

Logan Anderson, Kellie Heiden, Madelaina Martin (PM), Tia Scarpelli, Adam Tuff

Gravity-fed Water Distribution System in Nidori, Panama

Michigan Technological University Department of Civil and Environmental Engineering International Senior Design, Fall 2014

- . Kusapin Peninsula, Ngöbe-Buglé Comarca
- Dry season: May-August
- ~400 people
- Community members belong to Ngöbe indigenous group
- Primary transportation via canoes
- Primary education

Current Water Distribution Systems in Nidori:

- 12 homes have a distribution line that feed right into their home during the wet season only.
- 5 homes have no in-home water access, so they hike long distances to fill 5-gallon buckets twice a day.
- . No water treatment.
- . An ineffective Water Committee leads to poor maintenance.

Data Collection:

- Surveying was completed using a Nikon Forestry Pro and compass.
- . Water quality was assessed using 3M™ Perti-film plates.
- Source flow rates were estimated using both the volume-time method and the float method.
- Community interviews were facilitated by the PCV.

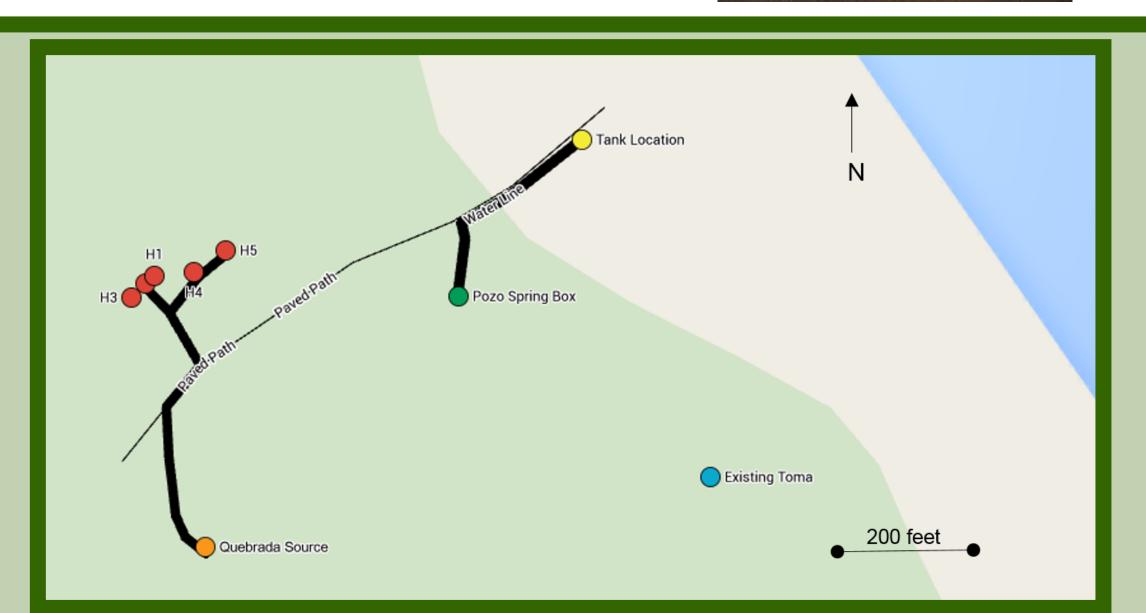


Figure 1. Map of Quebrada system (orange) and Pozo system (green).

PROJECT GOAL To provide the community of Nidori with yearround accessibility to improved water. QUEBRADA SYSTEM This system will utilize a newly found stream as its source (see Figure 2). The water will be dammed to allow for collection and transported to 5 homes (~40 people) that currently have no water distribution system (Figures 3 & 4). Final Design

Quebrada Stream Dam Cleanout Pipe Pipe Length 660 ft \triangle = 45d bend (17) = 90d elbow (2) = Straight coupling (

Quebrada Aqueduct (Fig. 9)

. Shut-off valve for

maintenance

Figure 8:

Washout Pipe (Fig. 8)

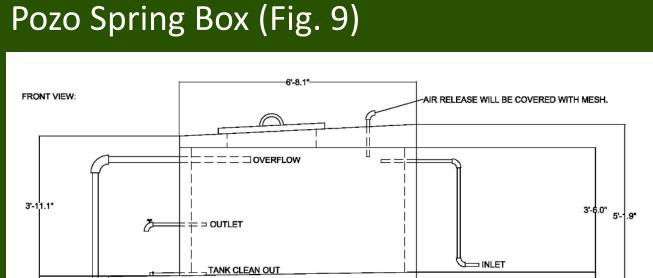
(Fig. 6)

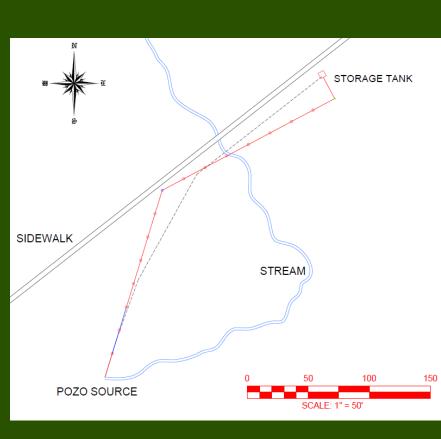
Figure 6: . Type-4 rebar

Figure 7: . 1" SDR 21 PVC

Gravel filter . 660 ft Wire mesh filter . 33 joints

. Air release valve 2 washout pipes


Cost Estimate & Construction Schedule


Project Component	Unit	Quantity	Labor	Equipment	Materials	Total Estimate	Major Tasks	Duration (days)
Mobilization	1	LSUM	\$0	\$0	\$356	\$356	Mobilization	12
Clearing	1935	SYD	\$0	\$20	\$0	\$20	Clearing	1
Dam	1	LSUM	\$0	\$71	\$222	\$293	Dam Construction	12.5
Pipeline	645	LFT	\$0	\$44	\$265	\$309	Pipeline Construction	10
Total:			\$0	\$135	\$843	\$978	Total:	28

POZO SYSTEM

This system will utilize a spring source that has a distribution line and laundry area (Figure 5). A spring box will collect water and a distribution line will carry it to a tank that will serve the 12 homes that have no water during the dry season (~120 people).

Final Design

Pozo Aqueduct (Fig. 10)

Pozo Water Storage Tank (Fig. 11)

- Figure 9:
 - Figure 10:
- 260 gal capacity . 1" SDR 21 PVC
- Type-4 rebar . 350 ft Gravel filter . 18 joints
- Figure 11:
- . 940 gal capacity
- . Outlet, aeration, and overflow pipes

Cost Estimate & Construction Schedule

Project Component	Unit	Quantity	Labor	Equipment	Materials	Total Estimate	Major Tasks	Duration (days)
Mobilization	1	LSUM	\$0	\$0	\$267	\$267	Mobilization	12
Clearing	1020	SYD	\$0	\$13	\$0	\$13	Clearing	1
Spring Box	1	LSUM	\$0	\$42	\$465	\$507	Spring Box Construction	15
Pipeline	350	LFT	\$0	\$37	\$130	\$167	Pipeline Construction	5
Tank	1	LSUM	\$0	\$42	\$762	\$808	Tank Construction	12.5
Total:			\$0	\$135	\$1,625	\$1,762	Total:	32

RECOMMENDATIONS

- . In-home chlorination to remove diseasecausing pathogens
- . Monthly maintenance following the instructions in the maintenance manual provided to the community.

Acknowledgements

Advisors: Michael Drewyor, P.E., Dr. David Watkins, P.E. PCV Colleen Hickey, La Ensenada-Nidori community members