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Introduction

Metabolism is the collection of enzyme-
catalyzed reactions that convert
substrates that are external to the cell
into various internal products.
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Introduction:
Metabolism, Genetic Engineering and Bioprocessing

Genetic Engineering allows for the alteration of
metabolism by insertion or deletion of selected genes
in a predetermined manner (Metabolic Engineering).

An understanding of metabolic pathways in the
organism of interest is of primary importance in
bioprocess development.
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Characteristics of Metabolism

1. Varies from organisms to organism
2. Many common characteristics

3. Affected by environmental conditions
» a) O, availability: Saccharomyces cerevisiae
Aerobic growth on glucose — more yeast cells
Anaerobic growth on glucose — ethanol

» b) Control of metabolism is important in bioprocesses
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Types of Metabolism

Catabolism

Metabolic reactions in the cell that degrade a substrate into
smaller / simpler products.

Glucose — CO,
Anabolism

Metabolic reactions that result in the synthesis of larger /
more complex molecules.
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Figure 5.1: Classes of Reactions (Fig. 5.1)
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Figure 5.1, Schematic diagram of reactions in a bacterial cell.
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Bioenergetics

The source of energy to fuel cellular metabolsim is
“reduced” forms of carbon (sugars, hydrocarbons, etc.)

The Sun is the ultimate source via the process of
Photosynthesis in plants

CO, + H,0 + hv — CH,0 + O,
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ATP - Adenosine Triphosphate

Catabolism of carbon-containing substrates generates
high energy biomolecules
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ATP - Reactions

Release of energy

\

ATP + H,0 = ADP + Pi; AG° =-7.3 kcal/mole
Storage of energy
ADP + H,0 = AMP + Pi; AG° = -7.3 kcal/mole

Analogs of ATP

GTP = guanosine triphosphate
UTP = uridine triphosphate

CTP = cytidine triphosphate
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ATP: Energy Currency of the Cell (Fig. 5.2)
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Figure 5.2, Transfer of biological energy from high-energy to low-energy cc
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NAD* and NADP * (Fig. 5.3)
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Glucose Metabolism:
Catabolic Pathways of Primary Importance

1. Glycolysis: from glucose to pyruvate.

2. Krebs or tricarboxylic acid (TCA) cycle for conversion
of pyruvate to CO.,.

3. Respiration or electron transport chain for formation of
ATP by transferring electrons from NADH to an
electron acceptor (O, under aerobic conditions).
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Glycolysis: in Eucaryotes

» Fermentation of Glucose — Pyruvate
* no O, required
* Occurs in the Cytoplasm

Glucose + 2 ADP + 2 NAD* +2 P, —»
2 Pyruvate +|2 ATP 2 (NADH + H*)

In Eucaryotes, Cytoplasm l to Mitochondria

2 (FADH + H*)
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Krebs or TCA Cycle

* In Mitochondria of eucaryotes

* provides e (NADH) and ultimately energy (ATP) for
biosynthesis

* provides intermediates for amino acid synthesis

« generates energy (GTP)
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Overall reaction:  Pyruvate + 4NAD + FAD — 3CO, + 4NADH,+ FADH,
GDP + phosphate — GTP
GTP + ADP — GDP + ATP ]
. Oxidative phosphorylation:  4NADHy = 12ATP | ISATP
David R. Shonnard _  FADH.= 2ATP

Krebs or TCA Cycle

Pyruvate + 4 NAD* + FAD — 3 CO, + 4NADH, + FADH,
GDP + P, - GTP
GTP + ADP — GDP + ATP

Yield of ATP 1+4(3)+2=15ATP
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Complete Oxidation of Glucose

Glucose + 36 P; + 36 ADP +6 O, —»
6 CO, + 6 H,O + 36 ATP

AG° = (36)(7.3 kcal/mole) = 263 kcal/mole glucose
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Energetics of Glucose Oxidation

Direct Oxidation of Glucose
Glucose +6 O, —» 6 CO, + 6 H,O

AG° = 686 kcal/mole glucose

Energy Efficiency of Glycolysis/TCA Cycle
263/686(100) = 38% (standard conditions)
=~ 60% (nonstandard conditions)
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ATP Yields

Eucaryotes
3ATP, 2ATP — 36 ATP
NADH FADH Glucose

Procaryotes
2ATP, 1ATP — 24 ATP

NADH FADH Glucose
21
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Respiration

* In Mitochondria of eucaryotes
* in membrane-bound proteins in procaryotes

« e transport from NADH or FADH to an
electron acceptor
- _/

YT
Aerobic Anaerobic
0, NO,, SO,Z, Fe¥*, Cu?’, S°,
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Respiration

(Fig. 5.6)

Goals of Respiratign
1. Regenerate NAD+
2. Generate ATP

Oxidative
Phosphorylation ATP Synthesis ADP + P
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Biosynthesis

The EMP pathway and TCA cycle are used for
catabolism (Glucose — CO, + NADH + ATP)
primarily. — energy production.

* The Hexose - Monophosphate pathway (HMP)
is used for biosynthesis

David R. Shonnard Michigan Technological University
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HMP
Pathway

(Fig. 5.7)
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Family

I. Glutamate

2. Aspartate

3. Pyruvate

4. Serine

5. Aromatic
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Amino Acids by Various Pathways (Fig. 5.8)
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Fermentation:
No TCA Cycle or Respiration
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Metabolic Engineering (ME)

“the directed improvement of product formation
or cellular properties through the modification of
specific biochemical reactions(s) or the
introduction of new one(s) with the use of
recombinant DNA technology”.

It is a field that employs the following skills
+ Applied molecular biology
+ Reaction Engineering
+ Systems analysis

“Metabolic Engineering: Principles and Methodologies”
Stephanopoulos, Aristidou, and Nielsen, Academic Press, 1998
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FIGURE 3.1 Mixed acid fermentation by E. coli. The substrate (glucose) and the seven
metabolic products are circled. T lul bolites and cof: included in the metabolic
model are marked in boldface type. The transamination reaction where aspartate is formed from
oxaloacetate is shown as a direct aminati i.e., gl and 2-} are not shown in
order to reduce the complexity. 30
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Principles of ME and Mixed Acid Fermentation

1. Rates of intra-cellular reactions can be measured by
extra-cellular product accumulation. (ATP)

2. The redox balance (balance on NADH consumption and
generation) must balance.

TABLE 3.1 Typical Yields of the Mixed Acid E. coli Fermentation®

Metabolic product Moles formed per 100 mol of glucose fermented

Formate 2.4
Acetate 36.5
Lactate 79.5
Succinate 10.7
Ethanol 49.8
co, 88.0
H, 75.0

“ The data are taken from Ingraham et al. (1983).

“Metabolic Engineering: Principles and Methodologies”
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Analysis of E. Coli Mixed Acid Fermentation

1. Using a basis of 100 moles of Glucose, how many
moles of NADH are generated?

2. Using the data in Table 3.1, how many moles of NADH
are consumed?

3. Is a redox balance achieved during this fermentation?

“Metabolic Engineering: Principles and Methodologies”

Stephanopoulos, Aristidou, and Nielsen, Academic Press, 1998 0
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Analysis of E. Coli Mixed Acid Fermentation

1. Using a basis of 100 moles of Glucose, how many moles
of NADH are generated?

2(10.7) + 79.5 + 2 (49.8) = 200.5 moles NADH consumed

2. Using the data in Table 3.1, how many moles of NADH
are consumed?

1 (2 x 100) = 200 moles NADH generated

3. Is a redox balance achieved during this fermentation?

Yes
“Metabolic Engineering: Principles and Methodologies”
Stephanopoulos, Aristidou, and Nielsen, Academic Press, 1998 3
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