

COMISIÓN DE AGUA CORRIENTE

Aqueduct System for Vallecito, Panama

Victor Boron Lynn Duijndam Val Wilson

Outline

- Team Introductions
- Site Location
- Community Background
- Existing System
- New Design & Project Details
- Recommendations
- Conclusion
- Questions

Introductions

Comisión de Agua Corriente

- Lynn Duijndam
- Victor Boron
- Valerie Wilson

Vallecito, Panama

http://www.educatecentralamerica.org/images/panama-map-col.jpg

Regional Landscape

Vallecito

- Settled area ~70 years ago
 - Approximately 70 households
 - Wooden huts and latrines available
- School (Est. 1948)
- Church and central town area
- Local Stores

People

- Latino
- Spanish Language
- Agriculture
 - Subsistence Farming
 - About \$5 per day
- Coffee, Bananas, Oranges, Rice, Beef Chicken, etc.
- Activities
 - Baseball, dancing, swimming

Existing Aqueduct Systems

- ase Loce Existing private aqueduct system Water sources Streams & rivers Existing private tanks House 6 Image Landsat @ 2013 Googl
- About 13 scattered, single household systems

Existing Aqueducts: Problems

- Functional but aging, often 20 yrs+
- Mostly unburied exposed to agricultural activity
- Inefficient, decentralized layout

Existing Sources - Problems

- Unprotected: runoff contamination
 - Cow and horse feces E. coli/coliforms
 - Fertilizer & pesticides
- Households without taps must walk to sources (springs)
- Lack of household water treatment

Existing System Problems: Town Center

- Public facilities at town center:
 - \circ School

o Church

o Casa local, a public gathering pavilion/kitchen

- Source for town center located on private land
- Pesticides to be used near source

Goal of New Design

- Create a new water system to serve southern Vallecito
 - Main aqueduct
 - Service line branches
 - In-line chlorination
 - Water committee

The Water Level

Components

- PVC reservoir: always uphill
- \approx 6 m (20 ft) plastic tube
- Wooden rod: always downhill
 - Tube rises up rod
 - Measuring tape also attached

Water Level Surveying

- 1. Record benchmark
- 2. Move forward with appropriate end
- 3. Person holding wooden rod watches for spilling
- 4. Measure linear distance
- 5. Measure elevation difference
- 6. Record compass bearing (and GPS waypoint, if necessary)
- 7. Repeat

Vallecito- High Line System Profile

Supply & Demand

Total persons served =50 households x 6 persons/household = **300 persons**

Recommended rate of water consumption (MINSA) = **30 gal/person/day**

Total daily community demand = **9600 gal/day**

Total dry season daily supply of source = **13,000 gal/day**

Vallecito Water Distribution System Profile (Option 1)

Vallecito Water Distribution System Profile (Option 2)

Option 1: Pipe Information						
Section of Pipe	Distance (m)	Nominal Size (in.)	SDR			
Conduction Line	463	1 1/2	13.5			
High Line	3810	2	26			
Cemetery Service Line	534	1/2	13.5			
Other Service Lines	_	1/2	13.5			

Option 2: Pipe Information					
Section of Pipe	Distance (m)	Nominal Size (in.)	SDR		
Conduction Line	463	1 1/2	13.5		
High Line to connection to					
existing system	602.2	3	26		
Continuation of High Line	3299.1	2	26		
Cemetery Service Line	534	1/2	13.5		
Other Service Lines	_	1/2	13.5		

Pipe Sizes

Spring Box

- Already constructed by previous Peace Corps volunteer
- Conduction line needed between spring box and storage tank
 - 1.5" dia. SDR 26

Storage Tank

- 15 m³ tank already constructed
- 2 Purposes:
 - 1. Store water for peak demand
 - 2. Contact time for chlorine disinfection
- Size based on flow & peak demand 20 years in future

Water Treatment

http://www.engineeringforchange.org/news/files/CTI8%20InformationManual11.1-pdf.pdf http://www.bikudo.com/product_search/details/101343/chlorine_disinfectant_tablet_tcca.html

Air Release Valves

- Relieve air trapped at system high points
- Floating stopper ball free to move
 - Rises to plug end cap when no air
 - Drops to allow air release
- Made of modified PVC tee connection

A Handbook of Gravity-Flow Water Systems, Thomas D Jordan Jr., UNICEF 2010.

Break Pressure Tanks

- Release pressure buildup at system low points
- Hollow masonry box with cast-in-place reinforced concrete floor
- Inflow = outflow

Break Pressure Tanks and Air Release Valves

Tap Stands

- Service line to vertical pipe & spigot
- 1" PVC pipe
- Plastic or steel spigot

Cost Estimate

Estimated Construction Cost Summary (Option 1) Design Component Est

Estimated Cost

	Conduction Line		469
	Chlorinator		54
	Main Line Pipe		4560
	Service Line (Cemetery) Pipe		216
	Tapstand		171
	Air Release Valve		119
Scheduled	Break Pressure Tank		181
Juncaulta	Miscellaneous		1887
for 6 months	Total Estimated Cost (before conti	gencies)	\$ 7660
	Design Contingency Estimate contingency	10% 8%	766 612

Total Estimated Cost (after contingencies) \$ 9040

Cost Estimate

Estimated Construction Cost Summary (Option 2) Design Component Est

Estimated Cost

	Conduction Line	469
Scheduled for 9 months	Chlorinator	54
	Main Line Pipe	9323
	Service Line (Cemetery) Pipe	216
	Tapstand	171
	Air Release Valve	110
	Break Pressure Tank	67
	Miscellaneous	1887
	Total Estimated Cost (before contigencies	s) \$ 12300
	Design Contingency 10%	% 1230
	Estimate contingency 89	% 984

Total Estimated Cost (after contingencies) \$ 14520

Final Recommendations

- Initial Design (Option 1)
 - Less expensive
 - Efficient layout
- Maintenance: Water committee
 - Collect tax
 - Closely monitor chlorine

Conclusion

- Traditional Latino farming community
- Existing aqueducts are failing to meet needs
- New aqueduct system to ensure clean and adequate supply
- Must be practical to construct & maintain

Acknowledgments

Peace Corps Volunteers

- Siobhan Girling
- Danielle Renzi

Senior Design Advisors

- David Watkins, Ph.D., PE
- Michael Drewyor, PE, PS

Supplemental surveying

• Team Agua de Abajo

References

- "Application of EPANET for the Determination of Chlorine Dose and Prediction of THMs in a Water Distribution System." N.p., 2012. Web. http://ser.cienve.org.tw/download/22-1/22-1-5.pdf>.
- Arnalich, Santiago. "EPANET and Development: How to Calculate Water Networks by Computer." Arnalich: Water and Habitat, Oct. 2011. Web. http://www.scribd.com/doc/103058660/Epanet-and-Development-How-to-calculate-water-networks-by-computer.
- Orner, Kevin. "Effectiveness of In-Line Chlorination of Gravity Flow Water Supply in Two Rural Communities in Panama." *Scholar Commons*. N.p., 01 Jan. 2011. Web.
 http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=4466&context=etd.
- Rossman, Lewis A. "EPANET 2 Users Manual." EPA United States Environmental Protection Agency. Environmental Protection Agency, Sept. 2000. Web. http://www.image.unipd.it/salandin/IngAmbientale/Progetto_2/EPANET/EN2manual.pdf).

Questions?