Open Book and Open Notes

Problem 1. Steady Laminar Flow Through a Square Duct

A liquid of constant density and viscosity is flowing due to a pressure gradient down a nonconverging square duct in laminar flow from left to right, as shown in the figure below. Assume that the flow is steady and gravity is perpendicular to the x direction. Answer the following questions.

a) Circle the choice which is most true for this flow.

$$v_x = v_x (z \text{ only})$$

 $v_x = v_x (y, z)$
 $v_x = v_x (y \text{ only})$

 $v_x = v_x (\mathbf{x}, \mathbf{y}, \mathbf{z})$

b) Equation of Continuity and of Motion: Choose the correct form of the Equation of Continuity Motion from Appendix B of the text. Simplify these equations to their final form (after eliminating terms). Do not solve this equation.

c) Boundary Conditions: Write all of the boundary conditions for this flow problem.

d) Force on the Wetted Surface of the Square Duct: Suppose that you are able to solve this equation for the x-component of velocity as a function of the coordinate directions relevant to this problem. Write down integral expressions for the force on all of the wetted surfaces of the duct.

Problem 2. Problem 3B.16 of the Text

Use the shell balance approach to derive a balance on x-momentum and show that the governing Equation of Motion for x-momentum is

$$\frac{\partial}{\partial y} \left(\frac{\partial v_x}{\partial y} - \frac{v_o}{v} v_x \right) = -\frac{P_{o-}P_L}{\mu L}$$

where $P_o = p - \rho g(0)$ and $P_L = p - \rho g(L)$ are modified pressures. Solve part a) only. You will find it useful to define a new variable $V_x = v_x/y$ and then use one of the solutions in Appendix C on page 852. Then, calculate the force in the x-direction that the fluid exerts on the plates at y = 0 and at y = B.

D. Shonnal CM 5300 Exam 1 Sp. 2008 - Non-converging Duct Statements B Flow Out Flow in q · Steady Laminar Flow, $v_y = v_z = 0$ · P, M constant a) $v_{x} = v_{x} (y, z)$ b) Egns. of Change: Continuity: Table B.4. s.s. - steady-state. $\frac{\partial P}{\partial t} + \frac{\partial}{\partial x} \left(p \sigma x^{0} + \frac{\partial}{\partial y} \left(p 2 \sigma x^{0} \right) + \frac{\partial}{\partial z} \left(p 2 \sigma x^{0} \right) = 0$ ny=0 250 $v_x \neq v_x(x)$ all terms = D x-component of Eqn. of Motion: Table B.6 $\rho\left(\frac{\partial \mathcal{U}_{x}}{\partial t} + v_{x}\frac{\partial \mathcal{U}_{x}}{\partial x} + \frac{\partial \mathcal{U}_{x}}{\partial y} + \frac{\partial \mathcal{U}_{x}}{\partial z}\right) = -\frac{\partial P}{\partial x} + \mathcal{U}\left[\frac{\partial \mathcal{U}_{x}}{\partial x^{2}} + \frac{\partial \mathcal{U}_{x}}{\partial y^{2}} + \frac{\partial \mathcal{U}_{x}}{\partial z^{2}}\right] + \frac{\partial \mathcal{U}_{x}}{\partial z^{2}} + \frac{$

 $0 = -\frac{\partial P}{\partial x} + \mu \left[\frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2} \right] + \frac{\partial^2 u_x}{\partial z^2} + \frac{\partial^2 P}{\partial z^2} + \frac{\partial^2 P}{\partial z^2} + \frac{\partial^2 P}{\partial x} + \frac{\partial^2 P}{\partial x} \left(\frac{\partial P}{\partial x} \right)$ $\left(\begin{array}{c} \text{Let } Q = P - P g_x \\ \frac{\partial P}{\partial x} - \frac{\partial Q}{\partial x} = -\frac{\partial P}{\partial x} + \frac{\partial}{\partial x} \left(\frac{P g_x}{\partial x} \right) \right)$ $=-\frac{\partial P}{\partial x} + Pg_{x}$ $0 = -\frac{\partial P}{\partial x} + \mu \left[\frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2} \right]$

() Boundary Conditions: assume that the width (W) spans -wsystw depth (D) " -dezetal

BC1 y = -w $v_x = 0$ BC2 y = +w $v_x = 0$ BC3 z = -d $v_x = 0$ BC4 z = +d $v_x = 0$

d) Fonce of Fluid on the Wetted Surface of Duct:

$$F(x) = \int_{0}^{1} \int_{-u}^{+d} (T_{yx}|_{-w} + T_{yx}|_{+w}) dz dx + \frac{1}{2} \int_{-w}^{+w} (T_{zx}|_{-u} + T_{zx}|_{+d}) dy dx$$

where, from Table B.1:

$$\hat{\tau}_{yx} = -\mu \left[\frac{\partial \mathcal{V}_{x}}{\partial x} + \frac{\partial \mathcal{V}_{y}}{\partial y} \right] = -\mu \frac{\partial \mathcal{V}_{x}}{\partial y}$$

$$\tilde{\tau}_{zx} = -\mu \left[\frac{\partial \mathcal{V}_{x}}{\partial x} + \frac{\partial \mathcal{V}_{y}}{\partial z} \right] = -\mu \frac{\partial \mathcal{V}_{x}}{\partial z}$$

2, Prob. 3B.16

rate of x-momentum in at x=0 11 11 11 out 11-X=L 11 11 11 in 11 ¥ 11 11 11 out 11 ¥ 11 11 out 11 ¥tay gravity force acting in x-direction

 $(W \Delta y) (\phi_{xx} + \phi_{xy})|_{x=0}$ (WAY (Øxx+ dxy)x=L (WL) (\$ yx+ \$ y) 1y=0 $(WL)(\phi_{yx}+\phi_{yy})|_{y=L}$ (WLAY) pgx

 $(WL)([\phi_{yx'|y}-(\phi_{yx})_{y+ay}) + (Way)([\phi_{xx'|x=a})(\phi_{xx'|x=a}) + (Way)pg=0$ ÷ by (WLAY) , lim sy >0

 $\frac{\partial \varphi_{yx}}{\partial y} = \frac{\varphi_{xx|x=0} - \varphi_{xx|x=1}}{1} = \rho_{gx}$ $\phi_{yx} = \tau_{yx} + \rho v_y v_x = -\mu \frac{\partial v_x}{\partial y} + \rho v_0 v_x$ Pxx = P + Exx + PVx 2 = P - 2 M 2 + PVx 2 subst. into egn. above, $\frac{\partial}{\partial y} \left(-\mu \frac{\partial v_x}{\partial y} + \rho v_0 v_x \right) - \frac{\left(p + \rho v_x v_x \right)_{|x=0} - \left(p + \rho v_x v_x \right)_{|x=L}}{1} = \rho q_x$ but ~x |x=0 = ~x |x=L :. Prx vx |x=0 - P ~x ~x |x=L=0 and the gravity term can be combined with p, $\frac{\partial}{\partial y}\left(-\mu\frac{\partial v_x}{\partial y}+\rho v_0 v_x\right)-\frac{\left(P-\rho g_x(0)\right)-\left(P-\rho g_x(L)\right)}{L}=0$ $\frac{\partial}{\partial g} \left(-u \frac{\partial v_x}{\partial y} + \ell v_0 v_x \right) - \frac{\gamma_0 - \gamma_L}{L} = 0$ $\int \frac{\partial}{\partial y} \left(\frac{\partial v_{x}}{\partial y} - \frac{v_{0}}{2} v_{x} \right) = -\frac{p_{0}-p_{0}}{\mu L}$

3B.16
3B.16

$$\frac{A}{4} + \frac{A}{4} +$$

3B.16-2 $Constant = -\frac{P_0 - P_L}{11}$ BC1 y=0 Nx=0 $\frac{\partial^2 v_y}{\partial y^2} - \frac{v_0}{\nu} \frac{\partial v_y}{\partial y} = -\frac{P_0 - P_1}{\mu L}$ BCZ Y=B Vx=D Solution: let $V_x = \frac{\partial v_x}{\partial y}$, restate eqn. above \rightarrow $\frac{\partial V_{x}}{\partial y} - \frac{v_{0}}{y} \nabla_{x} = -\frac{P_{0} - P_{L}}{ML}$ From Appendix C, for $\frac{dy}{dx} + f(x)y = g(x)$. Y = exp(-Sf(x)dx)(Sexp(Sf(x)dx)g(x)dx+C,) $f(x) = -\frac{N_0}{V}$, $g(x) = -\frac{P_0 - P_1}{V_1}$, $y = V_x$ $-\int f(x)dx = \int \sqrt[4]{9} dy = \frac{\sqrt{9}}{9} y$ $\int f(x)dx = -\frac{v_{g}}{2} \gamma$ $exp(f(x)dx) = exp(-\frac{v_{o}}{\sqrt{y}})$ $exp(-(f(x)dx) = exp(\frac{v_0}{2}y))$ Sexp(Sfix)dx)g(x)dx = Sexp(-2/y)(-2-t)dy $=\frac{2}{20}\left(\frac{P_0-P_L}{AL}\right)\exp\left(-\frac{20}{2}y\right)$ Vx = exp(2) [2 (2-2) exp(-2) + C,7

$$\begin{aligned} \frac{\partial u_{x}}{\partial y} &= \frac{y}{v_{0}} \left(\frac{\eta_{0} - \eta_{1}}{\mu_{L}} \right) + C_{1} \exp\left(\frac{v_{0}}{y} \right) & \longrightarrow \text{ integrate} \\ \frac{\partial u_{x}}{\partial y} &= \frac{y}{v_{0}} \left(\frac{\eta_{0} - \eta_{1}}{\mu_{L}} \right)^{\mu} + C_{1} \frac{y}{v_{0}} \exp\left(\frac{v_{0}}{y} \right) + C_{2} \\ \frac{\partial C_{1}}{\mu_{L}} &= 0 \quad v_{x} = 0 \quad 0 = C_{1} \frac{y}{v_{0}} + C_{2} \\ \frac{\partial C_{2}}{\mu_{L}} &= 0 \quad v_{x} = 0 \quad 0 = C_{1} \frac{y}{v_{0}} + C_{2} \\ \frac{\partial C_{2}}{\mu_{L}} &= 0 \quad v_{x} = 0 \quad 0 = \frac{y}{v_{0}} \left(\frac{\eta_{0} - \eta_{1}}{\mu_{L}} \right) + C_{2} \\ \frac{\partial C_{2}}{\mu_{L}} &= 0 \quad v_{x} = 0 \quad 0 = \frac{y}{v_{0}} \left(\frac{\eta_{0} - \eta_{1}}{\mu_{L}} \right) + C_{2} \\ \frac{\partial C_{2}}{\mu_{L}} &= C_{1} \frac{y}{v_{0}} \quad \text{from AC1.} \\ \frac{\partial C_{2}}{\mu_{L}} &= -C_{1} \frac{y}{v_{0}} \quad \text{from AC1.} \\ \frac{\partial C_{2}}{\mu_{L}} &= \frac{y}{v_{0}} \left(\frac{\eta_{0} - \eta_{1}}{\mu_{L}} \right) + C_{1} \frac{y}{v_{0}} \exp\left(\frac{w_{0}}{y} \right) - C_{1} \frac{y}{v_{0}} \\ C_{1} &= -\frac{B\left(\frac{\eta_{0} - \eta_{1}}{\mu_{L}} \right) + C_{1} \frac{y}{v_{0}} \exp\left(\frac{w_{0}}{y} \right) - C_{1} \frac{y}{v_{0}} \\ C_{1} &= -\frac{B\left(\frac{\eta_{0} - \eta_{1}}{\mu_{L}} \right) - 1}{\frac{exp\left(\frac{w_{0}}{y} \right) - 1}{exp\left(\frac{w_{0}}{y} \right) - 1}} \\ \frac{v_{x}}{v_{0}} \left(\frac{\eta_{0} - \eta_{1}}{\mu_{L}} \right) + \frac{B\left(\frac{\eta_{0} - \eta_{1}}{\mu_{0}} \right) \exp\left(\frac{w_{0}}{y} \right) + \frac{B\left(\frac{\eta_{0} - \eta_{1}}{\mu_{0}} \right) - 1}{\frac{exp\left(\frac{w_{0}}{y} \right) - 1}{\frac{exp\left(\frac{w_{0$$

-

Force of Fluid in x-direction on plate at y=0, y=B

$$F_{KX}|_{y=0} = \int_{0}^{W} \int_{0}^{L} \mathcal{I}_{yx}|_{y=0} dx dz = WL(-u\frac{du}{dy}|_{y=0})$$

$$\frac{\partial v_{x}}{\partial y} = \frac{\partial}{\partial y} \left[\left(\frac{\mathcal{P}_{0}-\mathcal{P}_{L}}{\mu L}\right) \frac{B^{2}}{A} \left[\frac{u}{B} - \frac{e_{xp}(A^{Y}/B)-1}{e_{xp}(A)-1}\right] \right]$$

$$= \left(\frac{\mathcal{P}_{0}-\mathcal{P}_{L}}{\mu L}\right) \frac{B^{2}}{A} \left[\frac{1}{B} - \frac{A}{B} \frac{e_{xp}(A^{Y}/B)}{e_{xp}(A)-1}\right]$$

$$\frac{\partial v_{x}}{\partial y}|_{y=0} = \left(\frac{\mathcal{P}_{0}-\mathcal{P}_{L}}{\mu L}\right) \frac{B^{2}}{A} \left[\frac{1}{B} - \frac{A}{B} \frac{e_{xp}(A)}{B} \frac{e_{xp}(A)}{B}\right]$$

$$= \left(\frac{\mathcal{P}_{0}-\mathcal{P}_{L}}{\mu L}\right) \frac{B^{2}}{A} \left[\frac{1}{B} - \frac{A}{B} \frac{e_{xp}(A)}{B} \frac{e_{xp}(A)}{B}\right]$$

$$= \left(\frac{\mathcal{P}_{0}-\mathcal{P}_{L}}{\mu L}\right) \frac{B^{2}}{A} \left[\frac{1}{B} - \frac{A}{B} \frac{e_{xp}(A)}{B}\right]$$

$$= \left(\frac{\mathcal{P}_{0}-\mathcal{P}_{L}}{\mu L}\right) \frac{B^{2}}{A} \left[\frac{1}{B} - \frac{A}{B} \frac{e_{xp}(A)}{B}\right]$$

$$F_{M}|_{y=B} = \iint_{\partial} \mathcal{F}_{y\times|_{y=B}} dx dz = WL(-u \frac{dv_{x}}{dy}|_{y=B})$$

 $\frac{dv_x}{dy}|_{y=B} = \left(\frac{P_0 - P_1}{nL}\right) \frac{B^2}{A} \left[\frac{1}{B} - \frac{A \exp(\frac{AB}{B})}{B \exp(A) - 1}\right]$ $F(x)|_{y=B} = -W\left(\frac{P_{0}-9U}{M}\frac{B}{A}\left[1-\frac{A\exp(A)}{\exp(A)-1}\right]\right)$