm} -O-CH_2-CO-NH-NH_2 \frac{NaNO_2}{2} \right| -O-CH_2 -CON_3 \frac{+protein-NH_2}{2} \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_2 \right| \\ \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_2 \right| -O-CH_2 -CON_3 \frac{+protein-NH_2}{2} \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_2 \right| \\ \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_2 \right| -O-CH_2 -CO-NH-PROTEIN_3 + \frac{1}{2} \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 \right| \\ \left| \hspace{0.2cm} -O-CH_2-CO-NH-NH_2 \frac{NaNO_2}{2} \right| -O-CH_2 -CO-NH-PROTEIN_3 + \frac{1}{2} \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 \right| \\ \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 \right| -O-CH_2 -CO-NH-PROTEIN_3 + \frac{1}{2} \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 \right| \\ \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 \right| -O-CH_2 -CO-NH-PROTEIN_3 + \frac{1}{2} \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 \right| \\ \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 + \frac{1}{2} \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 \right| \\ \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 + \frac{1}{2} \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 \right| \\ \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 + \frac{1}{2} \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 \right| \\ \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 + \frac{1}{2} \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 \right| \\ \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 + \frac{1}{2} \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 \right| \\ \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 + \frac{1}{2} \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 \right| \\ \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 + \frac{1}{2} \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 \right| \\ \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 + \frac{1}{2} \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 \right| \\ \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 + \frac{1}{2} \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 \right| \\ \left| \hspace{0.2cm} -O-CH_2-CO-NH-PROTEIN_3 + \frac{1}{2$$

(b) Using a carbodiimide

Supports containing anhydrides

With permission, from D. I. C. Wang and others, Fermentation and Enzyme Technology, John Wiley & Sons, New York

"Bioprocess Engineering: Basic Concepts, Shuler and Kargi, Prentice Hall, 2002

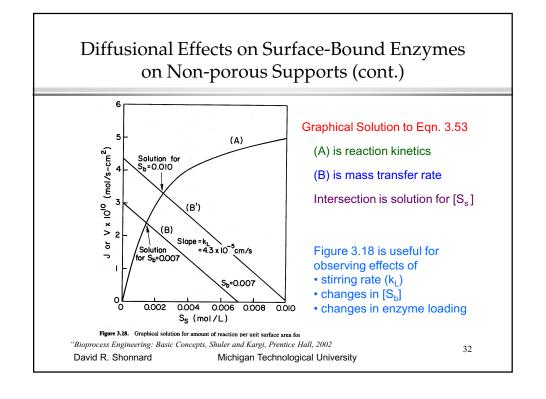
David R. Shonnard Michigan Technological University

29

Diffusional Limitations: Immobilized Enzyme Systems (section 3.4.2)

Diffusional limitations are observed to various degrees in all immobilized enzyme systems. This occurs because substrate must diffuse from the bulk solution up to the surface of the immobilized enzyme prior to reaction. The rate of diffusion relative to enzyme reaction rate determines whether limitations on intrinsic enzyme kinetics is observed or not.

Damkohler Number


$$Da = \frac{\text{maximum rate of reaction}}{\text{maximum rate of diffusion}} = \frac{V_m'}{k_L[S_b]}$$

If Da>>1, diffusion rate is limiting the observed rate If Da<<1, reaction rate is limiting.

David R. Shonnard

Michigan Technological University

Diffusional Effects on Surface-Bound Enzymes on Non-porous Supports
$$\begin{array}{c} s_{\underline{s}} = s_{\underline{u}} \\ s_{\underline{s}} = s_{\underline{u}} \\ s_{\underline{u}} \\ s_{\underline{u}} \\ s_{\underline{u}} = s_{\underline{u}} \\ s$$

Diffusional Effects in Enzymes Immobilized in a Porous Matrix

Substrate Mass Balance Equation

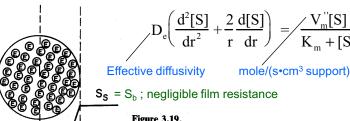


Figure 3.19. profile in a po containing im it is assumed limitation exis surface conce

Boundary Conditions

at
$$r = R$$
, $[S] = [S_s]$

ar r = 0, $\frac{d[S]}{dr} = 0$

David R. Shonnard

r=0

Michigan Technological University

33

Diffusional Effects in Enzymes Immobilized in a Porous Matrix

Dimensional Substrate Mass Balance Equation

$$\begin{split} \overline{S} &= \frac{[S]}{[S_s]}, \ \overline{r} = \frac{r}{R}, \ \beta = \frac{K_m}{[S_s]} \\ &\left(\frac{d^2\overline{S}}{d\overline{r}^2} + \frac{2}{\overline{r}}\frac{d\overline{S}}{d\overline{r}}\right) = \ \phi^2 \, \frac{\overline{S}}{1 + \overline{S} \, / \, \beta} \\ &\text{Boundary Conditions} \\ &\text{at } \overline{r} = 1, \ \overline{S} = 1 \\ &\text{ar } \overline{r} = 0, \ \frac{d\overline{S}}{dr} = 0 \qquad \phi = R \, \sqrt{\frac{V_m^* \, / \, K_m}{D_c}} \ = \text{ Thiele Modulus} \end{split}$$

David R. Shonnard

Michigan Technological University

[&]quot;Bioprocess Engineering: Basic Concepts, Shuler and Kargi, Prentice Hall, 2002

Effectiveness of Immobilized Enzymes

Rate of reaction within matrix (r_s) is equal to the rate of diffusion through matrix surface (N_s)

$$r_s = N_s = -4\pi R^2 D_e \frac{d[S]}{dr}\Big|_{r=R}$$

$$r_{_{S}} \; = \; \eta \; \frac{V_{_{m}}^{"} \left[S_{_{S}}\right]}{K_{_{m}} \; + \left[S_{_{S}}\right]}$$

$$\eta \; = \text{1, no diffusion limitations}$$

$$\eta \; < \text{1, diffusion limits reaction rate}$$

effectiveness factor

David R. Shonnard

Michigan Technological University

35

Effectiveness Factor and Thiele Modulus/Michaelis Constant

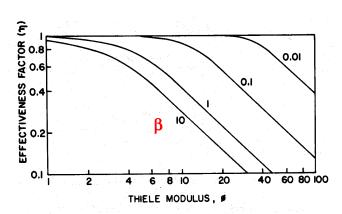
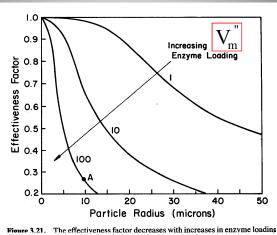



Figure 3.20. Theoretical relationship between the effectiveness factor η and

"Bioprocess Engineering: Basic Concepts, Shuler and Kargi, Prentice Hall, 2002

David R. Shonnard Michigan Technological University

Effectiveness Factor and Particle Radius/Enzyme Loading

"Bioprocess Engineering: Basic Concepts, Shuler and Kargi, Prentice Hall, 2002

David R. Shonnard

Michigan Technological University

37

Overview of Industrial and Medicinal Enzymes

"Bioprocess Engineering: Basic Concepts, Shuler and Kargi, Prentice Hall, 2002

Table 3.6 Some Industrially Important Enzymes

<u>Major</u> <u>Industrial</u> **Enzymes**

Table 3.6

Name	Source	Application	
Amylase	Bacillus subtilis, Aspergillus niger	Starch hydrolysis, glucose production	
Glucoamylase	A. niger, Rhizopus niveus, Endomycopsis	Saccharification of starch, glucose production	
Trypsin	Animal pancreas	Meat tenderizer, beer haze removal	
Papain	Papaya	Digestive aid, meat tenderizer, medical applications	
Pepsin	Animal stomach	Digestive aid, meat tenderizer	
Rennet	Calf stomach	Cheese manufacturing	
Glucose isomerase	Flavobacterium arborescens, Bacillus coagulans, Lactobacillus brevis	Isomerization of glucose to fructose	
Penicillinase	B. subtilis	Degradation of penicillin	
Glucose oxidase	A. niger	Glucose → gluconic acid, dried-egg manufacture	
Lipases	Rhizopus, pancreas	Hydrolysis of lipids, flavoring and digestive aid	
Invertase	S. cerevisiae	Hydrolysis of sucrose for further fer- mentation	
Pectinase	A. oryzae, A. niger, A. flavus	Clarification of fruit juices, hydrolysis of pectin	
Cellulase	Trichoderma viride	Cellulose hydrolysis	

David R. Shonnard

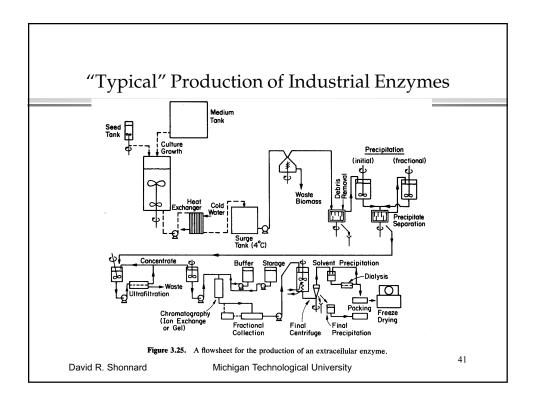
Michigan Technological University

Production Statistics of Industrial Enzymes, (1990)

		World	Market
<u>Enzyme</u>	<u>Type</u>	Market (\$)	Share (%)
Proteases	alkaline (detergents)	100 MM	25.0
	other alkaline	24 MM	6.0
	neutral	48 MM	12.0
	animal rennet	26 MM	6.5
	microbial rennet	14 MM	3.5
	trypsins	12 MM	3.0
	other acid proteases	12 MM	3.0

David R. Shonnard

Michigan Technological University


39

Production Statistics of Industrial Enzymes (cont., 1990)

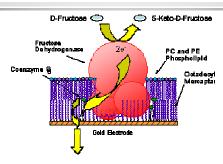
	World	Market
<u>Enzyme</u>	Market (\$)	<u>Share (%)</u>
lpha-amylases	20 MM	5.0
β-amylases	52 MM	13.0
Glucose isomerase (soft drinks)	24 MM	6.0
Pectinase (Juice/Wine Making)	12 MM	3.0
Lipase (Soaps/detergents, cheese)	12 MM	3.0
All Others	44 MM	11.0

David R. Shonnard

Michigan Technological University

Medicinal Uses of Enzymes

Used for Diagnosis and Therapy


Trypsin and Streptokinase - as antiinflammatory agents Lysozyme - as an antibiotic for gram-positive cells Urokinase - as an agent to dissolve blood clots Asparaginase - an anticancer drug (cancer cells need asparagine) Glucose oxidase - blood levels; glucose \rightarrow gluconic acid + $\rm H_2O_2$ Tissue Plasminogen Activator (TPA) - dissolves blood clots

42

David R. Shonnard

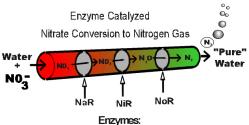
Michigan Technological University

Enzymes and Biosensors

Membrane-bound redox enzymes constitute a large and important class of enzymes. The cell membrane provides the scaffolding upon which these enzymes arrange into systems for multi-step catalytic processes. The reconstruction of portions of this redox catalytic machinery, interfaced to an electrical circuit, leads to novel sensing devices.

Copyright ©Monbouquette Laboratory, UCLA

David R. Shonnard


Michigan Technological University

43

Enzymes and Biosensors

EZNET System for Eliminating Nitrate Pollution

 $Copyright @ 1995, 1996, 1997, 1998, 1999, 2000 \ The \ Nitrate \ Elimination \ Co., Inc.; All \ Rights \ Reserved \ All \ Rights \ Reserved \ All \ Rights \ Reserved \ Rights \ Righ$

NaR=NitrateReductase; NiR=NitriteReductase NoR=NitrousOxideReductase

These enzymes are immobilized on "beads" with an electron-carrying dye. In this formulation, the reduction of nitrate to environmentally safe nitrogen gas is driven by a low voltage direct current.

David R. Shonnard

Michigan Technological University

Enzyme Engineering

Bioluminescence a Biomarker for Toxicity of HPV Chemicals and in Drug Development

Eileen Kim, Ph.D. student, and Cambrex Corporation

62 kDa molecular weight oxygenase Yellow green light emission at 560 nm Quantum yield: 88 photon/cycle Light output proportional to [ATP]

Firefly Luciferase luciferin + luciferase + ATP -----luciferyl adenylate-luciferase + pyrophosphate

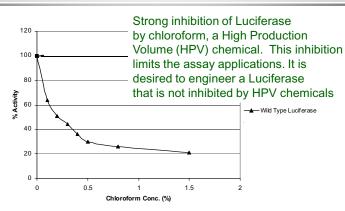
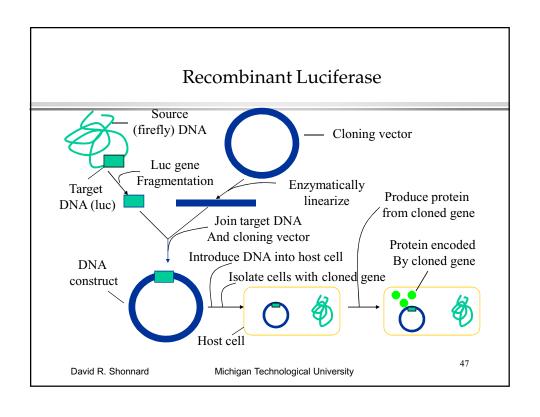
oxyluciferin + luciferase + AMP + light

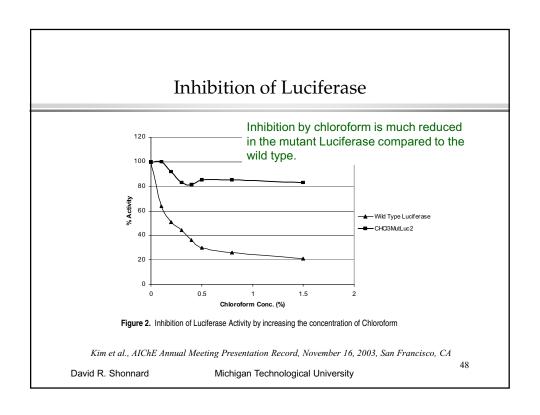
David R. Shonnard

Michigan Technological University

45

Inhibition of Luciferase


Figure 2. Inhibition of Luciferase Activity by increasing the concentration of Chloroform

Kim et al., AIChE Annual Meeting Presentation Record, November 16, 2003, San Francisco, CA

David R. Shonnard

Michigan Technological University

